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SPEAKER NORMALIZATION USING HMM?2

Shajith ITkbal Katrin Weber Hervé Bourlard

APRIL 24, 2002

Abstract. In this paper, we present an HMM?2 based method for speaker normalization. Intro-
duced as an extension of Hidden Markov Model (HMM), HMM2 [2, 3] differentiates itself from
the regular HMM in terms of the emission density modeling, which is done by a set of state-
dependent HMMs working in the feature vector space. The emission modeling HMM aims at
maximizing the likelihood through optimal alignment of its states across the feature components.
This property makes it potentially useful to speaker normalization, when applied to spectrum.
With the alignment information we get, it is possible to normalize the speaker related variations
through piecewise linear warping of frequency axis of the spectrum. In our case, (emission mod-
eling) HMM based spectral warping is employed in the feature extraction block of regular HMM
framework for normalizing the speaker related variabilities. After a brief description of HMM2,
we present the general approach towards HMM2-based speaker normalization and show, through
preliminary experiments, the pertinence of the approach.

Acknowledgements: The authors Shajith Ikbal and Katrin Weber are supported for their
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1 Introduction

State-of-the-art speech recognition systems developed using Hidden Markov Models (HMMs) [1] suffer
from excessive sensitivity to various kinds of variabilities generally observed in the feature vectors. One
of the major sources of such variabilities is the speaker differences. Speaker differences arise because
of the differences in vocal tract shapes for different speakers, which basically result in differences
in the formant structure of the spectrum. Techniques developed to handle these speaker related
variabilities fall into one of the two classes, namely adaptation techniques and normalization technigues.
In adaptation techniques the idea is to adjust the parameters of speaker independent models using
some adaptation data so that the models would match better with the speaker of the test utterance.
Maximum Likelihood Linear Regression (MLLR) [9, 10] is an example for the adaptation techniques.
Normalization techniques try to remove the speaker related variations from the feature vectors so that
during training the models generated would be sharper, and during recognition test utterances would
better match with the models. Linear vocal tract normalization (LVIN) [7, 8] is a particular case
of normalization technique. As discussed in the present paper, HMM2 [2, 3] can also be used as a
normalization technique.

The effect of speaker differences in the spectral domain is the rescaling of the frequency axis, which
stated in other words is the warping of the spectrum along the frequency axis. The LVTN method
assumes that such warping is linear, by assuming that the speakers differ mainly by their vocal tract
lengths, and tries to normalize the speaker differences by warping the frequency axis linearly. If
S(w) represents the unwrapped spectrum, a single warping factor « is used to obtain linearly warped
spectrum S(aw). The warping factor « for each utterance is estimated through a maximum likelihood
procedure [7], which is described mathematically as follows: Let A denote the parameter set of speaker
normalized model and W denote the transcription of utterance for which optimal « is to be found
out. If S;(aw) denotes the linearly warped power spectrum estimated from #* time frame of the
utterance and x¢ denotes the cepstral vector derived from S;(aw), then the optimal warping factor
& is estimated as,

& = argmax P(xg,x7,...,X7_1|A, W) (1)
«

where T' denotes the length of the utterance.

But, linear warping of the spectrum is a suboptimal solution. A better solution would be to perform
nonlinear warping. HMM2 provides good scope for performing this when the emission modeling HMMs
(originally employed to compute the emission probabilities) are applied to the spectrum. They tend
to optimally align the similar parts of the spectrum to maximize the likelihood, implicitly yielding an
optimal warping function f(.) as,

)= ﬁmﬁ% P(S(f(w))Ai) (2)

where ); denote the parameters of the emission modeling HMM. This warping function can be used
to nonlinearly warp the spectrum into S(f*(w)). Actually, the function f*(.) obtained using HMM2
is a piecewise linear warping function, with variable warping complexity.

In the next section, we give a brief introduction to the HMM2 formalism. In section 3, we discuss
how HMM?2 could be used to perform speaker normalization. In Section 4, we discuss preliminary
experiments and observations made at the intermediate stages of the proposed system. In Section 5,
we further illustrate the approach by discussing a previous work done using HMM2 for formant-like
feature extraction. In this case, HMM2 has been employed in a manner similar to that of the present
approach, for extracting formant-like features, and has been shown to yield impressive performance.
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2 HMM2

Introduced as an alternative to the regular HMM, HMM2 [2, 3] is basically a statistical approach for
acoustic modeling of the speech signal, aiming at simultaneously modeling the temporal and frequency
structures of the signal.

