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Introduction 

There is a growing interest in the use of physiological signals for communication and 

operation of devices for the severely motor disabled as well as for able-bodied people. 

Over the last decade evidence has accumulated to show the possibility to analyze 

brainwaves on-line to derive information about the subjects’ mental state that is then 

mapped into some external action such as selecting a letter from a virtual keyboard or 

moving a robotics device. A brain-computer interface (BCI) is an alternative 

communication and control channel that does not depend on the brain’s normal output 

pathway of peripheral nerves and muscles (Wolpaw et al., 2000). 

Most BCI systems use electroencephalogram signals (see EEG ANALYSIS) measured 

from scalp electrodes that do not require invasive procedures. Although scalp EEG is a 

simple way to record brainwaves, it does not provide detailed information on the activity 

of single neurons (or small clusters of neurons) that could be recorded by implanted 

electrodes in the cortex (see PROSTHETICS, NEURAL). Such a direct measurement of brain 

activity may, in principle, enable faster recognition of mental states and even achieving 

more complex interactions. 

A BCI may monitor a variety of brainwave phenomena. Some groups exploit evoked 

potentials generated in response to external stimuli (see Wolpaw et al., 2000 for a 

review). Evoked potentials are, in principle, easy to pick up but constrain the subject to 

get synchronized to the external machinery. A more natural and practical alternative is to 

rely upon components associated with spontaneous mental activity. Such spontaneous 

components range from slow cortical potentials of the EEG (e.g., Birbaumer et al., 1999), 
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to variations of EEG rhythms (e.g., Wolpaw and McFarland, 1994; Kalcher et al., 1996; 

Anderson, 1997; Roberts and Penny, 2000; Millán et al., 2002b), to the direct activity of 

neurons in the cortex (e.g., Kennedy et al., 2000; Wessberg et al., 2000). 

 

Direct Brain-Computer Interfaces 

Direct BCIs involve invasive procedures to implant electrodes in the brain (see 

PROSTHETICS, NEURAL). Apart from ethical concerns, a major difficulty is to obtain 

reliable long-term recordings of neural activity. Recent advances have made possible to 

develop direct BCIs with animals and even human beings. 

Kennedy and colleagues (2000) have implanted a special electrode into the motor 

cortex of several paralyzed patients. These electrodes contain a neurotrophic factor that 

induces growth of neural tissue within the hollow electrode tip. With training, patients 

learn to control the firing rates of the multiple recorded neurons to some extent. One of 

them is able to drive a cursor and write messages. 

Wessberg et al. (2000) have recorded the activity of ensembles of neurons with 

microwire arrays implanted in multiple cortical regions involved in motor control, as 

monkeys performed arm movements. From these signals they have obtained accurate 

real-time predictions of arm trajectories and have been able to reproduce the trajectories 

with a robot arm. Although these experiments do not describe an actual BCI, they support 

the feasibility of controlling complex prosthetic limbs directly by brain activity. In 

addition, earlier work by Nicolelis and colleagues showed that neural predictors can be 

derived for rats implanted with the same kind of microelectrodes (see Nicolelis, 2001 for 
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details and reference). The rats were trained to press a bar to move a simple device 

delivering water and, later, learned to operate this device through neural activity only. 

For a more detailed analysis and prospects of this area, see Nicolelis (2001). 

 

Non-Invasive Brain-Computer Interfaces 

Non-invasive BCIs are based on the analysis of EEG phenomena associated with various 

aspects of brain function. Thus, Birbaumer et al. (1999) measure slow cortical potentials 

(SCP) over the vertex (top of the scalp). SCP are shifts in the depolarization level of the 

upper cortical dendrites and indicate the overall preparatory excitation level of a cortical 

network. Other groups look at local variations of EEG rhythms. The most used of such 

rhythms are related to the imagination of movements and are recorded from the central 

region of the scalp overlying the sensorimotor cortex. In this respect, there exist two main 

paradigms. Pfurtscheller’s team works with event-related desynchronization (ERD, see 

EEG ANALYSIS) computed at fixed time intervals after the subject is commanded to 

imagine specific movements of the limbs (Kalcher et al., 1996; Obermaier, Müller and 

Pfurtscheller, 2001). Alternatively, Wolpaw and coworkers analyze continuous changes 

in the amplitudes of the µ (8-12 Hz) or β (13-28 Hz) rhythms (Wolpaw and McFarland, 

1994). Finally, in addition to motor-related rhythms, Anderson (1997) and Millán et al. 

(2002b) also analyze continuous variations of EEG rhythms, but not only over the 

sensorimotor cortex and in specific frequency bands. The reason is that a number of 

neurocognitive studies have found that different mental tasks—such as imagination of 

movements, arithmetic operations, or language—activate local cortical areas at different 
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extents. The insights gathered from these studies guide the placement of electrodes to get 

more relevant signals for the different tasks to be recognized. In this latter case, rather 

than looking for predefined EEG phenomena as in the previous paradigms, the approach 

aims at discovering EEG patterns embedded in the continuous EEG signal associated 

with different mental states. 

