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Abstract. In many signal such speech, bio-signals, protein chains, etc. there is a dependency between 
consecutive vectors. As the dependency is limited in duration such data can be called as Piecewise-Dependent-
Data (PDD). In clustering it is frequently needed to minimize a given distance function. In this paper we will 
show that in PDD clustering there is a contradiction between the desire for high resolution (short segments and 
low distance) and high accuracy (long segments and high distortion), i.e. meaningful clustering. 
 
Index Terms: clustering, minimal distance, self-organizing maps, piecewise-dependent-data. 
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1. Introduction 
PDD clustering has many applications in time-signals including speaker recognition [1]-[7]; 
machine monitoring [8]; clustering of EEG signals [9]; and music clustering [10]. Similar 
methods have also been applied in other areas, such as protein modeling [11]. 

PDD clustering must be used when there is a successive dependence between a group of 
data vectors and there no trained models of the data classes. In distance-measure-based 
clustering the goal is usually to minimize the overall distance. When a PDD is used longer 
segment supply more information about the clusters and better clustering can be performed 
[1], [2], [5]. The desires for minimum distance and maximum segment length are contradict 
between themselves. To achieve minimum distance smaller segments must be used (one 
feature vector per segment will lead to best minimization) but the clusters may be 
meaningless, large segments will lead to better clustering results but high distance. In other 
words the PDD clustering criterion should be as follows: minimize the overall distance under 
the restriction of the largest segments that can be used. 

The rest of the paper is as follows: problem formulation and the proof is given in section 
II. In section III PDD clustering algorithm we used is described. Experiment and results are 
presented in section IV. Section V summarized the paper. 

2. Problem Formulation and Proof 
If the data V =

=
vn n N� � 1, ,�

 consists of M  segments, as described in equation 1, and the data 

have to be clustered into R  clusters ( N R>> ) such that vectors in the same segment must 
not be separated. Then the best clustering will be obtained if M R= , i.e., all the data consists 
of R  segments, each segment representing a different cluster. The worst case is when 
M N= , i.e., each vector is a segment and there is almost no information in each segment 

about cluster statistics. We will show that in this case a better local minimum may be 
achieved. 
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 (1) 

Two cases will be presented to prove that smaller segments may reach a lower distance 
minimum value. First, in subsection A, a special case will be proved for when two partitions 
are the same, with the exception of 1 m M≤ ≤  segments that split into two or more sub-
segments in one of the partitions. In subsection B, a general case will be proved from a 

probabilistic point of view. It will be shown that if there are two different partitions ({ }1
mV  

and { }2
mV ) with 1M  and 2M  segments respectively ( 1 2M M< ), there is a greater probability 

to reach a lower distortion with { }2
mV  than with { }1

mV . 

2.1 Special Case 

With no limitation of generality assume that: 
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and that the labeling of { }1
mV  is 

 { }
1

1

1, ,
11

m m M
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r R
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
 ≤ ≤

� . (3) 

If the labeling of { }2
mV  is 

 
2 1

2 1
12 1

       ;      1m m

M M

r r m M
r r
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 =

 (4) 

then the distortions of the systems with { }1
mV  and { }2

mV  are the same, as 

  = 1 2 1

2 2 1
M M MV V V . 

Assuming that the labeling of 
1

2
MV  and 

2

2
MV  are 

1

2
Mr  and 

2

2
Mr , respectively, and 

1 2

2 2
M Mr r≠ , then 

the partition of { }1
mV  is not valid for { }2

mV . This means that if one of the partitions with 

1 2

2 2
M Mr r≠  gives a lower distance than any of the partitions with 

1 2

2 2
M Mr r= , a clustering using 

{ }2
mV  may give a lower distance than a clustering using { }1

mV . 

2.2 General Case 

In the general case there are no assumptions about the data partition. The only assumption, 

with no limitation of generality, about { }1
mV  and { }2

mV  is that 1 2M M< . 

If the length of all the segments is equal to one, then the number of segments is M N=  and 
the number of different partitions between R  clusters is M NR R= . The number of different 

partitions of { }1
mV  and { }2

mV  are 1MR  and 2MR  respectively, and the inequality 1 2M MR R<  

holds. Consequently, the probabilities of { }1
mV  and { }2

mV  to achieve global minimum are 
1

1
M

M
R

R
P =  and 2

2
M

M
R

R
P =  respectively. As 2MR  is greater than 1MR , the probability 2P  is 

greater than 1P , i.e., the probability to reach a lower distortion increases with the number of 

segments. 