As illustrated in Figure 1, HMM?2 is built up from conventional HMMs where the usual multi-Gaussian
densities associated with each HMM state are replaced by frequency-based HMMs, called frequency

HMMSs, to model the emission density'.
N

@
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B

Figure 1: Typical architecture of HMMZ2.
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The frequency HMMs treat feature vectors as sequences and estimate the emission probability by
calculating the likelihood of feature vectors being generated by them. For this purpose, each feature
vector is converted into a sequence of smaller vectors called frequency vectors, as illustrated in the
Figure 1, and the frequency states belonging to the frequency HMM are assumed to have emitted those
vectors. In the simplest case, these frequency vectors could simply be the frequency components.
As will be explained later, these frequency vectors are usually appended with the corresponding
feature component index to restrict the frequency HMM states from behaving in an unconstrained
manner [6]. Let x; and ¢; denote respectively the feature vector and temporal state at time ¢. If
{Xt,0,X¢,1, -y Xt 5, .--X¢,5—1 } denotes the frequency vector sequence derived from x;, then the likelihood
of a sample frequency state sequence R = {rg,r1,...,Ts,...,7s—1} of the frequency HMM belonging to
the temporal state ¢;, generating the vector sequence is

S-1
p(x¢, Rlgt) = p(rol|l, qe)p(xe0lro, qt) E p(rs|rs—1,a)p(Xe,s|7s, qt) (3)
s=1

where p(ro|I, ¢:) denotes the initial probability of frequency state ro belonging to the temporal state g,
p(rs|rs—1, q:) denotes the probability of performing transition from the frequency state rs_1 to the state
rs at the temporal state g;, and p(x; s|rs, ;) denotes the probability of frequency state rs belonging
to the temporal state g; emitting the frequency vector x; ;. The probability of the frequency states

'n this paper, we call the emission modeling HMMs with name frequency HMMs as it suits the present context well,
though names such as internal HMMs or feature HMMs have been used in the previous works.
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emitting the frequency vectors is modeled by lower dimensional Gaussian Mixture Models (GMM).
Based on the topology of the frequency HMM for temporal state ¢;, if D; represents the set of all
possible frequency state sequences that could have generated the frequency vector sequence, then the
emission probability calculated using the frequency HMM is

p(xila) = Y p(xi, Rlg:) (4)

ReD,

Alternatively, the emission probability can also be computed using the well known Viterbi approxi-
mation as,

p(Xelqe) = max p(x¢, Rlgt) (5)

The parameter set of HMM2 contains, the transition probabilities of all the temporal states, transition
probabilities of all the frequency states belonging to all temporal states, and the parameters of GMMs
assigned to each frequency states of each temporal state. A derivation of the EM algorithm to estimate
these parameters is given in [2]. An explanation of HMM2 from the implementation point of view,
including its training and recognition, is given in [4]. Other than speaker normalization, which is the
topic of discussion in the present paper, HMM2 has recently been shown to be useful for extracting
formant-like features [5].

3 Speaker Normalization using HMM2

Assume that we have a top-down frequency HMM which is trained with spectra obtained from speech
signals of different speakers uttering the same sound. If this frequency HMM is Viterbi aligned against
a spectrum, which again corresponds to the same sound but obtained from the speech signal of a new
speaker, each frequency state would get aligned to those regions of the spectrum which it has learned
during the training. Let S denote the length of the spectrum, and R = {rg,r1, ..., Ts, ..., 7s—1 } denote
the frequency HMM state sequence obtained as a result of the Viterbi alignment. Let us also assume
that there is a speaker normalized spectrum for the same sound, whose Viterbi alignment against

1

the frequency HMM would have yielded the state sequence R = T,M:Qut vy T ..;ﬁwlw. The differ-

108

ence between the sequences R and R basically corresponds to the speaker related differences of the
speaker-dependent spectrum with respect to the speaker normalized spectrum. Actually, the differ-
ence gives information about the warping function f(.) required to transform the speaker-dependent
spectrum to the speaker-normalized spectrum. For example, if the states {rs,7s41,...,7s4n} and
Tum , im\ PR \\m\ +:;, from the respective sequences R and R correspond to the same frequency state
in the frequency HMM, then the spectral coefficients in the frequency range {s,s + 1,...,s + n} need
to get warped into the range ?mm\ +1,..,8 + :J.

The proposed method uses frequency HMMs at the feature extraction stage of the regular HMM
framework, to perform state-dependent speaker normalization of the feature vectors. Each temporal
state of the HMM is assigned a frequency HMM to normalize the feature vectors extracted from the
frames corresponding to that state. The feature extraction, training, and recognition stages of the
proposed system are explained in the following subsections.

