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Chapter 1

Introduction

In the context of the European project BANCA on Biometric Access Control for Network and e-
Commerce Applications, this report gives an overview of the current state-of-the-art client model
adaptation methods used in speaker verification.

This chapter first introduces the main problem of identity verification and more specifically the
statistical framework used in speaker verification.

In chapter 2, we present the Gaussian Mixture Model as it is the most used model in text indepen-
dent speaker verification, the framework in which BANCA is working, then give the general method to
train such model when enough data is available, that is, by using the Maximum Likelihood principle
and training using the Expectation-Maximization algorithm.

Then, in chapter 3, we present two of the most used adaptation methods, namely the Maximum
Likelihood Linear Regression method and the Bayesian Maximum A Posteriori method.

Finally, in chapter 4, we compare these adaptation method on two different and well-known bench-
mark databases: the XM2VTS audio-visual database (where we only used the speech part) and the
NIST database used in the 1999 NIST Speaker Recognition Evaluation.

1.1 Identity Verification

The goal of an automatic identity verification system is to either accept or reject the identity claim
made by a given person. Such systems have many important applications, such as access control,
transaction authentication (in telephone banking or remote credit card purchases for instance), voice
mail, or secure teleworking.

A good introduction to identity verification, and more specifically to biometric verification can be
found in [21].

An identity verification system have to deal with two kinds of events: either the person claiming
a given identity is the one who he claims to be (in which case, he is called a client), or he is not (in
which case, he is called an impostor). Moreover, the system may generally take two decisions: either
accept the client or reject him and decide he is an impostor.

Thus, the system may make two types of errors: false acceptances (FA), when the system accepts
an impostor, and false rejections (FR), when the system rejects a client.

In order to be independent on the specific dataset distribution, the performance of the system is
often measured in terms of these two different errors, as follows:

FAR — num‘ber of FAs , (1.1)
number of impostor accesses

FRR — number. of FRs . (1.2)
number of client accesses




A unique measure often used combines these two ratios into the so-called decision cost function
(DCF) as follows:

DCF = Cost(FR) - P(client) - FRR + Cost(FA) - P(impostor) - FAR (1.3)

where P(client) is the prior probability that a client will use the system, P(impostor) is the prior
probability that an impostor will use the system, Cost(FR) is the cost of a false rejection, and Cost(FA)
is the cost of a false acceptance.

A particular case of the DCF is known as the half total error rate (HTER) where the costs are
equal to 1 and the probabilities are 0.5 each:

FAR +FRR

HTER = 5

(1.4)

Most identity verification systems can be tuned using some kind of threshold in order to obtain
a compromise between either a small FAR or a small FRR but cannot generally obtain both on a
separate validation set.

There is thus a tradeoff which depends on the application: it might sometimes be more important
to have a system with a very small FAR, while in other situations it might be more important to have
a system with a small FRR. In order to see the performance of a system with respect to this tradeoff,
we usually plot the so-called Receiver Operating Characteristic (ROC) curve, which represents the
FAR as a function of the FRR [19]. More recently, other researchers proposed the DET curve [12],
a non-linear transformation of the ROC curve in order to make results easier to compare. The non-
linearity is in fact a normal deviate, coming from the hypothesis that the scores of client accesses and
impostor accesses follow a Gaussian distribution. If this hypothesis is true, the DET curve should be
a line. Figure 1.1 shows examples of typical ROC and DET curves.
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Figure 1.1: Typical example of a ROC curve and its corresponding DET curve. The circle represents
the threshold at equal error rate (EER), i.e. when FA=FR.

Whether one uses the ROC or the DET curve, each point of the curves corresponds to a particular
decision threshold that should be determined specifically for a given application. For instance, some
applications cannot afford a lot of false alarms and are thus ready to have a higher false rejection
rate. A typical threshold chosen is the one that minimizes the HTER, (1.4) or its generalized version,
the DCF (1.3). Another typical threshold chosen is the one that reaches the Equal Error Rate (EER)
where FAR=FRR on a given validation set.



