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Abstract. In this paper, we introduce a novel algorithm to perform multi-scale Fourier transform

analysis of piecewise stationary signals with application to automatic speech recognition. Such

signals are composed of quasi-stationary segments of variable lengths. Therefore, in the proposed

algorithm, signals are analyzed with multiple-sized windows. Resulting power spectra are then

normalized such that they all have unit energy, followed by entropy computation of each power

spectrum. These entropies are further normalized because they are computed over different number

of sample points. Amongst these power spectra, the one with the minimum normalized entropy is

retained as optimal power spectrum estimate. In experiments with speech signals, it is shown that

the proposed multi-scale Fourier transform based features yield an increase in speech recognition

performance in various non-stationary noise conditions when compared directly to single fixed

scale Fourier transform based features.
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1 Introduction

Speech signals as many other signals are inherently multi-scale in nature, owing to contributions
from events occurring with different localizations in time and frequency. Therefore, signal analysis
and modeling methods that represent the measured signal at multiple scales are better suited for
extracting information from signal than methods that represent it at a single scale. There is another
subtle point which arises in spectrum estimation of a signal using fixed scale discrete Fourier transform
(DFT) analysis. The DFT computation of a signal implicitly assumes that the signal is periodic with
the base period of the analysis window. If the original period of the signal is much smaller than the
length of the analysis window, the resulting power spectrum estimate is reasonably accurate. However,
if the length of the analysis window is comparable to the period of the signal, the short time power
spectrum obtained is a poor estimate of the signal spectrum [1].

In this work, we use multiple window sizes and compute the corresponding power spectral density
(PSD) for each window size. These PSDs are then normalized such that they all have equal energies.
This can also be interpreted as transforming PSDs to probability mass functions (PMF). Amongst
these normalized PSDs, the one with the minimum spread of the energy across the frequency axis is
used as a spectral estimate of the quasi-stationary segment under analysis. For a particular window
size, the spread of the energy across the frequency axis is measured in terms of the entropy of the
corresponding PMF.

This paper is divided into five sections. In Section 2, we discuss the limitations of single scale
Fourier transform analysis of signals. In Section 3, we describe the proposed algorithm for the multi-
scale Fourier transform analysis. The experimental setup and the results are described in Section
4.

2 Limitations of Single-scale Spectrum Analysis

Speech signals can be assumed to be composed of piecewise stationary segments (PSSs) of variable
lengths.

However, most speech signal feature extraction modules analyze the incoming signal into frames
of equal lengths, followed by discrete Fourier transform (DFT) operation on each frame. An inherent
problem with this analysis is that a single frame size is not optimal for variable sized PSSs which
form the signal. Optimal window size for a particular PSS is the biggest size without leakage from
neighbouring PSS. As an example, let us assume s[n] is a speech signal composed of PSSs x1(n),
x2(n),..... xN (n)

s[n] = x1(n) n ∈ [0, 2L − 1]

= x2(n − 2L) n ∈ [2L, 3L − 1]

= .................

(1)

Consider three rectangular windows w1, w2, w3 of sizes L, 2L, 3L respectively. Let Fi be the magnitude
of the discrete time Fourier transform (DTFT) of signal s[n] windowed by wi and Wi be the DTFT
of wi. Xi is the DTFT of xi. Then it follows:

Fi(e
jω) =| X1(e

jω) ∗ Wi(e
jω) |2, i ∈ [1, 2] (2)

F3(e
jω) =| (X1(e

jω) + X2(e
jω)e−jω2L) ∗ W3(e

jω) |2 (3)

Wi has a spectrum similar to that of a narrow band-pass filter. The Bandwidth of the filter
decreases with increasing window length. Therefore, F2 is a better spectrum estimate than F1 because
it has finer frequency resolution. Although W3 has the finest frequency resolution, from a pattern
recognition point of view, F3 is a poor spectrum estimate because it is a mixture of two PSS spectra.



