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Abstract. Model selection is commonly based on some variation of the BIC or minimum message length 
criteria, such as MML and MDL. In either case the criterion is split into two terms: one for the model (data code 
length/model complexity) and one for the data given the model (message length/data likelihood). For problems 
such as change detection, unsupervised segmentation or data clustering it is common practice for the model term 
to comprise only a sum of sub-model terms. In this paper it is shown that the full model complexity must also 
take into account the number of sub models and the labels which assign data to each sub model. From this 
analysis we derive an extended BIC approach (EBIC) for this class of problem. Results with artificial data are 
given to illustrate the properties of this procedure. 
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1. Introduction 
In model selection by minimum two-part message length encoding, a penalty term is added 
to the data message length term to account for model complexity. Change detection, 
segmentation and clustering are unsupervised applications which can apply the BIC, MDL 
or MML criteria for model selection [1, 2, 3]. In change detection or segmentation it is 
required to identify change points in a data sequence at which data should be separated and 
assigned to different models. In clustering unsequenced data must similarly be assigned to 
some unspecified number of one or more different models. With the BIC model it is 
assumed that only the number of model parameters needs to be minimized, not the model 
code length. This model has been found to be successful both in segmentation [2], in 
clustering [2, 3]. This method, however, usually requires some empirical adjustments, and 
does not usually take into account the number of clusters, but only the number of parameters 
in the model for each data cluster. In clustering under a minimum duration constraint, by 
Ajmera et al [4], the number of model parameters was constant although the number of 
clusters varied between one and 30, i.e., no penalty was used according to the standard BIC. 
All these criteria were develop to estimate a model �  out of a known parametric model 
class � . In application like clustering and change detection it is required to estimate more 
than one model from model class � . In this paper it is shown that extra terms for both the 
number of clusters and the labels which assign the data to each cluster must be added to the 
usual model code length for optimal model selection. 

The principle of two-part minimum message length model selection is briefly presented 
in Section 2. The proposed extension to the model code length is explained in Section 3. 
Section 4 presents details of the proposed extension to the BIC message length 
approximation. Section 5 presents some experiments with artificial data, followed by a 
discussion and conclusion in Section 6. 

2. Two-Part Message Length 
Minimum message length model selection is based on the principal that the model which 
best fits the unseen distribution underlying a given set of model training data is the simplest 
model which is able to fit the training data to some given level of accuracy. It is very closely 
related to Bayesian model selection, which selects the model with the maximum posterior 
probability for the given training data. Model selection uses either one-part or two-part 
message length. One-part message length is used when the model �  (defined by a 
parameter vector M , which belongs to a known model class � ) is fixed and known to 

both coder and decoder. In this case the coder only has to send code for the data given the 

model, ( )_MessLen code length X= M . Two-part message length is used when the model 

parameters, M , are not known to the decoder, so that the coder must estimate and send 

code for both the model parameters and the data, 

( ) ( )_ _MessLen code length code length X= +M M �, [5, 6]. Like Bayesian model 

selection [7], minimum message length model selection arises from information theory as an 
optimal procedure for model selection. In both cases the model code length (model 
complexity), as well as data code length (data likelihood), must normally be taken into 
account. Actually MDL [5] and BIC [7] converged to the same formula if we replace the 
term of data message length by log-likelihood and the model parameters are continuous 
values that were quantized with uniform distribution over their range. 
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3. Extended Model Code Length 
In MDL and BIC model selection, model complexity is approximated as a simple function 
of the number of model parameters, M . It is easily shown that in clustering, cluster model 

K�  ( ,M K   parameters vector of K� ) with a mixture model pdf for each of K  clusters, 

and with a fixed combined number M  of mixture components, greater K  will always result 

in a greater likelihood, { }
1

K

k
p X

=

 = ∈  kM,K M � , and hence smaller data code length. 