1.2 Statistical Speaker Verification

State-of-the-art speaker verification systems are based on statistical generative models. We are in-
terested in P(S;|X) the probability that a speaker S; has pronounced the sentence X. Using Bayes
theorem, we can write it as follows:

p(X][S;)P(S;)
p(X)
To decide whether or not a speaker S; has pronounced a given sentence X, we compare P(S;|X) to

the probability that any other speaker has pronounced X, which we write P(S;|X). The decision rule
is then:

P(SiX) = (15)

if P(S;|X) > P(S;|X) then X was generated by S;. (1.6)
Using equation (1.5), inequality (1.6) can then be rewritten as:

p(X|€i) > P(Si)
p(X|S;) © P(S:)

=4; (1.7)

where the ratio of the prior probabilities is usually replaced by a threshold ¢; since it does not depend
on X. Moreover, this threshold is chosen in order to optimize one of the cost function defined in
section 1.1, such as the DCF defined in equation (1.3) or the HTER defined in equation (1.4). Taking
the logarithm of (1.7) leads to the log likelihood ratio:

log p(X|S;) —logp(X]|S;) > logdi = A;. (1.8)

When p(X|S;) is assumed to be the same for all clients, which is often the case, we replace it by a
speaker independent model p(X|Q2) where € represents the world of all the speakers.

To implement this system, we thus need to create a model of p(X|S;) for every potential speaker
S;, as well as a world model p(X|2), and then we need to estimate the threshold A; for each client
S;. Note however that this threshold is often the same for every client, and is thus noted A.



Chapter 2

GMMs and Maximum Likelihood
Method

In order to create the models p(X|S;) and p(X|€2), we first need to select a particular form of a
parametric probability density distribution and then select its parameters. The probability density
distribution have to be rich enough to be able to model correctly the target density distribution but
simple enough to be able to select its parameters given a criterion to optimize.

2.1 Gaussian Mixture Models

The most used model, in the context of text-independent speaker verification systems, is the Gaussian
Mixture Model (GMM) [18]. In order to use such a model, we make the (false) assumption that
the frames of the speech utterance are independent from each other: the probability of a sequence

X ={x1,X2,...,xr} given a GMM with N Gaussians can be computed as follows
T T N
p(X) = Hp(xt) = H an 'N(Xt;ll/nv En) (21)
t=1 t=1n=1

where N (x¢; p,,, X) is a Gaussian with mean p,, € R? where d is the number of features and

2
with standard deviation X, € R :

N D) = ——g—oxp (~50 - 0% x =) (2.2)

eoi/El < 2

Note that X is often forced to be diagonal (then represented by a vector o) in order to limit the
model size and overcome some estimation problems, but this implies that we make the (often false)
hypothesis that all the features are uncorrelated.

2.2 The Maximum Likelihood Principle

Suppose one has a set of observed data X and wants to select the best probability density distribution
to model the observations. Suppose also that the choice of distribution will be made out of a family
of distributions p(X|¢) which is parameterized by a set of parameters 6.



According to the Mazimum Likelihood (ML) principle one should select § such that it maximizes
the probability density of the observed data X, that is

6= argmeaxp(X|0). (2.3)

In other words, this principle proposes to select the parameters such that the observed data is more
likely to occur. Unfortunately, for some families of distributions such as Gaussian Mixture Models
(GMMs), selecting the parameters that maximize the likelihood is not straightforward.

2.3 Expectation-Maximization

In 1977, Demptser, Laird and Rubin proposed an algorithm [2], named Ezpectation-Mazimization
(EM) that could be used to maximize the likelihood of a large family of distributions.

The basic idea was first to observe that for some distributions, if an intermediate variable (called
latent or hidden variable) was introduced in the likelihood function, then the estimation step became
easier. Moreover, this hidden variable could also be estimated easily given the data and the current
value of the parameters. The derivation of the EM algorithm had thus two steps: first express the log
likelihood in terms of the distribution of the hidden variable, then select the parameters that maximize
the expected likelihood, and iterate again.

