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Abstract. Traditional microphone array speech recognition systems simply recognise the en-
hanced output of the array. As the level of signal enhancement depends on the number of micro-
phones, such systems do not achieve acceptable speech recognition performance for arrays having
only a few microphones. For small microphone arrays, we instead propose using the enhanced
output to estimate a reliability mask, which is then used in missing data speech recognition. In
missing data speech recognition, the decoded sequence depends on the reliability of each input
feature. This reliability is usually based on the signal to noise ratio in each frequency band. In
this paper, we use the energy difference between the noisy input and the enhanced output of
a small microphone array to determine the frequency band reliability. Recognition experiments
with a small array demonstrate the effectiveness of the technique, compared to both traditional
microphone array enhancement and a baseline missing data system.
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1 Introduction

Microphone arrays have been shown to give significant improvements over single distant microphones
in speech recognition applications, particularly in high levels of noise [1]. While traditional array
enhancement techniques can lead to good performance, the hardware and processing requirements of
large numbers of microphones can inhibit their application in practice. For this reason, it is desirable
to investigate ways of reducing the number of microphones without significantly affecting system
performance.

A promising avenue of research towards this goal is the closer integration of traditional microphone
array processing techniques with other robust speech recognition techniques. The recent missing data
approach to robust speech recognition is based upon the concept that only reliable information should
be taken into account when recognising noise-corrupted speech [2]. When the feature space consists of
energies from frequency bands, one means of determining the reliability of the features is the estimation
of the signal to noise ratio (SNR) in each band. The set of reliability estimates (for each feature, for
each frame) for missing data recognition is termed a reliability mask.

Missing data experiments using a priori knowledge of the noise spectrum have demonstrated the
potential of using an SNR-based reliability mask, with performance in high levels of noise approaching
that of clean speech. In practice however, estimation of the local SNR is problematic with a single
channel signal. This is particularly true when the noise is non-stationary, as single channel techniques
typically rely upon estimating the noise during non-speech periods.

In the proposed technique, we compare the enhanced output of a small microphone array with
the noisy input in order to estimate the reliability of each frequency band. The technique allows the
generation of robust reliability masks using only small microphone arrays. Moreover, this technique
is equally applicable in stationary or non-stationary noise conditions.

This paper is organised as follows. Section 2 gives a brief overview of the missing data approach to
robust speech recognition, and details the standard procedure for calculating an SNR-based missing
data mask. Section 3 then details the proposed technique for generating a missing data mask using
a microphone array. In Section 4, the performance of the proposed robust speech recognition system
is investigated using a small microphone array in varying levels of office noise. In these experiments,
the new technique is shown to give improvement over both a standard microphone array enhancement
system, as well as a baseline single channel missing data system.

2 Missing Data Speech Recognition

2.1 Overview

In automatic speech recognition (ASR), some of the observation data for the target signal can be
masked by noise signals. One way to compensate for noise in ASR is to train the recogniser on data
which has been corrupted by multiple different noise conditions. A limitation of this approach is that
it is not as effective when the test noise conditions differ significantly from those used in training.

Another approach which avoids this restriction is to use models trained on clean speech together
with a noise estimation technique. Noise estimation can be used to improve recognition performance in
two ways. One is to enhance the speech data and then process it as clean speech. Another is the missing
data (MD) approach, in which spectral data components which are estimated to be dominated by noise
are ignored [2]. This approach was partly motivated by studies on human auditory scene analysis [3].
Perceptual experiments have shown that humans are able to maintain a high level of recognition when
a high proportion of spectral data is masked by noise. Two notable improvements to the basic missing
data technique have been proposed which significantly improve performance at low SNR/’s.

The first improvement was to make use of the bounds constraint whereby the unknown clean speech
energy (at each point in frequency and time) is known to be between zero and the observed noisy
energy [2]. In terms of computational expense, the only difference in a standard HMM system using
Gaussian mixture PDFs is that while for clean components it is necessary to evaluate the Gaussian
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density, for missing components it is necessary to evaluate the Gaussian integral over the range of
possible clean data values (which is possible using the standard error function).

The second improvement was the soft missing data technique, in which the decision as to whether
each component is clean or noisy is modelled by a soft (probabilistic) rather than hard (determinis-
tic) decision [4]. In this case the missing data mask specifies a probability that each component of
the feature vector is clean or dominated by noise. Here both the density and the integral must be
evaluated for every component. These are then combined in a weighted sum, where the weights for
the density/integral are the probabilities that the feature is speech dominated and noise dominated,
respectively.

The missing data approach to robust speech recognition essentially poses two separate problems
: missing data mask estimation, and how to perform recognition using this mask. The above im-
provements both address the latter problem, while in this paper we focus on the problem of effective
estimation of the missing data mask.