3.1 Feature Extraction

Speaker normalized Mel Frequency Cepstral Coefficients (MFCC) are used as the feature vectors.
These MFCC parameters are extracted from the speaker normalized power spectrum, by first mel-
windowing the spectrum to get Filter Bank Coefficients (FBC) and then transforming the FBCs using
Discrete Cosine Transform (DCT) to obtain MFCCs. The speaker normalized power spectrum is
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obtained by warping the frequency axis of the unnormalized spectrum piecewise linearly, using the
frequency HMMs. As explained earlier, state sequences R and m\, are used to perform the warping.
As it is difficult to perform the frequency warping directly on the power spectrum, which involves
interpolation of the energy values for the intermediate frequencies, it is implemented in an indirect
manner at the FBC computation stage, as depicted in the Figure 2. The mel-windows are altered
using the sequences R and R’ and are employed on the unnormalized power spectrum to obtain the
FBCs, which is equivalent to warping the power spectrum and using the unaltered mel-windows. For
example, if the states {rs,rs41, ..., 7s4n} and Tuw , \\m\i, - im#:\w in the respective sequences R and
R correspond to the same state in the frequency HMM, then the mel-windows falling in the range of
?\tm +1,..,8 + :J of the frequency axis should be mapped to the range {s,s+1,...,s +n}.

Filter-Bank Analysis

Speech m
Signa Power Mel-Windows Filter-Bank MFCC zmnmaAEm .y
Sisepel Computation [~ Coefficients Computaion Norelz
Computation Y _ i
i Computation Feaure
Warping
Information
Viterbi
Spedtium Alignment
against
Speaker Normalized Spectrum Frequency HMM

Figure 2: Implementation of HMM2 based Speaker Normalized Feature Extraction.

As we have seen, the main idea behind the proposed method is to align the similar regions of the
spectrum by performing Viterbi alignment, and then to use the alignment information to warp the
spectrum. For this matter, first of all it is desirable to have a definition of different regions in the
spectrum that will be most suitable for the speaker normalization problem. As the locations of peaks
and valleys of the spectrum are considered to be important for speech recognition, we designed the
topology of the frequency HMM (top-down) and number of states to facilitate segmentation in terms
of those peaks and valleys. In order to have Viterbi alignment work properly, these regions should be
distinguishable in terms of the energy, where as in the raw spectrum they are highly indistinguishable
in terms of the energy. For this reason, a modified version of the spectrum called ‘smoothed-differenced’
spectrum [11] is used instead of the raw spectrum. In ‘smoothed-differenced’ spectrum the energy
values corresponding to each frequency index are replaced by an estimate of slope at that point. This
makes the spectral regions separated in terms of their peaks and valleys to have either positive or
negative values, i.e., piecewise stationary.

3.2 Training

Training is a three step procedure. The first step involves training of the a regular HMM system
without any speaker normalization done at the feature extraction stage, the second step the training
of the frequency HMMs, and third step the training of the HMM system with speaker normalization
done at the feature extraction stage.

The models generated during the first step are used mainly for obtaining the state-level segmentation
of the training utterances, that is needed during the second step. In addition they also serve as the
baseline system.

In the second step, frames from all the training utterances corresponding to each temporal state of the
HMM are collected using the segmentation information, and the spectra derived from them are used
to train frequency HMM corresponding to that temporal state. This results in piecewise segmentation
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of all the spectra and the learning of frequency state density functions.

These frequency HMMs are then used in the third step for performing state-specific speaker normal-
ization (2) at the feature extraction stage. The state sequence R for a particular temporal state,
which is also needed along with R to perform the warping, is used as the mean of all the R obtained
from frames corresponding to that state.

3.3 Recognition

Recognition involves state-specific spectral warping, done at the feature extraction stage for all the
frames in the test utterance, to obtain state-specific feature vectors. Taking a closer look, there is a
good possibility for spectral warping resulting in inter-state confusion, though the actual goal of its use
is to normalize the speaker related variations. For example, the spectra corresponding to two different
vowels also differ mainly in terms of the formant frequencies. This means that it is possible to warp
the spectrum corresponding to one vowel to the spectrum corresponding to other. As the frequency
HMM, employed to perform state-specific spectral warping, acts in an unconstrained manner, it may
very well transform the spectrum of some state to the spectrum of the state for which it is used. To
avoid this, during training, from all the sequences R obtained using the training utterances, mean and
variance of the frequency indices [6] corresponding to each frequency state in the frequency HMM are
computed. Then those values are used in recognition to constrain the frequency states to stay within
a particular range of frequency indices during Viterbi alignment. This should avoid the inter-state
confusion as the amount warping required to transform the spectrum of one speaker to the other is
less as compared to the amount warping required to transform spectrum of one sound to the other.