Most of the existing BCIs are based on synchronous experimental protocols where 

the subject must follow a fixed repetitive scheme to switch from a mental task to the next 

(Wolpaw and McFarland, 1994; Kalcher et al., 1996; Wolpaw and McFarland, 1994; 

Birbaumer et al., 1999; Obermaier, Müller and Pfurtscheller, 2001). A trial consists of 

two parts. A first cue warns the subject to get ready and, after a fixed period of several 

seconds, a second cue tells the subject to undertake the desired mental task for a 

predefined time. The EEG phenomena to be recognized are time-locked to the last cue 

and the BCI responds with the average decision over the second period of time. In these 

synchronous BCI systems, the shortest trial lengths that have been reported are 4 s 

(Birbaumer et al., 1999) and 5 s (Obermaier, Müller and Pfurtscheller, 2001). This 

relatively long time is necessary because the EEG phenomena of interest, either SCP or 

ERD, need some seconds to recover. On the contrary, other BCIs rely upon more flexible 

asynchronous protocols where the subject makes self-paced decisions on when to stop 

doing a mental task and start immediately the next one (Roberts and Penny, 2000; Millán 

et al., 2002b). In this second case, the time of response of the BCI goes from 0.5 s (Millán 

et al., 2002b) to several seconds (Roberts and Penny, 2000). 

EEG signals are characterized by a poor signal-to-noise ratio and spatial resolution. 

Their quality is greatly improved by means of a Surface Laplacian (SL) derivation, which 
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requires a large number of electrodes (normally 64-128). The SL estimate yields new 

potentials that represent better the cortical activity originated in radial sources 

immediately below the electrodes (for details see McFarland et al., 1997; Babiloni et al., 

2001; and references therein). The superiority of SL-transformed signals over raw 

potentials for the operation of a BCI has been demonstrated in different studies (e.g., 

McFarland et al., 1997). While significant progress has been obtained (and will still 

continue) with studies using a high number of EEG electrodes (from 26 to 128), today’s 

practical BCI systems should have a few electrodes (no more than 10) to allow their 

operation by laypersons, as the procedure of electrode positioning is time consuming and 

critical. Most groups have developed BCI prototypes with a limited number of electrodes 

that, however, do not benefit from SL transformations. On the contrary, Babiloni et al. 

(2001) and Millán et al. (2002b) compute SL derivations from a few electrodes, using 

global and local methods respectively. 

Wolpaw and McFarland (1994) as well as Birbaumer et al. (1999) have demonstrated 

that some subjects can learn to control their brain activity through appropriate, but 

lengthy, training in order to generate fixed EEG patterns that the BCI transforms into 

external actions. In both cases the subject is trained over several months to modify the 

amplitude of either the SCP or µ rhythm, respectively. A few other groups follow 

machine learning approaches to train the classifier embedded in the BCI. These 

techniques range from linear classifiers (Babiloni et al., 2001; Obermaier, Müller and 

Pfurtscheller, 2001), to compact multi-layer perceptrons and Bayesian neural networks 

(Anderson, 1997; Roberts and Penny, 2000), to variations of LVQ (Kalcher et al., 1996), 

to local neural classifiers (Millán, 2002; Millán et al., 2002b). Most of these works deal 
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with the recognition of just 2 mental tasks (Roberts and Penny, 2000; Babiloni et al., 

2001; Obermaier, Müller and Pfurtscheller, 2001), or report classification errors bigger 

than 15% for 3 or more tasks (Kalcher et al., 1996; Anderson, 1997). An exception is 

Millán’s approach that achieves error rates below 5% for 3 mental tasks, but correct 

recognition is 70% (Millán, 2002; Millán et al., 2002b). Obermaier, Müller and 

Pfurtscheller (2001) reports on a single disabled person who, after several months of 

training, has reached a performance level close to 100%. It is also worth noting that some 

of the subjects who follow Wolpaw’s approach are able to control their µ rhythm 

amplitude at 4 different levels. These classification rates, together with the number of 

recognizable tasks and duration of the trials, yield bit rates from approximately 0.15 to 

2.0. 

Some approaches are based on a mutual learning process where the user and the 

brain interface are coupled together and adapt to each other (Roberts and Penny, 2000; 

Obermaier, Müller and Pfurtscheller, 2001; Millán, 2002; Millán et al., 2002b). This 

should accelerate the training time. Thus, Millán’s approach has allowed subjects to 

achieve good performances in just a few hours of training (Millán, 2002; Millán et al., 

2002b). Analysis of learned EEG patterns confirms that for a subject to operate 

satisfactorily his/her personal BCI, the latter must fit the individual features of the former 

(Millán et al., 2002a). 