3. PDD Clustering Algorithm 
The following describes algorithm we already used in [1] and [2]. In general, given a PDD the 
goal is to cluster the data into R  clusters. The PDD consists of N  vectors, { } 1, ,n n N

v
=

=V
�

. 

These vectors are partitioned into M  segments, { } 1, ,m M=
= mV v

�

 (equation 1). The segments 

have to be clustered into R  clusters, such that two vectors that belong to the same segment 
must be clustered to the same cluster. A CB  is created, for each model, using distance-
measure-based algorithm. 

The initiation of the process is performed by randomly assigning equal number of 
segments to all rCB s ( ,r 0V -segments that partitioned to rCB  at the beginning). Each model is 

trained using the data assigned to it during the partitioning. After the training the regrouping 
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process is applied and a new segment attribution is given according to the minimal distance. 
The regrouping process produces a new partition and the models are retrained again. Hence, 
an iteration of the clustering process is defined as follows: 
1. Retrain the models with the new partition achieved by the previous iteration. 
2. Regroup the data by finding minimal distance between each segment and the retrained 

models. 
3. Test for termination: if the termination criterion is met, exit; if not return to 1. 

For models training can use any distance-based-algorithm algorithm that converges at least to 
a local minimum, such as the LBG [12], Self-Organizing Map (SOM) [13], fuzzy C-means 
[14] etc. 
At the end of this iterative procedure R  models for the R  clusters are provided. The data is 
segmented and labeled. A proof of the algorithm convergence can be found in [1]. The 
present system employs SOM [14] for CB  production. 

4. Experiments and Results 
This experiment shows that selection of short segments can produce incorrect clusters even 
when the overall distance is low. 

The following time-series, composed of two models, is assumed. The output of the time-
series is taken from one of the two models. The pdfs of the model, ( )xf α  and ( )yf β , are: 
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 (5) 

and the pdfs of both models are shown in Fig. 1. 
A time-series of 2000  samples was generated. The models switched every fifty samples. 

Two tests were produced for estimation of the models’ clusters. The segment lengths for the 
first and second test were fifty samples and one sample, respectively. A SOM of size 1 3×  
was used for each model. The results are shown in Fig. 2. Fig. 2a is the histogram of the first 
test and it can be seen that it fits the generated models (Fig. 1). The results were always 
consistent and similar. Fig. 2b-d shows the histograms for the second test. It can be seen that 
the SOMs converged, each time, to a different local minimum that dose not fits the original 
models (Fig. 1). However, the overall Euclidean distance is always lower than it was in the 
first test. 

5. Conclusions 
Since, in clustering problem minimal distance is not a goal but a way to achieve the goal, it is 
better to use the largest segments that are possible. Large segments can ensure a sufficient 
statistic for good clustering. The distance-based algorithm should be applied under the 
restriction of sufficient segment length. From the experiment we saw that short segments 
leads to low distance result, as can be expect from the proof in section II, and meaningless 
clusters, while large segments leads to correct cluster despite the fact that the overall distance 
was very high.  

Knowledge or lack of knowledge about the boundaries of each data segment influences 
the problem’s complexity. In several applications the segmentation is already given and only 
the labeling is missing [10], [11] or the segmentation can be found in advance [8]. 
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Consequently, in these cases all the available data for each segment should be employed. In 
other cases segment boundaries are unknown but might be estimated by combining a minimal 
duration constrain to ensure a sufficient statistics of each segment and a Viterbi search to find 
the correct segmentation [3]. This procedure is done every time instead of step 2 in the 
clustering algorithm. 

In a previous work [1] several tests were performed to find the influence of segments 
length on speaker clustering performances. It was found that short segments (50 input vectors 
per segment) need longer training and achieved high error rate. Long segments (200 input 
vectors per segments) contain too many segments that have data of several speakers (split 
segments). Such segments can be noisy from the clustering point of view and lead to high 
error rate as well. In such case the optimal segment length should be estimated or found 
empirically for each application. 

 
Fig 1: The two models pdfs: green line �� f x α
 � , blue line �� f y β
 � . 
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Fig. 2: Histograms of the clustering results: blue ���st cluster, green ���nd cluster. The places 

of the SOMs CW s: crosses ���st SOM, stars ���nd SOM. 
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