More formally, given the log likelihood log p(X|6) of an observed dataset X using the parameters
6, one first introduces a hidden variable Z and is now interested in the joint or complete log likelihood
log p(X, Z|#). Let us introduce the auziliary function

Q(816") = Ezllog p(X, Z|6)[X, 6*] (2.4)

which is the expectation, over the hidden variable Z, of the log likelihood of the joint density of the
observed data and the hidden variable given the observed data and the parameter set §*.

The EM algorithm goes as follows: at each iteration k, the first step, or expectation step or E-step,
consists in computing the expected probability of the hidden variable given the data and the current
value of the parameters #*, while the second step, or mazimization step or M-step, consists in finding
a new set of parameters #**! which maximizes the auxiliary function given the expected probability
of the hidden variable and the data:

oF L = argméixQ(Oh‘)k) (2.5)

In fact, this algorithm converges to a local optimum of the auxiliary function, and it has been
shown in [2] that maximizing ()() also maximizes the likelihood of the observed data p(X|6).

2.4 EM for GMMs

In this section, we give the EM update equations when the form of the distribution is a Gaussian
Mixture Model (GMM), as defined in equation (2.1).

We first define the latent or hidden variable as the the probability that Gaussian n has generated
frame x;, and we note it as P(n|x;). The auxiliary function @)() can then be written as

T N T N
Q16*) = 35" P(nlx,) -logw, + 3 3 Plnlxy) -log N (xi; 1., ). (2.6)

t=1 n=1 t=1 n=1
During the E-step, the posterior probability of the hidden variable is estimated using Bayes theorem
as follows:

X¢|n) - P(n)

Plape) = ") (2.7



where p(x¢|n) is the evaluation of the Gaussian n for x;, p(x;) is the evaluation of the mixture of

Gaussians for x; and P(n) is the weight w,, of Gaussian n in the mixture.
Then, during the M-step, the parameters of the model are updated as follows:

S Plx) - xe

! EtT:1 P(n|x¢)

o 13 Palxe) - lxe — 1,12
O'n—a T
S, P(nlxe)

1 I
Wp = E P(n|x¢)
t=1

=l

(2.9)

(2.10)

where o, is the diagonal standard deviation (3, (i,i) = o,(7)). This process is then repeated itera-

tively and is guaranteed to converge to a local maximum of the likelihood p(X|6).



Chapter 3

Client Model Adaptation Methods

In some applications, it is often difficult to collect enough data in order to train successfully a model
using the maximum likelihood principle. This is the case in most identity verification frameworks,
where the clients are usually not ready to stay many hours in front of an acquisition system, hours
often partitioned into multiple sessions in order to account for the variability of the voice through
time. On the other hand, it might be easier to collect a small amount of training data for a lot of
persons. This is usually what is done in order to create the world model, hence, using the maximum
likelihood (ML) principle to estimate its parameters.

In order to overcome to lack of training data for each particular client, many researchers have
proposed the use of adaptation methods, where one first trains a world model using ML and then
adapts it for each client separately using his own training material.

This general methodology have already been applied in other domains than speaker verification,
such as Automatic Speech Recognition (ASR) where it generally yielded very good performance (see
for instance [7] or [14]). Some authors have even studied the case where the adaptation is done
incrementally in parallel with the real use of the system [3].

Many different strategies can be used to adapt a generic model using a small training set. In
this chapter, we present two of the most used adaptation methods in the speaker verification domain,
namely the Mazimum Likelihood Linear Regression method and the Bayesian Mazimum A Posteriori
method.

3.1 Maximum Likelihood Linear Regression

The Maximum Likelihood Linear Regression (MLLR) method [8] is an adaptation method that has
been proposed for Hidden Markov Models (HMMs) with emission distribution modeled using Gaussian
Mixture Models (GMMs). Hence, it is also applicable to plain GMMs, which is similar to an HMM
with only one state, connected to itself.