2.2 Missing Data Mask Estimation

The key element of the missing data approach is the missing data mask, which indicates the reliability
r;(k) of each input feature z;(k) - for filter-bank index ¢, at each frame k. This reliability value must
lie between 0 and 1, and represents the ‘probability’ that the feature is clean enough to be used for
reliable recognition.

Provided (log) filter-bank speech features are used, an estimate of the frequency band noise energy
can be used to determine reliable features by comparing to an SNR, threshold value 5 (in the natural-
log energy domain). If the input energy in a frequency band exceeds the estimated noise energy by
more than this threshold, it can be assumed to be reliable for speech recognition. Assuming we have
an estimate of the noise log energy feature n;(k), then we can estimate the clean speech log energy
feature (transforming to and from the linear amplitude spectral domain) as

i) = tog ( (Ver® - vVer)) 1)

and then the ratio of signal to noise energy in the feature is

snri(k) = si(k) — ni(k) (2)
where snr;(k) is the estimated SNR for the feature x;(k). The reliability of the feature is then deter-
mined as

oy 1 sar(k) > B
ri(k) = A 0 : snri(k)<pB 3)

In the soft missing data approach, this value is softened to take a value in the range 0 to 1 according
to

1
T 1 4 e—alsnri(k)=5) ANC

where « is the gradient of the smoothing function [4].

To date, most missing data experiments have used a simple noise estimation technique which
averages the spectrum over the first K input frames (assumed to be noise only). While this gives
reasonable performance in stationary noise for the purpose of experimentation, it is desirable to
investigate more robust and practical noise estimation techniques.

3 Reliability Mask Estimation using Microphone Arrays

The success of the missing data recognition approach depends critically on the calculation of the
reliability mask. Experiments using a priori knowledge of the noise spectrum show that performance
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Figure 1: Filter-sum beamformer with post-filter

approaching that of clean speech can be achieved in high levels of corrupting noise. It is thus desirable
to approach this performance level by investigating more robust methods for obtaining the reliability
mask. In this section we propose such a technique using a small microphone array.

3.1 Microphone Array Speech Enhancement

Microphone arrays use directional discrimination to permit distant, hands-free signal acquisition,
allowing for speech enhancement by reducing the level of undesired noise sources. The directional
discrimination of the array is exploited by beamforming algorithms, and often the beamformer output
is further enhanced by applying a post-filter. Using such techniques, significant enhancement of the
speech signal can be achieved, in turn resulting in improvements in speech recognition performance [1].

Consider the microphone array system shown in Figure 1. The system consists of two stages : a
filter-sum beamformer with output y(f), and a Wiener post-filter with final output z(f). The operation
of the system is described by the equations :

y(f) = w(f)'x(f) ()

z(f) = h(f)y(f) (6)

where w(f) is the beamforming weight vector, x(f) is the input data vector, and h(f) is the Wiener
post-filter transfer function.

A variety of techniques exist for calculating the beamforming filters w(f). In this paper we use
the simplest beamforming technique, known as delay-sum beamforming, in which the beamforming
filters consist purely of delays to align for the direction of the desired signal. While more advanced
beamforming techniques exist, the delay-sum technique is sufficient to demonstrate the potential of
the proposed technique.

The post-filter transfer function, h(f), is calculated using a combination of the auto- and cross-
spectral densities of the input channels, according to a technique first proposed by Zelinski [5]. This
technique was further developed and analysed in [6] and [7], and was shown to lead to improved speech
recognition performance in [8].

3.2 Proposed SNR Mask Estimation Technique

In the proposed microphone array SNR mask estimation technique, we simply use the enhanced output
of the microphone array, z(f), as an estimate of the clean signal. In the log filter-bank energy feature
space we have both the noisy input features, x;(k) and the estimated clean speech features z;(k).
Rather than simply using these estimated clean speech (enhanced) features for recognition, as is the
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Figure 2: Sample SNR Masks (input SNR=0dB, utterance is “one”)

case for standard microphone array speech recognition systems, we instead propose using them to
determine the missing data reliability mask. In this case, the signal to noise ratio can be estimated as

na(k) = log AA,\%@ _ ,\%é%v (7)

snri(k) = zi(k) — nq(k) (8)

and then the soft reliability mask can be calculated according to Equation 4. As the speech and
noise energy estimates are both time-dependent, such a technique is applicable in both stationary and
non-stationary noise conditions.

The above approach is based upon the concept that, while the level of enhancement in z(f) for
small microphone arrays is often not sufficient for good speech recognition performance in itself,
examination of the level of energy reduction between each feature of z;(k) and z;(k) may still give a
good indication of the feature reliability. By using the array enhancement only to estimate the noisy
feature reliability, rather than the feature value itself, the level of enhancement required of the array
is considerably relaxed, and hence acceptable recognition performance should still be achieved with
few array elements.