IDIAP–RR 03-32 3

Instances of feature vectors like F3 decrease the discrimination between various PSS. Let Pi(e
jω) be

normalized Fi(e
jω) such that,

Pi(e
jω) = Fi(e

jω)/

∫ π

−π

Fi(e
jω)dω (4)

We note that P1(e
jω) and P2(e

jω) have the same functional form but different parameters. Due to the
fact that W2 has a narrower pass-band than W1, the convolution operation in (2) results in P2(e

jω)
having less variance than P1(e

jω). Therefore, it can be shown that the entropy of P2(e
jω) is less than

that of P1(e
jω). Moreover, if the distribution of the spectral power in X1(e

jω) is significantly different
than that in X2(e

jω), it would imply that the spread of the spectral power in F3(e
jω) is more than

that in F2(e
jω). Therefore, it can be safely assumed that the entropy of P2(e

jω) will be less than
entropy of P3(e

jω).
The above example shows that under suitable conditions, the spectrum estimate with minimum

spectral power spread is the optimal estimate amongst various spectra, computed over multiple window
sizes. In this work, spectral power spread is measured in terms of the entropy of the normalized
spectrum. The required suitable conditions are that:

1. The signal can be assumed to be composed of PSSs.

2. Wide range of window sizes are required, to be able to segment the incoming signals into valid
PSSs.

It is well known that the power spectral density of a windowed signal is the DTFT of the temporal
autocorrelation of the windowed signal. For a particular PSS, a window size determines the number
of samples over which the temporal autocorrelation is performed. The larger the number of terms,
the better the autocorrelation estimate and therefore the better the spectral estimate. However, if
the window length is larger than the length of the PSS, terms from adjoining PSS start to enter
the autocorrelation estimate. Consequently, the spectrum has contributions from more than one PSS
leading to poor discrimination ability in pattern recognition problems. Multi-scale analysis alleviates
this problem by choosing the optimal scale for the Fourier transform analysis of piecewise stationary
signals.

3 Multi Scale Spectral Analysis

Multi scale signal processing involves performing DFT analysis of a non-stationary signal (which can
be assumed to consist of PSSs) with several variable sized windows. Let w1...M be the windows and
L1...M be the corresponding window size such that L1 < L2 < ...... < LM . Let Xi be the DFT of x(n)
multiplied with window wi .

Xi(k) =
∑Li−1

n=0
x(n)wi(n) exp(−j2πnk

Li

) ,

∀ k ∈ [0, Li − 1] and ∀ i ∈ [1, M ] (5)

For a given window size, if the window has at least one base period of the quasi-stationary segment
in it, and it does not capture any other adjoining quasi-stationary segments, then the power spectrum
obtained will be a good estimate of the actual spectrum. Otherwise, the resulting power spectrum will
have poor time and frequency resolution. We use this hypothesis to automatically choose an optimal
window size for a given quasi-stationary segment under analysis. We take windows of different sizes
and compute their corresponding power spectrum. The resulting power spectrum is normalized so
that it takes the form of a PMF. Let Pi be the PMF obtained by normalizing | Xi |

2.

Pi(k) =| Xi(k) |2 /
∑Li−1

j=0
| Xi(j) |

2 ,

∀ k ∈ [0, Li − 1] and ∀ i ∈ [1, M ]

(6)
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Next, we compute the entropy of each PMF resulting from several analysis windows and again
normalize them to the scale (0, 1). Let Hi be the entropy of PMF Pi and Hnorm

i be the normalized
entropy.

Hi = −

Li−1∑
k=0

Pi(k) ln(Pi(k)) ∀ i ∈ [1, M ] (7)

The maximum entropy of a PMF defined over L points is ln(L). Therefore normalizing Hi by
ln(Li) ensures that all the entropies lie in the interval (0,1).

Hnorm
i = Hi/ ln(Li) (8)

The window size which gives the minimum entropy is chosen to be the optimal window size for
the quasi-stationary segment under analysis.

Hnorm
m = argmin

i
Hnorm

i ∀ i ∈ [1, M ] (9)

and | Xm(k) |2 is retained as the power spectral density estimate of this segment. The signal is shifted
by the last optimal window length and the algorithm is repeated for the new quasi-stationary segment.

Given a segment which is quasi-stationary for a duration greater than the largest window size
LM , the above mentioned algorithm will select XM as the spectral estimate as it will have the mini-
mum entropy. With the increasing window size, the main-lobe of the window spectrum will decrease.
This will decrease the smearing effect due to convolution, giving sharper frequency resolution while
monotonically decreasing the entropy in (8). On the other hand, if a segment is quasi-stationary for a
duration L such that Li < L < Li+1 then the algorithm will select Xi as the spectral estimate. The
windows Wi+1, Wi+2, ......, WM will capture more than one quasi-stationary segment in the analysis,
leading to blurring across time and frequency. Therefore, the corresponding entropy in (8) will be high.
The windows W1, W2, ......, Wi will capture only one quasi-stationary segment in the analysis with
increasing frequency resolution and monotonically decreasing the entropy. Therefore, the proposed
algorithm will select the largest possible window size amongst the given sizes, such that the signal
remains quasi-stationary within the window duration.

