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Abstract—In this paper we give an overview of our work on an 

asynchronous BCI (where the subject makes self-paced decisions 
on when to switch from one mental task to the next) that 
responds every 0.5 seconds. A local neural classifier tries to 
recognize three different mental tasks; it may also respond 
“unknown” for uncertain samples as the classifier has 
incorporated statistical rejection criteria. We report our 
experience with 15 subjects. We also briefly describe two brain-
actuated applications we have developed: a virtual keyboard and 
a mobile robot (emulating a motorized wheelchair). 
 

Index Terms—Brain-Computer Interfaces, EEG, local neural 
classifier, asynchronous protocol, brain-actuated applications. 
 

I. INTRODUCTION 
VER the last seven years, our BCI lab, in cooperation 
with the Institute Santa Lucia in Rome and the 

Computational Engineering Lab of the Helsinki University of 
Technology, has developed a portable BCI, called Adaptive 
Brain Interface (ABI), based on the on-line analysis of 
spontaneous EEG signals measured with 8 scalp electrodes 
and able to recognize 3 mental tasks. Our approach relies on 
an asynchronous protocol where the subject decides 
voluntarily when to switch between mental tasks and uses a 
simple local neural classifier to recognize, every 0.5 s, the 
mental task on which the subject is concentrating [1]. ABI is 
being used to operate two brain-actuated devices: a virtual 
keyboard and a mobile robot (emulating a motorized 
wheelchair) [2-4]. 

Like some of the other BCIs reported in the literature, our 
BCI is based on the analysis of EEG signals associated with 
spontaneous mental activity. In particular, we look at local 
variations of EEG over several cortical areas related to 
different cognitive mental tasks such as imagination of 
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movements, arithmetic operations, or language. The approach 
aims at discovering EEG patterns embedded in the continuous 
EEG signal and associated with different mental states [1, 5, 
6]. It applies machine-learning techniques to train the 
classifier and follows a mutual learning process where the 
user and the brain interface are coupled and adapt to each 
other [1, 6, 7]. This accelerates the training process. In the 
presence of feedback, our subjects achieve good performance 
in just a few hours of training. Analysis of learned EEG 
patterns confirms that for a subject to operate satisfactorily 
his/her personal BCI, the personal BCI must fit the individual 
features of the subject [1, 8]. 

Most BCIs are based on synchronous protocols where the 
subject must follow a fixed repetitive scheme to switch from 
one mental task to the next [7, 9, 10]. In these synchronous 
BCI systems, the EEG phenomena to be recognized are time-
locked to a cue, and a trial typically lasts from 4 to 10 seconds 
or longer. In contrast, ABI and a few other systems rely on 
asynchronous protocols in which the subject makes voluntary, 
self-paced decisions on when to stop performing a mental task 
and when to start the next one [1, 11]. This makes the system 
very flexible and natural to operate, and yields rapid response 
times (e.g., 0.5 s in our case). 

Typically, EEG-based BCIs make binary decisions as they 
seek to recognize 2 different mental states and reach accuracy 
levels that, in general, are around 90%. ABI achieves error 
rates below 5% for 3 mental tasks, while correct recognition is 
70% (or higher). In the remaining cases (around 20-25%), the 
classifier doesn’t respond, since it considers the EEG samples 
as uncertain. The incorporation of rejection criteria to avoid 
making risky decisions is an important concern in BCI. From 
a practical point of view, a low classification error is a critical 
performance criterion for a BCI; otherwise users can become 
frustrated and stop utilizing the interface. The system of 
Roberts and Penny [6] applies Bayesian techniques for 
rejection purposes. 

The classification rates of our system, together with the 
number of recognizable tasks (3) and the 0.5-s response times, 
yield a theoretical maximum transmission rate of 
approximately 2.0 bits/second for our system. However, as 
discussed below, this bit rate was rarely achieved in practice 
for long periods. 

The use of statistical rejection criteria also helps to deal 
with an important aspect of a BCI, namely “idle” states where 
the user is not involved in any particular mental task. In an 
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asynchronous protocol, idle states appear during the operation 
of a brain-actuated device while the subject does not want the 
BCI to carry out any action. Although the neural classifier is 
not explicitly trained to recognize those idle states, the BCI 
can process them adequately by giving no response. 

II. EXPERIMENTAL PROTOCOL 
After a short evaluation, every user selects the 3 mental 

tasks that s/he finds easier out of the following choices: 
“relax”; imagination of “left” and “right” hand (or arm) 
movements; “cube rotation”; “subtraction”; or “word 
association”. More specifically, the tasks consist of getting 
relaxed, imagining repetitive self-paced movements of the 
limb, visualizing a spinning cube, performing successive 
elementary subtractions by a fixed number (e.g., 64–3=61, 
61–3=58, etc.), and concatenating related words. “Relax” is 
done with eyes closed; the other tasks are performed with eyes 
open1. 