The main idea is to constrain the means of the Gaussians of a given client GMM to be linear
combinations of the means of the corresponding Gaussians of the world model. Moreover, all the
other parameters of the model, such as the standard deviations and the weights, are kept fixed and
equal to their corresponding value in the world model.

More formally, given an already trained GMM of the world model with N Gaussians and weights
W, , means u, and standard deviations X, as defined in equation (2.1), then the corresponding
GMM of the client model will have the same weights w,,, and standard deviations X,, , but with the
following new mean estimates fi,, :

i, =Aupu, +b, (3.1)

where the matrix A, and the vector b, are parameters to be found by maximizing the likelihood of
the client data. This can be done using a modified version of the EM algorithm already presented



for ML. However, the solution requires a matrix inversion for each mean vector and as they may be
ill-conditioned due to lack of data, it might be better to use a generalized EM algorithm which does a
gradient, ascent using the gradient of the auxiliary function with respect to A, and b,,. The update
equations then become

oQ

A,=A,+ AaAn (32)
0
where A is a learning rate and the partial derivatives are computed as follows:
oQ T xt —Anp, —b
aAn ; (TL|Xt) (o-nw)2 Kty ( )
oQ T xt —Anp,, —b
= =)P : Rl A 3.5
o, " T (3

where P(n|x;) is the posterior already defined in equation (2.7) and o, is the diagonal of X,, .

The main idea behind MLLR is to constrain the client models to be near the world model with
only a few parameters to be adjusted, given the small amount of data available for each client.
Unfortunately, if MLLR is applied as is, the number of parameters to be updated becomes bigger
than with standard ML, since for each mean vector u,, of size d, one now have a matrix A,, of size
d-d and a vector by, of size d to adjust, which is apparently not a good idea.

Hence, the second important idea of MLLR is to tie or cluster some Gaussians together in order
to force them to share the same matrix A and vector b.

3.1.1 Gaussian Clustering

Many algorithms can be used to cluster the Gaussians in order to reduce the number of parameters.
One such algorithm is the K-means clustering algorithm [9, 15] where one finds the K centers (clusters)
which minimize the Euclidean distance between every Gaussian mean and its nearest center (cluster).
Note however that this algorithm needs to select beforehand the number K of clusters.

Another solution, which has been used in the experiments reported in the present document, is
the regression class tree [4]. This method grows dynamically a binary tree as follows. First the tree
contains only one node which mean is equal to the mean of all the Gaussian means and which contains
all the Gaussians. Then an iterative splitting method is applied, where a given node is splitted into two
children which means are initialized to the mean of the parent node perturbed in opposite directions
by a fraction of the variance of the data. Each Gaussian of the parent node is then assigned to the
nearest children in the Euclidean space. Afterward, the mean of each children node is recomputed as
the mean of the Gaussian means assigned to it.

The process is repeated until each terminal node contains only one Gaussian. Once the tree is fully
grown, the clustering is then performed as follows. One first decides a minimum number of observations
m a cluster should have and computes for each Gaussian the number of observations which are the
nearest to it, in the likelihood sense. Then, each Gaussian is assigned to the deepest node in the tree
that contains it and have at least m observations associated to its Gaussians. The nodes containing
less than m observations are thus removed from the tree and the other ones correspond to the final
clusters.



3.2 Maximum A Posteriori

The Bayesian Mazimum A Posteriori (MAP) principle [5] differ from ML in that MAP assumes that
the parameters € of the distribution p(X|6) to estimate is also a random variable which has a prior
distribution p(#).

The posterior probability density of 8 given a set of observations X can thus be written using the
Bayes rule as follows:

p(X6) - p(6)
p(X)

The MAP principle states that one should select as an estimate of # the value that maximizes the
posterior probability density of 8, that is:

p(|X) = (3.6)

6 = argmgaxp(9|X)
= argm;a,xp(XW)-p(t‘)). (3.7)

Note that when there is no knowledge about #, this is equivalent to assuming a non-informative
prior, which leads to p(f) = constant, hence equation (3.7) reduces to equation (2.3) which is the ML
principle.

