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Abstract: This study analyses the location of patterns 
of brain activity in the signal space while a human 
subject is trained to operate a brain-computer inter-
face. This evaluation plays an important role in the 
understanding of the underlying system, and it gives 
valuable information about the translation algo-
rithms. The relative position and morphology of the 
patterns in a training session, and from one session 
to another, enable us to evaluate the performance of 
both the interface and the user. Thanks to these 
aforementioned variables we are also able to appre-
ciate stable trajectories of the mental states during 
the sessions, which shows both the adaptability of the 
user to the interface, and vice versa. 
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Introduction 

 
A brain-computer interface (BCI) is an alternative 

means of communication that is of special interest for 
people suffering severe impairments. The interface 
enables a person to operate a computer or a personal 
device by using only brain activity. 

The interface recognises different mental states that 
are associated with specific commands. Each mental 
state is represented by a set of prototypes, which are 
specific patterns of brain activity estimated from the 
user’s on-line electroencephalogram. 

Prototypes can be considered as points in an n-
dimensional signal space, and the evolution of these 
points over time can be analysed when a person is in the 
training period to operate a BCI. 

The current study presents initial evidence of the 
evolution of the prototypes under a geometrical point of 
view. Distances between prototypes in a particular train-
ing session, and from one session to another, have been 
analysed as well as changes in the morphology. 

 
Materials and Methods 

 
The mental states selected by the user to control the 

interface are represented by a number of patterns of 
brain activity in the frequency domain.  

The subject had to perform mentally three of the fol-
lowing mental tasks: a cube in rotation, the imagined 
movement of the left and/or right hand, and relaxation. 

Data were analysed from five subjects –all volun-
teers. On-line data were acquired from eight positions, 
which covered the central part of the brain, i.e. F3, C3, 
P3, Cz, Pz, F4, C4, and P4.  

The data were continuously acquired in blocks of 0.5 
seconds. The sample frequency was 128 Hz. Data were 
bandpass filtered from 4 to 45 Hz, i.e. the range with the 
most significant information of the brain activity re-
quired for the operability of the current prototype [1]. 
The estimated patterns were classified using a local 
neural network [2], where every unit represents a proto-
type of one of the mental tasks to be recognised. 

The current study approaches the prototypes as lin-
ear varieties (LV). Each mental state is represented by a 
number of prototypes –up to nine. Each prototype is 
considered as a point in a high-dimensional space –in 
our case, a 96-dimensional vector space. 

The linear variety V, which represents a particular 
mental state, is expressed in ( 1 ) as a function of the 
prototypes: 

V = {p; vi}      i=1…(n-1) ( 1 ) 
where p is any of the prototypes of the mental state; vi 
are vectors defined from p to the rest of prototypes; and 
n is the total number of prototypes of the mental state. 

For example, the LV of a mental state represented 
by the four prototypes {p1, p2, p3, p4} is V = {p1; v1, v2, 
v3}, where v1=p2-p1, v2=p3-p1, and v3=p4-p1. 

The three variables used to show the evolution of the 
interface while training a subject are: 1) the distance 
between LVs in an individual training session; 2) the 
distance between the LV of a specific mental state from 
one day to another; and 3) the morphological variation 
of the LVs over the training. The distances are com-
puted between the centroids c of the LV, i.e. the mean 
of the prototypes characterising the mental states. 

Considering the two linear varieties U={a; ui} and 
V={b; vj}, different distances have been tested: 1) the 
Euclidian distance –de in eq. ( 2 ); 2) the Mahalanobis 
distance –dm in eq. ( 3 ); and 3) the distance between 
two LV –dLV in eq. ( 4 ). 
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where cu and cv are the centroids of U-LV and V-LV, 
respectively; and n is the dimension of the input space. 

( ) ( )vu1Tvu2vu2
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where cu and cv are the centroids of U-LV and V-LV, 
respectively; and S is the covariance matrix of the cor-
responding mental states. 
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where a and b are the reference points of U-LV and V-
LV, respectively; Y=(<a-b,ui>…<a-b,vj>)ij which is the 
orthogonal projection of the vector between the refer-
ence points over all the vectors defining the two linear 
varieties; and N=(<ui,vj>)ij which is the dot product 
between all the vectors defining the two linear varieties. 

These distances have been measured both among LV 
in a single day, and between one day to another.  

The morphological variation of the LV can be repre-
sented by both the covariances and the volume of the 
linear varieties. 

 
Results 
 

We have selected the evolutions of a representative 
user to show the results. Although the prototypes of 
each user follow different trajectories, which are related 
to individual performance, all of them follow the same 
pattern and share the evidence presented in this paper. 

The distance between prototypes associated to dif-
ferent mental states increases significantly with the 
training. Figure 1 shows three curves; each one repre-
sents the Mahalanobis distance between two mental 
states. On the third training day, it is possible to observe 
a decrease in the distance, which is associated to a de-
crease in the classification rates of this day as well. 

 
Figure 1. Evolution of the distance between LVs of 
different mental states. 

The distance between LV of the same mental state 
significantly decreases from one day to another. It indi-
cates both that the user learns to master the interface and 
also that the prototypes go to a certain stable point in the 
signal space. Nevertheless, in this example, on abscissa 
4 –the distance between the prototypes from the 4th to 
the 5th day–, it is possible to observe a relocation of the 
prototypes belonging to the mental state “left”. 

 
Figure 2. Evolution of the distance between LVs of the 
same mental state between consecutive days. 

The variability of the prototypes also tends to de-
crease from one day to another, which indicates both the 
good performance of the translation algorithms, and 
again the adaptation of the user to the interface. Figure 3 

shows a decrease in the covariance of the LVs associ-
ated to the different mental states as training proceeds. 

The volume of the LV has been studied in all the 
analysed cases in order to look for a specific evolution. 
Although many tests have been carried out, there are not 
any definitive conclusions. But it seems that the volume 
decreases with training, as for the covariances. 

 
Figure 3. Covariance evolution between sessions.  
 
Discussion 

 
Results show interesting evidence about the trajecto-

ries followed by the prototypes, which are representa-
tive of the mental states in the signal space. Although 
results are in the preliminary stage, the five analysed 
subjects share the same evidence: 1) prototypes tend to 
go to stable points in the signal space; and 2) the vari-
ability tends to decrease with the training. Nevertheless, 
longer training periods will be necessary to validate 
these findings. 

 
Conclusions 

 
The training of a person with a brain-computer inter-

face depends on many variables, i.e. the acquisition of 
good EEG data, feature extraction, and feature classifi-
cation. Good performance during the training period is 
crucial to motivate the user to operate the interface. The 
current study has presented some variables to evaluate 
the performance of the translation algorithms. The dis-
tances between the different prototypes in the same 
training session, as well as from one session to another, 
together with their variability and morphology, increase 
our understanding of whether or not training is progress-
ing correctly and is stable. These variables, and their 
graphical representations, may give valuable hints to the 
trainer on which strategy to follow to improve the brain-
computer interface. 
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