In a given training session, a subject participates in several 
consecutive training trials (normally four), each lasting 
approximately 5 min, and separated by breaks of 5-10 min. 
The subject is seated and performs the selected task during 10 
to 15 s. Then, one of two protocols is followed. In one, the 
subject voluntarily chooses when to stop performing the first 
task and decides the next to be undertaken. In this case, the 
subject verbally informs the operator which task s/he is ready 
to perform next so that data can be labeled for the training and 
testing of the neural classifiers. In the other protocol, the 
operator indicates the next mental task randomly. (The latter 
option is the acquisition protocol we are following now.) With 
either protocol, the nature of the acquisition is such that there 
is a time-shift between the moment the subject actually starts 
performing a task and the moment the operator introduces the 
label for the subsequent period. Thus, the acquired EEG data 
is not time-locked to any kind of event in accordance with the 
principle of asynchronous BCI. While operating a brain-
actuated application, the subject does essentially the same as 
during the training trial, the only difference being that now 
s/he switches to the next mental task as soon as the desired 
action has been carried out. 

During the training trials, users receive feedback through 
three buttons on the computer screen, each of a different color 
and associated to one of the mental tasks to be recognized. A 
button lights up when an arriving EEG sample is classified as 
belonging to the corresponding mental task. 

EEG potentials are recorded at the 8 standard fronto-centro-
parietal locations F3, F4, C3, Cz, C4, P3, Pz, and P4. The 
sampling rate is 128 Hz. The raw EEG potentials are first 
transformed by means of a surface Laplacian (SL) computed 

 
1 Note that the recognition of the task “relax” is not based on the detection 

of eye movements. Also, as shown in [1], the learned prototypes for this task 
are not simply based on alpha activity (8-12 Hz) that should increase when the 
eyes are closed. 

globally by means of a spherical spline of order 2 [12, 13]2. 
Mouriño et al. [15] compare different ways to compute the SL 
with a few electrodes. We then use the Welch periodogram 
algorithm to estimate the power spectrum of each SL-
transformed channel over the last second. We average three 
0.5-s segments with 50% overlap, which gives a frequency 
resolution of 2 Hz. The values in the frequency band 8-30 Hz 
are normalized according to the total energy in that band. 
Thus an EEG sample has 96 features (8 channels times 12 
components each). The periodogram, and hence an EEG 
sample, is computed every 62.5 ms (i.e., 16 times per second). 

An important question in any BCI system is to rule out the 
possibility that subjects may use EOG and EMG activity as 
the control signals. Most EOG activity occurs in the delta 
frequency range (0-4 Hz) [16] (cited in [17]) and so EOG 
activity should be nearly absent from the band 8-30 Hz we use 
for analysis. It is still possible that EOG and facial EMG 
activity is present in this band, but, if so, these artifacts should 
be more prominent in anterior electrodes than in posterior 
ones. In fact, we have found that this is not the case for any of 
our subjects. In particular, we have calculated the proportion 
of energy between the frontal and posterior locations: 
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This expression gives a real value between -1 (all the energy 
lies in the posterior sites) and 1 (all the energy is located in the 
anterior electrodes). This value is always negative (or close to 
zero) for all mental tasks chosen by the subjects. For instance, 
in the case of one subject who has extensively operated the 
virtual keyboard described in the next section, the proportions 
are -0.63, -0.30, and -0.23 for the mental tasks “relax”, 
“cube”, and “left”, respectively. In addition, if we apply 
machine-learning techniques for the selection of those 
relevant features that best differentiate the mental tasks, we 
find that the classifier performance improves with only a small 
proportion of features, which are not grouped in a cluster [8]. 
This suggests that subjects are not using EMG activity, which 
is broad-band. This supports the fact that only EEG signals 
account for the control achieved. 

III. EXPERIMENTAL RESULTS 
ABI has a simple local neural classifier where every unit 

represents a prototype of one of the mental tasks to be 
recognized [1]. This local network performs better than more 
sophisticated approaches such as support vector machines and 
temporal-processing neural networks (TDNN and Elman-like) 
[18]. This performance is achieved by simply averaging the 
outputs of the network for 8 consecutive EEG samples (and 
still yielding a global response every 0.5 s). Once trained, the 
response of the network for the arriving EEG sample is the 
task with the highest posterior probability, provided that it is 
above a given probability confidence threshold (otherwise the 

 
2 Normally, the SL is estimated with a high number of electrodes. But [14] 

has shown that, for the operation of a BCI, SL waveforms with either a low or 
a high number of electrodes give statistically similar classification results. 
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response is classified as “unknown”). The posterior 
probability distribution is based on the Mahalanobis distance 
from the EEG sample to the different prototypes. 

Typically, subjects reach the above-mentioned level of 
performance at the end of a few days of moderate training 
(around one-half hour daily). Some subjects have achieved 
this level in a single day of intensive training. One of the latter 
subjects is a physically impaired person suffering from spinal 
muscular atrophy. In total, we have worked with around 15 
different subjects in a variety of conditions. 