Given this formulation, one still needs to specify a correct prior p(f) and develop new update
equations for a given model under this prior. In [5], the authors propose some solutions to these
problems for Gaussian Mixture Models. They suggest that the correct prior for the weights of the
mixture should be a Dirichlet density [6], whereas the correct prior for the means and standard
deviations of each individual Gaussian should be a normal- Wishart density [1]. The authors then give
the full EM derivation for this case and give the new update equations for the weights, means and
standard deviations of the GMMs.

Using MAP for client model adaptation usually means that the prior for the parameters of a client
model will be represented by the world model parameters. In this context, experiments reported for
instance in [17] show that it is not necessary to adjust the weights and the standard deviations, but
only the means of the Gaussians. The general update equation given in [5] is then

T
L g, o, P(nlxe)x:
- T
" an + Y, P(n|x)
where a,, is Gaussian dependent and is chosen by cross-validation.

In [17], the authors propose a modified version of this update equation to give a better explanation
of a,,, and which they used during the 1999 NIST Speaker Verification Evaluation:

) S P(nfxi)x:
fln, = Qnpty, + (1 — a,) S U
" " S, P(nfx)

(3.8)

(3.9)

where «,, is now computed as follows:

an=1- Y Plolxe) (3.10)

r+ Yy Plnfx)

where r is a relevance factor selected by cross-validation.
In fact, in recent preliminary experiments done at IDIAP in the framework of BANCA using
equations (3.9) and (3.10), we obtained even better results when «,, was a constant «a overall Gaussians:

ap =a (3.11)

with « chosen by cross-validation.



Chapter 4

Evaluation of Adaptation Methods

The goal of the present document is to evaluate state-of-the-art client model adaptation techniques
for text independent speaker verification. In order to assess the adaptation methods proposed in
chapter 3, we chose to compare them on two distinct but known databases. We first chose the
XM2VTS database [11] and its associated experimental protocol, the Lausanne Protocol [10], as this
audio-visual database was close to the BANCA framework. But since it was in fact a small and easy
database, we also decided to compare the methods on a more difficult and known problem, namely
the NIST database used during the 1999 NIST Speaker Recognition Evaluation.

Thus, in this chapter, we first present the general methodology used to train our models, then for
each database, we start by a description of the data and the associated protocol. Then we compare
two different adaptation methods as well as the more classical Maximum Likelihood method.

4.1 General Methodology

Regardless of the database used, we have followed the exact same methodology to conduct the exper-
iments presented in this chapter. In this section, we present this methodology in order for the reader
to be able to understand all the results presented in the following sections.

4.1.1 Preprocessing

First of all, the original waveforms have been sampled every 10ms and then parameterized into Mel
Frequency Cepstral Coefficients (MFCC) [16], keeping 16 coefficients and their first derivative (also
known as delta), as well as the energy together with its first derivative, for a total of 34 features
computed each 10ms frame.

Afterward, a bi-Gaussian method have been used in order to remove the silence frames from the
data. We trained a Gaussian Mixture Model (GMM) with two Gaussians in an unsupervised mode.
The hope was that one Gaussian would capture the speech frames while the second would capture the
silence frames, since they have quite different characteristics. We then simply removed the frames for
which the maximum likelihood was given by the Gaussian corresponding to the silence frames.

4.1.2 Training the Models

Both databases were separated into three subsets: a training set, a development set, and an evaluation
set. The training set of each database contained a large amount of data for the world model and a
small amount of data for each client.

While the energy and its first derivative were important in order to remove the silence frames, they
were not adapted to the task of discrimination between clients and impostors, and they thus were

10



removed from the features after the silence frames have been removed. Hence, the world and client
models were trained with 32 features (instead of 34).