Another important concern in BCI is the incorporation of rejection criteria to avoid 

making risky decisions for uncertain samples. This is extremely important from a 

practical point of view. Roberts and Penny (2000) apply Bayesian techniques for this 

purpose, while Millán et al. (2002b) use a confidence probability threshold. In this latter 
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case, more than 10 subjects have experimented with their BCI (Millán, 2002; Millán et 

al., 2002b). Most of them were trained for a few consecutive days (from 3 to 5). Training 

time was moderate, around 1/2 hour daily. Experimental results show that, at the end of 

training, the correct recognition rates are 70% (or higher) for three mental tasks. This 

figure is more than twice random classification. This modest rate is largely compensated 

by two properties: wrong responses are below 5% (in many cases even below 2%) and 

decisions are made every 1/2 second. Some other subjects have undertaken consecutive 

training sessions (from 4 to 7) in a single day. None of these subjects had previous 

experience with BCIs and, in less than 2 hours, all of them reach the same excellent 

performance as above. It is worth noting that one of the subjects is a physically impaired 

person suffering from spinal muscular atrophy. 

 

Brain-Actuated Applications 

These different BCI systems are being used to operate a number of brain-actuated 

applications that augment people’s communication capabilities, provide new forms of 

education and entertainment, and also enable the operation of physical devices. There 

exist virtual keyboards for selecting letters from a computer screen and write a message 

(Birbaumer et al., 1999; Obermaier, Müller and Pfurtscheller, 2001; Millán, 2002). Using 

these three different approaches, subjects can write a letter every 2 minutes, 1 minute and 

22 seconds, respectively. Wolpaw’s group has also its own virtual keyboard (Wolpaw, 

personal communication). A patient who has been implanted Kennedy and colleagues’ 

special electrode has achieved a spelling rate of about 3 letters per minute using a 
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combination of neural and EMG signals (Kennedy et al., 2000). 

On the other hand, it is also possible to make a brain-controlled hand orthosis open 

and close (see references in Wolpaw et al., 2000; Obermaier, Müller and Pfurtscheller, 

2001) and even guide in a continuous manner a motorized wheelchair with on-board 

sensory capabilities (Millán, 2002). In this latter case, the key idea is that user’s mental 

states are associated with high-level commands that the wheelchair executes 

autonomously (see ROBOT NAVIGATION). Another critical aspect for the control of the 

wheelchair is that subjects can issue high-level commands at any moment as the 

operation of the BCI is self-paced and does not require waiting for specific events. 

Finally, Millán (2002) illustrates the operation of a simple computer game, but other 

educational software could have been selected instead. 

 

Discussion 

Despite recent advancements, BCI is a field still in its infancy and several issues need to 

be addressed to improve the speed and performance of BCI. One of them is the 

exploration of local components of brain activity with fast dynamics that subjects can 

consciously control. For this we will need increasing knowledge of the brain (where and 

how cognitive and motor decisions are made) as well as the application of more powerful 

digital signal processing (DSP) methods than those commonly used to date. In addition, 

extraction of more relevant features, by means of these DSP methods, together with the 

use of more appropriate classifiers will improve BCI performance in terms of 

classification rates and number of recognizable mental tasks. A possibility is to apply 
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recurrent neural networks to exploit temporal dynamics of brain activity. However, a 

main limitation for scaling up the number of recognizable mental tasks is the quality—

signal-to-noise ratio (SNR) and resolution—of the measured brain signals. This is 

especially true in the case of EEG-based BCIs, where the SNR is very poor and we 

cannot get detailed information on the activity of small cortical areas unless we use a 

large number of electrodes (64, 128 or more). It is then crucial to develop better 

electrodes that are also easy to position, thus enabling the use of a large number of them 

even by laypersons. Finally, another key concern is to keep the BCI constantly tuned to 

its owner. This requirement arises because, as subjects gain experience, they develop new 

capabilities and change their EEG patterns. In addition, brain activity changes from a 

session (with which data the classifier is trained) to the next (where the classifier is 

applied). The challenge here is to adapt on-line the classifier while the subject operates a 

brain-actuated application, even if the subject’s intention is not known until later. In this 

respect, local neural networks are better suited for ON-LINE LEARNING (q.v.) than other 

methods due to their robustness against catastrophic interference. This list of topics is non 

exhaustive, but space limits prevent further discussion (see Wolpaw et al., 2000 for 

additional details on these and other issues). 

Although the immediate application of BCI is to help physically impaired people, its 

potentials are extensive. Ultimately they may lead to the development of truly adaptive 

interactive systems that, on the one side, augment human capabilities by giving the brain 

the possibility to develop new skills and, on the other side, make computer systems fit the 

pace and individual features of their owners. Most probably, people will use BCI in 

combination with other sensory interaction modalities (e.g., speech, gestures) and 
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physiological signals (e.g., electromyogram, skin conductivity). Such a multimodal 

interface will yield a higher bit rate of communication with better reliability than if only 

brainwaves were utilized. On the other hand, the incorporation of other interaction 

modalities highlights a critical issue in BCI, namely the importance of filtering out from 

the recorded brain signals non-CNS artifacts originated by movements of different parts 

of the body. INDEPENDENT COMPONENT ANALYSIS (q.v.) is a method for detecting and 

removing such artifacts. 
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