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Abstract. In this paper, we introduce new dynamic speech features based on the modulation
spectrum. These features, termed Mel-cepstrum Modulation Spectrum (MCMS), map the time
trajectories of the spectral dynamics into a series of slow and fast moving orthogonal components,
providing a more general and discriminative range of dynamic features than traditional delta and
acceleration features. The features can be seen as the outputs of an array of band-pass filters
spread over the cepstral modulation frequency range of interest. In experiments, it is shown that,
as well as providing a slight improvement in clean conditions, these new dynamic features yield a
significant increase in speech recognition performance in various noise conditions when compared
directly to the standard temporal derivative features and RASTA-PLP features.
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1 Introduction

To improve the performance of automatic speech recognition (ASR) in noisy environments, increased
efforts are being made towards reducing the sensitivity of ASR systems to mismatches between training
data and speech data received during actual operation.

Speech is a dynamic acoustic signal with many sources of variation. As noted by Furui [4, 5], rapid
spectral changes are a major cue in phonetic discrimination. Moreover, in the presence of acoustic
interference, the temporal characteristics of speech appear to be less variable than the static char-
acteristics [1]. Therefore, representations and recognition algorithms that better use the information
based on the specific temporal properties of speech should be more noise robust [2, 3]. Temporal
derivative features [4, 5] of static spectral features like filter-bank, Linear Prediction (LP) [7] , or mel-
frequency cepstrum [8] have yielded significant improvements in ASR performances. Similarly, the
RASTA processing [2] and cepstral mean normalization (CMN) techniques, which perform cepstral
high-pass filtering, have provided a remarkable amount of noise robustness.

Using these temporal processing ideas, we have developed a speech representation which factorizes
the spectral changes over time into slow and fast moving orthogonal components. Any DFT coefficient
of a speech frame, considered as a function of frame index with the discrete frequency fixed, can be
interpreted as the output of a linear time-invariant filter with a narrow-bandpass frequency response.
Therefore, taking a second DFT of a given spectral band, across frame index, with discrete frequency
fixed, will capture the spectral changes in that band with different rates. This effectively extracts the
modulation frequency response of the spectral band.

The use of term “modulation” in this paper is slightly different from that used by others [1, 9]. For
example, “modulation spectrum” [1] uses low-pass filters on time trajectory of the spectrum to remove
fast moving components. In this work, we instead apply several band-pass filters in the mel-cepstrum
domain. In the rest of this paper, we refer to this representation as the Mel-Cepstrum Modulation
Spectrum (MCMS).

In this work, we propose using the MCMS coefficients as dynamic features for robust speech
recognition. Comparing the proposed MCMS features to standard delta and acceleration features, it
is shown that while both implement a form of band-pass filtering in the cepstral modulation frequency,
the bank of filters used in MCMS have better selectivity and yield more complementary features.

In Section 2, we first give an overview and visualisation of the modulation frequency response.
The proposed MCMS dynamic features are then derived in Section 3. Finally, Section 4 compares the
performance of the MCMS features directly with standard temporal derivative features and RASTA-
PLP in recognition experiments on the Numbers database for non-stationary noisy environments.

2 Modulation Frequency Response of Speech

Let X [n, k] be the DFT of a speech signal x[m], windowed by a sequence w[m]. Then, by rearrangement
of terms, the DFT operation could be expressed as,

X [n, k] = x[n] ∗ hk[n] (1)

where ′∗′ denotes convolution and,

hk[n] = w[−n]e
j2πkn

M (2)

From (1) and (2), we can make the well-known observation that the kth DFT coefficient X [n, k], as a
function of frame index n, and with discrete frequency k fixed, can be interpreted as the output of a
linear time invariant filter with impulse response hk[n]. Taking a second DFT, of the time sequence of
the kth DFT coefficient, will factorize the spectral dynamics of the kth DFT coefficient into slow and
fast moving modulation frequencies. We call the resulting second DFT the “Modulation Frequency
Response” of the kth DFT coefficient. Let us define a sequence yk[n] = X [n, k] . Then taking a second
DFT of this sequence over P points, gives
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Yk(q) =
P∑

p=0

yk(n + p)e
−j2πqp

P , q ∈ [0, P − 1] (3)

Yk(q) =
P∑

p=0

X [n + p, k]e
−j2πqp

P

where Yk(q) is termed the qth modulation frequency coefficient of kth primary DFT coefficient. Lower
q′s correspond to slower spectral changes and higher q′s correspond to faster spectral changes. For
example, if the spectrum X [n, k] varies a lot around the frequency k, then Yk(q) will be large for
higher values of modulation frequency, q. This representation should be noise robust, as the temporal
characteristics of speech appear to be less variable than the static characteristics. We note that Yk(q)
has dimensions of [T−2].