In order to train the world model using Expectation-Maximization (EM) and the Maximum Likeli-
hood (ML) principle, we had to decide the number of Gaussians in the GMM. This number represents
the capacity [20] of the model and should thus be tuned carefully: if there is not enough Gaussians,
then the model will not capture all the characteristics of the data; on the other hand, if there are
too many Gaussians, then the model will overtrain and specialize on the training data instead of the
expected future data. We thus used a K-fold cross-validation method on the training set in order to
select the size of the GMM as well as other potential hyper-parameters that gave the best expected
likelihood of the data. One such hyper-parameter is the so-called v-floor which represents the minimal
value that the variances of the Gaussians of the model can take. This appears to be a very important
hyper-parameter and should be tuned carefully. In fact, in order to select only one v-floor instead
of one per dimension (32), the minimal variance of each dimension was set to be equal to the global
variance in this dimension divided by a global factor. This global factor is the v-floor.

After the correct size and v-floor of the model has been chosen, we retrained the world model using
the whole training data.

In order to train the client models, either using the classical ML method or one of the adaptation
methods, some hyper-parameters had to be selected: for ML, one had to decide the number of Gaus-
sians in the client models; for MAP, one had to decide the «a factor between the world and the client
model (see equations (3.9) and (3.11)); for MLLR, one had to decide the clustering factor that forced
the Gaussians to share their linear regression parameters A and b. In any case, we used the same
methodology: for each value of the hyper-parameter to tune, we trained the client models using the
training data available for each client. We then selected the best value of the hyper-parameter as the
one that optimized the Equal Error Rate (EER) on the separate development set.

Finally, we report in the following sections the results obtained on the evaluation set. Hence, these
results are unbiased as they have not been used for any purpose during the development of the models.

4.2 The XM2VTS Database

4.2.1 Database Description

The XM2VTS database contains synchronized image and speech data as well as sequences with views
of rotating heads. The database contains four recording sessions of 295 subjects taken at one month
intervals. On each session, two recordings were made, each consisting of a speech shot and head
rotation shot (Figure 4.1). The speech shot consisted of frontal face and speech recordings of each
subject during the pronunciation of a sentence. During the rotating head shot, the subject was asked
to rotate his/her head from center to left to right to center; then to rotate his/her head up and then
down then back to center. If the subject wore glasses he/she was then asked to remove them for a
few seconds.

The database was acquired using a Sony VX1000E digital cam-corder and a DHR1000UX digital
VCR. Video was captured at a color sampling resolution of 4:2:0 and 16 bit audio at a frequency of
32 kHz. The video data was compressed at a fixed ratio of 5:1 in the proprietary DV format. In total
the database contains approximately 4 TBytes (4000 Gbytes) of data.

When capturing the database the camera settings were kept constant across all four sessions. The
head was illuminated from both left and right sides with diffusion gel sheets being used to keep this
illumination as uniform as possible. A blue background was used to allow the head to be easily
segmented out using a technique such as chromakey. A high-quality clip-on microphone was used to
record the speech. One speech shot consisted of three sentences:

1.0123456789

2.9069281374

11



3. “Joe took fathers green shoe bench out”

The use of digits was chosen as this corresponds to a typical application scenario of speaker verification.
The three sentences were the same for all speakers to allow the simulation of impostor accesses by
all subjects. The second digit utterance was chosen to compensate for prosodic and co-articulation
effects. The third item was supposed to represent a phonetically balanced sentence.

Figure 4.1: Face images of the same persons during different sessions and shots.

4.2.2 Experimental Protocol

A protocol has been defined [10] to evaluate the performance of vision- and speech-based person
authentication systems on the XM2VTS database. The use of a common protocol should allow the
comparison of different methods.

The database was divided into three sets: training set, evaluation set, and test set (see Figure 4.2).
The training set was used to build client models, while the evaluation set was used to compute the
decision (by estimating thresholds for instance, or parameters of a fusion algorithm). Finally, the test
set was used only to estimate the performance of different verification algorithms.