At the same time, the number of model parameters does not change with K . Hence, if 

model complexity is measured by ,M K  alone, the minimum code length clustering will 

always use as many clusters as possible, which is absurd. It follows that BIC model 
selection is not sufficient for data clustering unless some extension to the model structure 
code length (prior probability) is taken into account, as some function of K , in such way 

that, when ,M K  is constant, a larger number of clusters results in a higher model 

complexity. 
One can argue that the full definition of cluster model K�  requires that the parameter 

vector ,M K  must be augmented by adding a parameter K  to specify the number of 

clusters, and a set of data labels, { } 1

N

n n
L

=
=KL  ( N  is the size of the data and assumed to be 

known). To analyze this extended model we should consider two cases. In the first case the 
data can be rearranged into blocks in the same arbitrary order as the data clusters, but the 
order of the data within each block is not significant. This would apply, for example, if we 
wand to code a number of images divided into themed groups. In this case we only need to 

send the number of data points in each block, { } 1

1

K

k k
N

−

=
=KN , instead of KL . As the total 

number of data points is known, then the size of the last block does not need to be included. 
If we can assume that the probability distributions for K  and KN  (possibly uniform) are 

known to both coder and decoder, then we must add the following extra terms to the model 

code length: ( ) ( )1

1
_ _

K

kk
code length K code length N

−

=
+∑ . Both terms ( )_code length K  and 

( )_ kcode length N  must be non-redundant prefix codes that satisfied the Kraft inequality 
( )_2 1i

i

message length s

s S

−
∈

≤∑  ( is  is an element in a set S  that represent either K  or kN ). 

Therefore, if we allow the message length to be a fractional, than this quantity is given in 
terms of log-probabilities as: 

 ( )( ) ( )( )
1

log log
K

k
k

P K P N
=

− −∑  (1) 

In the second case the order of the data is important. This case is out the scope of this report 
and will not be discussed. We only mansion that the simplest solution might be to send all 

the labels instead of block length and than instead of the term ( )( )1

1
log

K

kk
P N

−

=
−∑ , there 

should present the term ( )( )
1

log
N

n
n

P L
=

−∑ . 
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4. Extended BIC (EBIC) for multi-cluster applications 
Given two clustering models based on the same model class � , with parameters 

, 1M K and , 2M K  the BIC criterion for choosing which model has the “right” dimension is 

given in terms of log-likelihood ( ),l X
iM K  and number of parameters , iM K . The 

criterion to determine which clustering model is better; using BIC is given as follows: 

 

( ) ( ) ( ), ,

, , log
2

l X l X N
−> −<

2 1

1 2

M K M K

M K M K  (2) 

The chosen model is the one with the higher value. The second term on the right side is the 
complexity penalty terms according to the difference between numbers of parameters in 
each model, and the length of the input data, N . In applying this criterion in clustering 
applications [2, 3] have been found that it is necessary to retrospectively introduce an 
arbitrary, empirically found, positive scaling factor, λ , for BIC model complexity term. 

We now show how equation (2) should be extended to take into account the changing in 
cluster model complexity term given in equation (1). Let us assume that we have two 
estimated models from parametric model class �  of all mixture models of a given 
distribution family, such as all possible Gaussian mixture model. The model 

iK�  with 

parameters vector , iM K  has iK  clusters and ,1

iK

i k ik
M M

=
= ∑  mixture components ( ,k iM  – 

number of mixture component in cluster k ). First consider the case where iM M= . To 

understand how equations (2) must change it will be sufficient to find the values of , 1K  

and , 2K . For simplicity may assume that the number of parameters of each mixture 

component is a fixed at R . For a description of the model according to the standard BIC or 
MDL is required to provide the following number of parameters: 

• M R⋅  parameters for all the mixture components in all the clusters. 

• Priors of the mixture components in each cluster, { }{ },

, , 1 1

i
k i

KM

m k i m k
P

= =
, M  parameters. 

This gives M R M= ⋅ +
i

, which is independent of i , and the decision is taken only 

according to the maximum of the likelihoods of the models. 
The nature of the parameters of the number of the clusters, K , and the block length, 

kN , that are integer values, and they to be different than the M  parameters, that assumed 

to be continuous values, and can be analyzed separately in terms of the probabilities 
associated with each of these integers. If we write the BIC criterion including terms for iK  

and ,M iN , than we will get the following: 

 ( ) ( ) ( ) ( )
( )

( )

( )

2

1

,2
, , 2 1

, ,
1

,1
1

log log log
2

K

k
k
K

k
k

P N
P K

l X l X N
P K

P N

=

=

 
 −  >  − + + <        

∏

∏
2 1

1 2

M K M K

M K M K  (3) 

In many cases it is reasonable that both K  and ,k iN  are uniformly distributed over finite 

range, ( ) 1
1E BK KP K − += . and ( )

max min

1
, BL1 Pk i N NP N − += = . In this case equation (3) becomes the 

EBIC criterion: 
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 ( ) ( ) ( ) ( ) ( ), ,