To illustrate the modulation frequency response, in the following we derive a modulation spectrum
based on (3), and plot it as a series of modulation spectrograms. This representation emphasizes
the temporal structure of the speech and displays the fast and slow modulations of the spectrum.
Our modulation spectrum is a four-dimensional quantity with time n (1), linear frequency k (1) and
modulation frequency q (3) being the three variables.

Let C[n, l] be the real cepstrum of the DFT X [n, k].

C[n, l] =
1

K

K∑

k=0

log(| X [n, k] |)e
+j2πkl

K , l ∈ [0, K − 1] (4)

Using a rectangular low quefrency lifter which retains only the first 12 cepstral coefficients, we obtain
a smoothed estimate of the spectrum, noted S[n, k].

log S[n, k] = C[n, 0] +

L∑

l=1

2C[n, l] cos(
2πlk

K
) (5)

where we have used the fact that C[n, l] is a real symmetric sequence. The resulting smoothed spectrum
S[n, k] is also real and symmetric. S[n, k] is divided into B linearly spaced frequency bands and the
average energy, E[n, b], in each band is computed.

E[n, b] =
1

K/B

K/B−1
∑

i=0

S[n, b
K

B
+ i] , b ∈ [0, K/B − 1] (6)

Let M [n, b, q] be the magnitude modulation spectrum of band b computed over P points.

M [n, b, q] =|
∑P

p=0
E[n + p, b]e

−j2πpq

P | ,

with q ∈ [0, P ], b ∈ [0, K/B − 1]

(7)

The modulation spectrum M [n, b, q] is a 4-dimensional quantity. Keeping the frequency band
number b fixed, it can be plotted as a conventional spectrogram. Figure 1 shows an example modulation
spectrum of clean speech. The figure consists of 16 modulation spectrograms, corresponding to each of
16 frequency bands in (6), stacked on top of each other. In our implementation, we have used a frame
shift of 3ms and the primary DFT window of length 32ms. The secondary DFT window has a length
P = 41 which is equal to 3ms*40=120ms. This size was chosen, assuming that this would capture
phone specific modulations rather than average speech like modulations. We divided [0, 4kHz] into 16
bands for the computation of modulation spectrum in (7). For the second DFT the Nyquist frequency
is 333.33 Hz. We have only retained the modulation frequency response up to 50 Hz as there was
negligible energy present in the band [50Hz, 166Hz]. For every band, we have shown the modulation
spectrum with q ∈ [1, 6], which corresponds to the modulation frequency range, [0Hz, 50Hz].
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Modulation Spectrum of clean speech across 16 bands.  
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Figure 1: Modulation Spectrum across 16 bands for a clean speech utterance. The above figure is

equivalent to 16 modulation spectrums corresponding to each of 16 bands. To see qth modulation

frequency sample of bth band, go to number (b − 1) ∗ 6 + q on the modulation frequency axis.

3 Mel-Cepstrum Modulation Spectrum Features

As the spectral energies E[n, b] in adjacent bands in (6) are highly correlated, the use of the magnitude
modulation spectrum M [n, b, q] as features for ASR would not be expected to work well (this has been
verified experimentally). Instead, we here compute the modulation spectrum in the cepstral domain,
which is known to be highly uncorrelated. The resulting features are referred to here as Mel-Cepstrum
Modulation Spectrum (MCMS) features.

Consider the modulation spectrum of the cepstrally smoothed power spectrum log(S[n, k]) in (5).
Taking the DFT of log(S[n, k]) over P points and considering the qth coefficient M

′

[n, k, q], we obtain,

M
′

[n, k, q] =

P∑

p=0

log(S[n, k])e
−j2πpq

P (8)

Using (5), (8) can be expressed as,

M
′

[n, k, q] =
∑P−1

p=0
C[n, 0]e

−j2πpq

P

+
∑L−1

l=1
cos(2πkl

K )

P−1∑

p=0

2C[n + p, l]e
−j2πpq

P

︸ ︷︷ ︸

(9)

In (9) we identify that the under-braced term is the cepstrum modulation spectrum. Therefore,
M

′

[n, k, q] is a linear transformation of the cepstrum modulation spectrum. As cepstral coefficients
are mutually uncorrelated, we expect the cepstrum modulation spectrum to perform better than the
power spectrum modulation spectrum M

′

[n, k, q].
To compare these dynamic features with standard delta and acceleration features, Figure 2 shows

trajectories of the zeroth cepstrum C0 and its first and second temporal derivatives for a given ut-
terance, while Figure 3 shows trajectories of the zeroth cepstrum C0 and its third and fourth MCMS
coefficients. As can be seen, the MCMS trajectories for different coefficients vary at different rates,
illustrating the fact that they carry orthogonal information.