The protocol was based on 295 subjects, 4 recording sessions, and two shots (repetitions) per
recording sessions. Only the first two digit sequences were used for each shot. The database was
randomly divided into 200 clients, 25 evaluation impostors, and 70 test impostors (See [10] for the
subjects’ IDs of the three groups). Two different evaluation configurations were defined. They differ in
the distribution of client training and client evaluation data as can be seen in Figure 4.2. Both the client
training and client evaluation data were drawn from the same recording sessions for Configuration I
which might lead to optimistic performances on the evaluation set. For Configuration II on the other
hand, the client evaluation and client test sets are drawn from different recording sessions which might
lead to more realistic results.

The following number of subjects were used:

e Clients: 200

e Impostors - Evaluation: 25

e Impostors - Test: 70

This led to the following statistics (see also Figure 4.2 for the partitions):

e 1. client training examples: Conf. I: 3 per client, Conf. II: 4 per client

12



Clients Impostors

Session Shot
1 1 1 Training Data
2 2 Evaluation Data - Clients
2 1 Training Data Evaluation
Configuration | 2 Evaluation Data - Clients Data- Test Data -
1 Training Data
3 2 Evaluation Data - Clients Impostors Impostors
4 ; 4  TestData- Clients 3 5
Sesson Shot Clients Impostors
1 1
2 Training Data
2 1 Evaluation
Configuration |1 2 1 Data- Test Data -
3 ; 2 Evaluation Data - Clients Impostors | Impostors
4 ; 4 Test Data - Clients 3 5

Figure 4.2: Diagramme showing the partitioning of the XM2VTS database according to the protocol
Configurations I (top) and II (bottom).

e 2. evaluation - clients: Conf. I - 600, Conf. IT - 400
e 3. evaluation - impostors: 40’000 (25 * 8 * 200)
e 4. test client accesses: 400 (200 * 2)

e 5. test impostor accesses: 112°000 (70 * 8 * 200)

4.2.3 Experimental Results

The experiments have been done following the general methodology described in section 4.1. Tables 4.1
and 4.2 summarize the results for configurations I and II respectively. As it can be seen along the
HTER columns, the three methods appears quite similar: ML is better on configuration I while MLLR
adaptation method is better on configuration II. Given the size of the dataset, the differences between
the three methods are probably not really significant.

Note however that in the context on BANCA where the number of bytes needed to represent a
client on a smart-card is important and should be as small as possible, the ML method is clearly the
best with that respect.

| Method [ FAR | FRR | HTER [ Client Size |
Maximum Likelihood || 2.66 | 2.50 | 2.58 4550
MLLR Adaptation || 2.07 | 3.25 | 2.66 285120
MAP Adaptation || 2.03 | 3.50 | 2.76 12800

Table 4.1: Performance of three learning methods on the test set of the speech data from XM2VTS
for configuration I. The client size is the average number of floats needed to represent a client.
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| Method [ FAR | FRR | HTER [ Client Size |

Maximum Likelihood || 1.79 | 2.00 1.89 4550
MLLR Adaptation 1.45 | 1.50 1.47 285120
MAP Adaptation 1.26 | 1.75 1.51 12800

Table 4.2: Performance of three learning methods on the test set of the speech data from XM2VTS
for configuration II. The client size is the average number of floats needed to represent a client.

In order to compare visually the relative performances of the three methods, Figures 4.3 and 4.4
show the DET curves obtained by the methods on the test set of the speech data from XM2VTS for
configurations I and II.

Configuration |
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Figure 4.3: Comparison of DET curves of the three methods on the test set of the speech data from
XM2VTS for configuration I.

4.3 The NIST Database

4.3.1 Database Description and Experimental Protocol

The NIST database is a subset of a speech only database that was used for the 1999 NIST Speaker
Recognition Evaluation, which was one of the yearly evaluations conducted by the National Institute
of Standards and Technology (NIST). An overview of this evaluation as well as the results can be
found in [13].