4 Experiments and Results

In order to assess the effectiveness of the proposed multi-scale signal processing, speech recognition
experiments were conducted on the Numbers corpus [4]. We have used a much simpler version of the
proposed algorithm, where incoming speech signal is analyzed with only two window sizes (12.5ms,
37.5ms). For reasons of simplicity in statistical modeling using Hidden Markov Models and Gaussian
Mixture Models (HMM-GMM), the frame shift is kept constant at 12.5ms rather than using the
variable shift rule proposed in the algorithm. Throughout the experiments, Mel-frequency cepstral
coefficients (MFCC) [2] and their temporal derivatives have been used as speech features. Three
feature sets were generated:

1. [MFCC+Deltas:] 39 element feature vector consisting of 13 MFCCs (including 0th cepstral co-
efficient) with cepstral mean subtraction and their standard delta and acceleration features.
Spectrum computation over a Hamming window of length 32ms.

2. [Concatenated MFCC+Deltas:] 78 element feature vector which is concatenation of two 39 el-
ement feature vectors. These two vectors are derived using windows of lengths 12.5ms and
37.5ms respectively. Individually, they consist of 13 MFCCs (including 0th cepstral coefficient)
with cepstral mean subtraction and their standard delta and acceleration features.
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3. [Multi-scale MFCC+Deltas:] 39 element feature vector consisting of 13 MFCCs (including 0th

cepstral coefficient) with cepstral mean subtraction and their standard delta and acceleration
features. Two Hamming window sizes of lengths 12.5ms and 37.5ms were used. For a given frame,
the size was chosen dynamically using (9).

Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) based speech recognition systems
were trained using public domain software HTK [3] on the clean training set from the original Numbers
corpus. The system consisted of 80 tied-state triphone HMM’s with 3 emitting states per triphone
and 12 mixtures per state.

To verify the robustness of the features to noise, the clean test utterances were corrupted using
Factory and Car noises from the Noisex92 [5] database. The speech recognition results for the fixed
scale baseline, concatenated multi-scale and proposed multi-scale systems, in various levels of noise
are given in Tables 1 and 2. The proposed multi-scale system performs better than the concatenated
multi-scale system in the noisy conditions and does so with half the number of parameters of the
concatenated system.

In these experiments, there are two opposing factors at work. The assumption of speech signal
being composed of PSSs is not always correct. Therefore, the optimality criterion in (9) does not
hold true for all the cases. As a result, instances of a particular quasi-PSS might get analyzed by
two or more different window sizes. This leads to a mismatch between the training and the testing
conditions. On the contrary, this problem is inherently absent in the other two systems due to the
use of the fixed scale analysis. This explains the slight degradation of the proposed multi-scale system
in the clean conditions. However, in the case of segments where the optimality criterion in (9) holds
true, we get the advantage of better time and frequency resolution. This advantage is more evident
in noisy environments, where the enhanced time and frequency resolution more than compensates for
the mismatch problem discussed above.

Table 1: Word error rate results for factory noise

SNR MFCC Concatenated MFCC Multi-scale MFCC

Clean 6.6 6.4 7.3
12 dB 23.1 22.4 19.5
6 dB 48.8 50.0 40.7

Table 2: Word error rate results for car noise

SNR MFCC Concatenated MFCC Multi-scale MFCC

Clean 6.6 6.4 7.3
12 dB 18.2 16.4 15.7
6 dB 38.1 35.1 32.4

5 Conclusion

We have shown that the multi-scale Fourier transform analysis can yield a better estimate of the
speech signal spectrum. The presented algorithm, automatically finds the optimal size of the window
for the quasi-stationary segment under analysis, achieving optimal time and frequency resolution for
such a segment. To have a rigorous comparison of the proposed multi-scale processing with other such
techniques, a concatenated multiple scale feature vector based system was trained. The concatenated
feature vectors were twice the size of the proposed processing based feature vectors, with twice the
number of parameters in HMM-GMM system as in the proposed system. In the clean case, the proposed
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system performed poorer, which can be attributed to the mismatch phenomenon explained in the
previous section. In the noisy conditions, the proposed feature extraction approach performed better
than the other two systems.
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