An alternative interpretation of the MCMS features, is as filtering of the cepstral trajectory in the
cepstral modulation frequency domain. Temporal derivatives of the cepstral trajectory can also be
viewed as performing such as filtering operation. Figure 4 shows the cepstral modulation frequency
response of the filters corresponding to first and second order derivatives of the MFCC features, while
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Figure 2: Trajectories of zeroth cepstral coefficient and its first and second derivatives.
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Figure 3: Trajectories of zeroth cepstrum coefficient and its 3rd and 4th MCMS coefficient. Note that

each trajectory is showing transitions at different rates. These are believed to be complementary sources

of information.

Figure 5 shows the filters employed in the computation of the MCMS features. On direct compari-
son, we notice that both of the temporal derivative filters emphasize the same cepstral modulation
frequency components around 15Hz and have a relatively wider band-width. This is in contrast to
the MCMS features, which emphasize different cepstral modulation frequency components and have
relatively narrower band-width. This further illustrates the fact that the different MCMS features
carry complementary information.

4 Recognition Experiments

In order to assess the effectiveness of the proposed MCMS features for speech recognition, experiments
were conducted on the Numbers corpus. Two feature sets were generated :

MFCC+Deltas: 39 element feature vector consisting of 13 MFCCs (including 0th cepstral coeffi-
cient) with cepstral mean subtraction and their standard delta and acceleration features.

RASTA-PLP: 39 element feature vector consisting of 13 PLP Cepstrum and their derivatives which
have been RASTA processed for noise robustness.

MFCC+MCMS: 39 element feature vector consisting of 13 MFCCs (including 0th cepstral coeffi-
cient) with their 3rd and 4th MCMS dynamic features with variance normalization.

The speech recognition systems were trained using HTK on the clean training set from the original
Numbers corpus. The system consisted of 80 tied-state triphone HMM’s with 3 emitting states per
triphone and 12 mixtures per state. In clean conditions the baseline system gives a word error rate
(WER) of 6.6%, while the MCMS system shows a slight improvement with a WER of 6.1%.
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Figure 4: Cepstral Modulation Frequency responses of the filters used in computation of derivative and

acceleration of MFCC features
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Figure 5: Cepstral Modulation Frequency responses of the filters used in computation of MCMS features

To verify the robustness of the features to noise, the clean test utterances were corrupted using
Factory and Lynx noises from the Noisex92 database [10]. The results for the baseline and MCMS
systems in various levels of noise are given in Tables 1 and 2, and plotted in Figures 6 and 7.

From these results, it is apparent that the MCMS dynamic features yield significantly greater
noise robustness than standard temporal derivative features. MCMS yields comparable robustness to
RASTA-PLP while providing significant improvement over RASTA-PLP in clean conditions. While
in these experiments we have only used 2 MCMS coefficients (specifically, the 3rd and 4th coefficients)
to allow a direct comparison with delta and acceleration features, in general the MCMS provides a
greater range of dynamic features focused on different cepstral modulation frequencies. Further work
will investigate the importance and potential of the full range of MCMS features. As these dynamic
features are extracted using an orthogonal basis, the coefficients contain complementary information.

Table 1: Word error rate results for factory noise

SNR MFCC+Deltas RASTA PLP MFCC+MCMS

Clean 6.62 8.500 6.10
12 dB 23.10 14.84 15.76
6 dB 48.80 28.07 28.03
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Figure 6: Performance of MCMS features as compared to MFCC delta delta and RASTA PLP features

for factory noise.
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Figure 7: Performance of MCMS features as compared to MFCC delta delta and RASTA PLP features

for Lynx noise.

5 Conclusion

In this paper we have proposed a new feature representation that exploits the temporal structure
of speech, which we referred to here as the Mel-Cepstrum Modulation Spectrum (MCMS). These
features can be seen as the outputs of an array of band-pass filters applied in the cepstral modula-
tion frequency domain, and as such factor the spectral dynamics into orthogonal components moving
at different rates. In experiments, the proposed MCMS dynamic features are compared directly to
standard delta and acceleration temporal derivative features. Recognition results demonstrate that
the MCMS features lead to significant performance improvement in non-stationary noise, while im-
portantly achieving comparable performance in clean conditions. In future, we will comprehensively
examine the importance of different MCMS features and will compare them with other noise robust
features.
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