4 Experiments and Results

4.1 Configuration

The microphone array used in experiments consisted of 4 linearly-spaced microphones, with inter-
element spacing of 5cm. The desired speaker was situated directly in front of the broadside array, at a
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WER (%)
signal 20dB 10dB 0dB
noisy 61.4 85.8 91.3
array 9.5 226 64.3

md-single 13.3 20.2 541
md-array 9.7 12.1  31.5
md-true 8.0 9.1 16.6

Table 1: Speech recognition results

distance of 70cm. For the microphone array enhancement technique, standard delay-sum beamforming
was used, and the output was further enhanced using the post-filtering technique in [6].

The experiments were conducted in an office room containing a number of computer workstations.
The room has a measured reverberation time of approximately RT60 = 420ms. Multi-channel record-
ings of the room noise were made, consisting mainly of computer noise, air-conditioning noise, and a
low level of background speech. We note that this noise recording is essentially stationary in nature. In
addition, the impulse responses of the acoustic path between the desired speaker and each microphone
were calculated from real recordings. These impulse responses were used to generate the multi-channel
desired speech input for the test database.

Speaker and gender independent speech recognition experiments were conducted on 1001 utter-
ances from the TIDIGITS database (Aurora test set 1a). HMM’s were trained on the clean TIDIGITS
training data set, with no adaptation performed for the noise conditions or for the effect of the distant
microphone. Standard log mel-scaled filter-bank energy features (order 32) were used along with their
first order derivatives, giving a feature vector of dimension 64. The system gives an error rate of 5.6%
for the clean input to one of the microphones in the array.

Five different techniques were tested :

1. standard recognition using noisy input features from a single (distant) microphone (‘noisy’)
2. standard recognition using the enhanced array output features (‘array’)

3. missing data recognition on the noisy features, with SNR mask generated from a single channel
by estimating the noise spectrum over the first 10 input frames (‘md-single’)

4. missing data recognition on the noisy features, with SNR mask generated from the microphone
array output (‘md-array’)

5. missing data recognition on the noisy features, with SNR mask generated from a priori knowl-
edge of the clean and noisy signals (‘md-true’)

For all missing data techniques, soft masks were used according to Equation 4, with an SNR, threshold
of # = 0 and a softening gradient of @ = 5. An example of the three different masks generated at an
input SNR, of 0dB is shown in Figure 2 (single digit utterance “one”). In the figure, black represents
noise (reliability of zero), and white represents clean speech. These masks show the success of the
microphone array technique in generating a mask that closely resembles the real SNR mask.

The various techniques were tested at different input SNR’s of 20, 10 and 0 dB. The speech
recognition results are given in Table 1, and plotted in Figure 3 in terms of the percentage word error
rate.

4.2 Discussion

We note two interesting trends from these results. First, it is apparent that the proposed technique
for generating the missing data reliability mask using the microphone array (md-array) is better than
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Figure 3: Speech recognition results

the single channel mask estimation technique (md-single), approaching the performance of the true
SNR mask (md-true). While this is not surprising, it is pertinent to note that the noise is essentially
stationary in nature, and thus the single channel technique should give a reasonable noise estimate. The
difference between the two approaches should be more marked in non-stationary noise conditions, but
unfortunately experiments confirming this have not yet been conducted due to the lack of appropriate
multi-channel noise recordings.

The second important trend we observe, is that the performance of the proposed technique (md-
array) yields significant improvements over the enhanced array output (array) for such a small mi-
crophone array. This is particularly evident in high noise, where the word error rate drops from 64%
to 32% at 0dB SNR. This result is of interest as the same information (enhanced signal z(f)) is be-
ing used in each case, highlighting the benefit of using the information only for reliability estimation
instead of purely for enhancement.

As a final point, we note that there exists room for some further improvement by tuning of the «
and B parameters of the soft mask calculation.

5 Conclusions

In this paper we have investigated improving the speech recognition performance of a small microphone
array system. Instead of simply recognising the enhanced array output, the difference in energy levels
between the noisy input and the enhanced output is used to indicate the reliability of each feature
in a missing data recognition framework. In simple experiments using an array of 4 microphones,
the proposed technique is shown to give improved recognition results when compared to both the
standard microphone array output and also a baseline single channel missing data technique. While
the results are promising, we note that the experiments in this paper have been limited to a single
array configuration, a single noise type (stationary office noise), and a single speaker location. Future
work will investigate the effect of different noise types, array configurations and speaker locations on
the system performance.
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