, , 2 1 BLlog log P
2

l X l X N K K
−> − + −<

2 1

1 2

M K M K

M K M K  (4) 

If each segment can be any length in the interval [ ]1, N  (case of maximum uncertainty), than 
1

BLP N=  and the most simplified version of EBIC will be: 

 ( ) ( ) ( ), ,

, , 2 1 log
2

l X l X K K N
 −>  − + −<   

2 1

1 2

M K M K

M K M K  (5) 

If , ,=
1 2K K , than instead of equation (5), the EBIC in will be: 

 ( ) ( ) ( ) ( ), , 2 1 logl X l X K K N> − −<1 2M K M K  (6) 

( ) ( )2 1 logK K N−  is the maximal penalty. The actual penalty should therefore be scaled as 

( ) ( )2 1 logK K Nε −  for some ( ]0,1ε ∈ . 

As in BIC, the model penalty is a logarithmic function of N , while the data log-
likelihood is proportional to N . The model penalty term therefore more significant for 
small N  and will have negligible effect when N  is large. 

5. Experiments 
Two experiments were conducted to illustrate the effect of EBIC model selection. In the 
first experiment a data was generated from two Gaussians with the same standard 

deviations, 1iσ =  and with expectations { } 10

1, 1
0.08t t

tµ
=

=  and 2, 1,t tµ µ= − . Two sets were 

generated: with 32N =  and 128N =  points. Each Gaussian generated half of the data. Tests 
were made under different constrains on the segment length, i.e., it was assumed that several 
data pointes successively generated from the same source and should be kept together. 
Segment length were 1, 2 , 4 , and 8 . It should be mentioned that the higher the segment 
length the less optimal a clustering solution, in terms of log-likelihood, can be achieved. On 
the other hand more meaningful clusters may be produced. We compare one cluster with 
two Gaussian mixture components against two clusters with one mixture component each. 
According to standard BIC no penalty should be used. 

Figure 1 shows the result of BIC (if BIC values are less than zero then one cluster is 
better otherwise two clusters are better). As can be seen a two-cluster model was always 
better. The black line is the EBIC penalty value for 1ε = . It can be seen that there are no big 
differences between BIC and EBIC except when the ambiguity is high, i.e. when there is a 
small amount of data, 32N = , the Gaussians are close one to each other, 1

2µ σ<  and there 

is a large duration constraint, 8sN = . This indicates that when two clusters are similar 

EBIC tends to prefer one more accurate cluster with more mixture components. 



IDIAP-RR-02-42 6 

 

 
Fig.1: difference between BIC and EBIC for different expectation values, segment length 

sN , and amount of data (a - 32N = , b - 128N = ). 

In the second experiment 0µ =  for both Gaussians, 1 1σ = , { }2 0.7,0.8,0.9,1.0σ =  and all 

the other parameters are as in the first experiment. The results are presented in figure 2. We 
can see that small µ  in the first experiment, and 2σ  close to one in the second experiment, 

leads the two data sets to have similar statistical properties. So, for small N  and large 
segment length the resulting clusters become similar. While in BIC the decision will be that 
the two-cluster model is better, EBIC will prefer a one-cluster model. 

As was mentioned, a scale factor ε  in all the experiments was equal to one. If the scale 
factor was smaller, the system would be more biased towards the two-cluster model. This 
parameter can be found empirically (in the same way as the scale factor λ  that is used with 
the BIC criterion), or calculated according to some prior knowledge of another block length 
distribution. 
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Fig.2: difference between BIC and EBIC for different standard deviation values, segment 

length sN , and amount of data (a - 32N = , b - 128N = ). 

6. Discussion 
It was shown that the clustering model complexity is not only a function of the number of 
parameters and their values in the parameter vector ,M K , but also the number of clusters 

K , and information about the labeling of each data vector { } 1

N

n n
L

=
. The labels must not be 

coded in a direct way, but in a compact way which is just sufficient to permute the data into 
the blocks as required (in order to minimize the number of parameters to be sent). The code 
length of such extra information will increase with K . 

It was shown that when there is small amount of data or some ambiguity due to the 
compact nature of the data or clustering constrains, the importance of the additional penalty 
terms increases. 
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