4 Study of the System

The proposed method achieves speaker normalization through piecewise linear warping of the spec-
trum. The warping is based on the sequence R which is obtained as a result of Viterbi alignment
of the unnormalized spectrum against the frequency HMM. In order for this to work reliably, the
frequency HMM should be able to segment the test spectrum reliably into defined regions, during the
Viterbi alignment. So when a ‘smoothed-differenced’ spectrum is Viterbi aligned against frequency
HMM, the segmentation obtained should be in terms of the peaks and valleys of the corresponding
spectrum. To confirm this, we have checked out several Viterbi alignments done by the frequency
HMMs and have seen that it is indeed happening. Figure 3 shows an example segmentation obtained
as a result of alignment of a frequency HMM belonging to certain state against a spectrum which also
is from the same state. The spikes in the figure show the segmentation obtained.

During recognition, we do not know a priori the state which a particular frame belongs to. As a result,
as explained earlier, state-dependent feature vectors are extracted from each frame for all the states.
This requires Viterbi alignment of the test spectrum against the frequency HMMs of all the states. In
this case, as only one alignment is genuine alignment, and all other alignments should yield improper
segmentation. Figure 4 shows an example of this. The frequency HMM of Figure 3, is aligned against a
spectrum which belongs to a different state. As we can see from the figure, the segmentation obtained
is improper, which in turn would affect the feature extraction and may improve the discrimination.

5 Formant-like Feature Extraction using HMM2

In this section, we discuss a previous work [6] where HMM?2 has been used for extracting formant-
like features and shown to yield impressive results. We have chosen to discuss this here because
it is closely related to what we are doing now for the speaker normalization, and further illustrate
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Figure 3: Segmentation done by the frequency HMM.
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Figure 4: Improper segmentation done by the frequency HMM, when presented with a spectrum
belonging to a state other than the state for which it is trained.

the potential of HMM2 based speaker normalization. Both the approaches employ frequency HMMs
to perform state-dependent segmentation of the spectrum. In the formant-like feature extraction
problem, the segmentation obtained is used to estimate the formant-like frequencies, where as in the
speaker normalization the segmentation is used to perform piecewise linear warping of the spectrum
and hence to normalize the speaker related variations.

In the formant-like feature extraction work, filter banked spectrum is used instead of the raw spectrum
[6]. The segmentation obtained as a result of Viterbi alignment of the differenced filter banked
spectrum against the frequency HMM are used to estimate the formant values. In fact, the boundaries
between the segmented regions are used directly as the formant-like frequencies. Figure 5 shows an
example of the formant tracking done on a test utterance. The vertical lines indicate the state-level
segmentation of test utterance. The formant-like frequencies corresponding to frame of a particular
temporal state is obtained using the frequency HMM of the state. The horizontal lines show the
segmentation tracks extracted using the state-dependent frequency HMMs.

The over all reliability of the formant-like frequencies estimated has been checked by using them
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Figure 5: An illustration of formant tracking done by the state-dependent frequency HMMs.

as feature vectors in the regular HMM system. A speech database, called Numbers 95, containing
speaker-independent free format numbers spoken over telephone is used for this purpose. Using 3
formant-like frequencies extracted from each frame as a feature vector, a recognition performance of
81.4% is achieved on the Numbers 95 database. This is reasonably comparable to the performance
of state-of-the-art systems, as dimension of the feature vectors used is only 3. This result basically
shows that the segmentation obtained using the frequency HMMs carries reliable and meaningful
information.

6 Conclusion

In this paper, we have presented a new approach for speaker normalization using HMM2. The state-
specific feature HMMs, actually used to compute the emission probabilities in the HMM2, are employed
at the feature extraction stage of the regular HMM framework to perform state-dependent speaker
normalization. The speaker normalization is done by warping the spectrum piecewise linearly based
on the frequency state sequence R, which is obtained as a result of Viterbi alignment of the speaker-
dependent spectrum against the frequency HMM. A study of intermediate stages of the resulting
system is presented. While HMM2 has already been used quite successfully in other frameworks, the
present work shows its potential to further improvements.
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