We have developed several demonstrators that illustrate the 
wide range of systems that can be linked to ABI. Thus, the 
brain interface can be used to select letters from a virtual 
keyboard on a computer screen and to write a message. 
Initially, the whole keyboard (26 English letters plus the space 
to separate words, for a total of 27 symbols organized in a 
matrix of 3 rows by 9 columns) is divided in three blocks, 
each associated to one of the mental tasks. The association 
between blocks and mental tasks is indicated by the same 
colors as during the training phase. Each block contains an 
equal number of symbols, namely 9 at this first level (3 rows 
by 3 columns). Then, once the neural classifier recognizes the 
block on which the subject is concentrating, this block is split 
in 3 smaller blocks, each having 3 symbols this time (1 row). 
As one of this second-level blocks is selected (the neural 
classifier recognizes the corresponding mental task), it is again 
split in 3 parts. At this third and final level, each block 
contains 1 single symbol. Finally, to select the desired symbol, 
the user concentrates in its associated mental task as indicated 
by the color of the symbol. This symbol goes to the message 
and the whole process starts over again. Thus, the process of 
writing a single letter requires three decision steps. 

The actual selection of a block incorporates some additional 
reliability measures (in addition to the statistical rejection 
criteria). In particular, a part of the keyboard is selected only 
when the corresponding mental task is recognized three times 
in a row. Also, in the case of an eventual wrong selection, the 
user can undo it by concentrating immediately on one of the 
mental tasks of his/her choice. Thus, the system waits a short 
time after every selection (3.5 s) before going down to next 
level. The mental task used to undo selection is that for which 
the user exhibits the best performance. For our trained 
subjects, it takes 22.0 s on average to select a letter. This time 
includes recovering from eventual errors [3]. Thus, the actual 
bit rate in this particular implementation is about 0.22 bits/s, 
far less than the maximum theoretical bit rate of 2.0 bits/s. 
This discrepancy is due to the additional reliability measures 
we have incorporated to increase the likelihood of correct 
functioning. In preliminary work where those reliability 
measures were relaxed (requiring that two consecutive 
responses were the same and eliminating the waiting period, 
but adding an additional symbol for undoing the last 
selection), one subject could write letters at an average speed 
of 7.0 s. This translates to a bit rate of 0.69 bits/s. 

ABI also makes possible the continuous control of a mobile 
robot (emulating a motorized wheelchair) generating non-

trivial trajectories among different rooms in a house-like 
environment. The key idea here is that the user’s mental states 
are associated with high-level commands (e.g., “turn right at 
the next occasion”) and that the robot executes these 
commands autonomously using the readings of its on-board 
sensors. Another critical feature is that a subject can issue 
high-level commands at any moment. This is possible because 
the operation of the BCI is asynchronous and, unlike 
synchronous approaches, does not require waiting for external 
cues. The robot relies on a behavior-based controller to 
implement the high-level commands to guarantees obstacle 
avoidance and smooth turns. In this kind of controller, on-
board sensors are read constantly and determine the next 
action to take. 

The mapping from the user’s mental states is not the only 
input to determine the robot’s behavior. In order to achieve 
more flexible control of the robot, the mental states are just 
one of the inputs for a finite state automaton with 6 states (or 
behaviors). The transitions between behaviors are determined 
by the 3 mental states (#1, #2, #3) of the user, supplemented 
by 6 perceptual states of the environment determined from the 
robot’s sensory readings (left wall, right wall, wall or obstacle 
in front, left obstacle, right obstacle, and free space.) The 
robot’s interpretation of a particular mental state depends on 
the perceptual state of the robot. Thus, in an open space, 
mental state #2 means “left turn”; on the other hand, if a wall 
is detected on the left-hand side, mental state #2 is interpreted 
as “follow left wall”. Similarly, depending on the perceptual 
state of the robot, mental state #3 can mean “right turn” or 
“follow right wall”. However, mental state #1 always means 
“move forward”. The robot continues executing a particular 
behavior until the next mental state is received. Using this 
system, two subjects have succeeded in mentally driving the 
robot along non-trivial trajectories in an office environment 
visiting 3 or 4 rooms in the desired order. Furthermore, 
experimental results [4] show that mental control of the robot 
is only marginally worse than manual control for the same 
trajectories. 

IV. DISCUSSION 
A key concern for BCI technology to move beyond 

demonstrations is to keep the brain interface constantly tuned 
to its owner. This requirement arises because, as subjects gain 
experience, they develop new capabilities and change their 
EEG patterns. In addition, brain activity changes naturally 
over time. In particular, this is the case from one session (with 
which data the classifier is trained) to the next (where the 
classifier is applied). The challenge is to adapt on-line the 
classifier while the subject operates a brain-actuated device. In 
this respect, local neural classifiers are better suited for on-line 
learning than other methods due to their robustness against 
catastrophic interference and their simple learning rules. 
Furthermore, on-line adaptation should be ongoing even when 
the subject’s intention is not known instant by instant. To 
address this issue, we could resort to reinforcement learning 
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techniques [19], especially if the subject is controlling robotic 
devices, a task in which these machine-learning techniques 
have been demonstrated to be particularly effective [20]. 
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