The data for the evaluation came from the Switchboard-2 Phase 3 Corpus collected by the Linguis-
tic Data Consortium (LDC). This corpus consists of 2728 conversions of 5 minute length free speech
involving 640 speakers. The participating speakers were mainly college students from the southern
part of the United States.
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Figure 4.4: Comparison of DET curves of the three methods on the test set of the speech data from
XM2VTS for configuration II.

While in the original database two different handsets were used (carbon and electret), in the subset
selected for the current report, we only used data from one of the subsets (electret).

As it was done during the contest, we separated the training data into male and female data, in
order to create two different world models. The male world model was trained on 137 speakers for a
total of 1.5 hours of speech, while the female world model was trained on 218 speakers for a total of
3 hours of speech.

Client data material was separated into two populations: a evaluation and an test set. The
evaluation set consisted of accesses of about 2 minutes of telephone speech, while the test set consisted
of accesses of between 0 and 1 minute. Each population consisted of 45 males and 45 females. The total
number of accesses for each population was around 5000 with a proportion of 10% of true accesses.

4.3.2 Experimental Results

Once again, the experiments have been done following the general methodology described in sec-
tion 4.1. Table 4.3 summarize the results. As it can be seen along the HTER column, the MAP
adaptation method is now much better than the MLLR adaptation method and the ML method, at
least on this database.

Note however that in the context on BANCA where the number of bytes needed to represent a
client on a smart-card is important and should be as small as possible, the ML method is clearly the
best with that respect (but it gives the worst performance, unfortunately). However, if we select a
world model with the same number of Gaussians as the one selected for the client models used in the
ML method, and use the MAP adaptation method, we obtain a smaller number of parameters than
the ML method and about the same performance as the MAP adaptation method.

Again, in order to compare visually the relative performances of the three methods, Figure 4.5
show the DET curves obtained by the methods on the test set of the speech data from XM2VTS for
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| Method [ FAR | FRR | HTER [ Client Size ]

Maximum Likelihood || 27.76 | 23.67 | 25.71 8320
MLLR Adaptation 22.65 | 19.25 | 20.95 327360
MAP Adaptation 16.89 | 15.71 | 16.30 16384

Table 4.3: Performance of three learning methods on the test set of the NIST database. The client
size is the average number of floats needed to represent a client.

configurations I and II.
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Figure 4.5: Comparison of DET curves of the three methods on the test set of the NIST database.
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Chapter 5

Conclusion

In this report, we have presented an overview of state-of-the-art client model adaptation for statistical
speaker verification systems, based on Gaussian Mixture Models. We have first described the classical
Maximum Likelihood framework, then explained why an adaptation method was required in speaker
verification as the size of the training data for client models was usually small compared to the size
of the training data available for the world model.

Two different adaptation methods were then presented, namely the Maximum Likelihood Linear
Regression (MLLR) method and the Bayesian Maximum A Posteriori (MAP) method. In the MLLR
method, the client models are estimated using all the parameters of the world model except that the
means are a linear combination of the corresponding means in the world model. The MAP method is
derived from a Bayesian perspective, and the means of the Gaussians of the client models are estimated
as a weighted sum of the means of the corresponding Gaussians in the world model and the mean of
the observed data.

Some experimental results have been presented using two different databases, namely the XM2VTS
audio-visual database and the NIST database used in the 1999 NIST Speaker Recognition Evaluation.
For each database, the two adaptation methods have been compared, as well as the more classical
Maximum Likelihood method.

The analysis of the comparative results of the three methods showed that the MAP adaptation
method appears to yield better generalization performance than MLLR and ML on the more realistic
NIST database, while the results on XM2VTS are similar for all methods. Moreover, MAP is also
much easier to implement than MLLR and needs less parameters. However, if the size of the model
is important (as it might be the case in the context of BANCA), then ML needs usually much less
space to represent each client and could then be considered.
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