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Abstract. Support Vector Machines (SVM) is a new machine learning approach
based on Statistical Learning Theory (Vapnik-Chervonenkis or VC-theory). VC-
theory has a solid mathematical background for the dependencies estimation and
predictive learning from finite data sets. SVM is based on the Structural Risk
Minimisation principle, aiming to minimise both the empirical risk and the
complexity of the model, providing high generalisation abilities. SVM provides
non-linear classification SVC (Support Vector Classification) and regression SVR
(Support Vector Regression) by mapping the input space into high-dimensional
feature space using kernel functions, where the optimal solutions are constructed.

The paper presents the review and contemporary developments of the
advanced methodology based on Support Vector Machines (SVM) for the analysis
and modelling of spatially distributed information. The methodology developed
combines the power of SVM with well known geostatistical approaches and tools
including exploratory data analysis and exploratory variography. Real case studies
(classification and regression) are based on reservoir data with 294 vertically
averaged porosity data and 2D seismic velocity and amplitude. A porosity
classification and regression maps are generated using SVC/SVR and the results
are compared with geostatistical models.

1 Introduction

Support Vector Machines (SVM) is a new machine learning approach based on
Statistical Learning Theory (Vapnik-Chervonenkis or VC-theory). VC-theory has
a solid mathematical background for the dependencies estimation and predictive
learning from finite data sets. SVM is based on the Structural Risk Minimisation
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principle, aiming to minimise both the empirical risk and the complexity of the
model, providing high generalisation abilities. It can be applied for regression and
probability density function estimation and hence it is suitable for solving many
reservoir characterisation problems. SVM provides non-linear classification by
mapping the input space into high-dimensional feature space using kernel
functions, where the maximal separating margins are constructed. Using different
kernels we obtain learning machines analogous to the well-known architectures
(e.g., RBF neural networks, multilayer perceptrons). The performance of the SVM
can be improved by kernel modification in a data-dependent way. It allows to
build very flexible models to solve wide variety of classification and regression
tasks.

In the present study radial basis function kernel is mainly used. By varying
SVM hyper-parameters (parameters that are tuned by the user outside the
machine) it was possible to cover wide region of possible solutions – from
overfitting to oversmoothing.

The paper presents the review and contemporary developments of the
advanced methodology based on Support Vector Machines (SVM) for the analysis
and modelling of spatially distributed information. The methodology developed
for the spatial data combines the power of SVM with well known geostatistical
approaches and tools including exploratory data analysis and exploratory
variography. We will present results using a reservoir data set with 294 vertically
averaged porosity data. A porosity map is generated using SVM and the results are
compared with geostatistical models and simulations. The present study develops
the ideas of adaptation of Support Vector Machines to spatial data presented in
(Kanevski et al 1999, Kanevski and Canu 2000).

Tutorials, publications, software, data, list on SVM applications (including
references on speach recognition, pattern recognition and image classification,
object detection, function approximation and regression, bioinformatics, time
series predictions, data mining, etc.) can be found on (www.kernel-machines.org,
2001).

2 Support Vector Machines Classification

Let us present short description of SVM application to the classification problems.
Detailed theoretical presentation of the SVM can be found in (Burgess 1998 and
Vapnik 1998) on which the presentation below is based.

Traditional introduction to the SVM classification is the following: 1) binary
(2 class) classification of linearly separable problem; 2) binary classification of
linearly non-separable problem, 3) non-linear binary problem 4) generalisations to
the multi-class classification problems. First results on application of Support
Vector Classifiers (binary classification of pollution data, multi-class classification
of environmental soil types data) can be found in (Kanevski et al 1999, Kanevski
et al 2000a,b).

The following problem is considered. A set S of points (xi) is given in R2 (we
are working in a two dimensional xi = [x1, x2] space). Each point xi belongs to
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either of two classes and is labeled by yi ∈ {-1,+1}. The objective is to establish
an equation of a hyper-plane that divides S leaving all the points of the same class
on the same side while maximising the minimum distance between either of the
two classes and the hyper-plane – maximum margin hyper-plane.

Optimal hyper-plane with the largest margins between classes is a solution of
the constrained optimisation problem considered below.

2.1 Linearly separable case

Let us remind that data set S is linearly separable if there exist RbRW ∈∈ ,2 ,
such that

NibXWY i
T

i ,...1,1)( =+≥+ (1)

The pair (W,b) defines a hyper-plane of equation

0)( =+ bXW T

Linearly separable problem: Given the training sample {Xi, Yi} find the
optimum values of the weight vector W and bias b such that they satisfy
constraints

NibXWY i
T

i ,...1,1)( =+≥+ (2)

And the weight vector W minimises the cost function (maximisation of the
margins)

2/)( WWWF T= (3)

The cost function is a convex function of W and the constraints are linear in W.
This constrained optimization problem can be solved by using Lagrange

multipliers. Lagrange function is defined by

[ ]∑
=

−+−=
N

i
i

T
ii

T bXWYXWbWL
1

1)(2/),,( αα

where Lagrange multipliers 0≥iα

The solution of the constrained optimisation problem is determined by the
saddle point of the Lagrangian function ),,( αbWL which has to be minimised
with respect to W and b and to be maximised with respect to α .

Application of optimality condition to the Lagrangian function yields

∑
=

=
N

i
iii XYW

1

α (4)
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∑
=

=
N

i
iiY

1

0α (5)

Thus, the solution vector W is defined in terms of an expansion that involves
the N training data. Because of constrained optimisation problem deals with a
convex cost function, it is possible to construct dual optimisation problem. The
dual problem has the same optimal value as the primal problem, but with the
Lagrange multipliers providing the optimal solution.

The dual problem is formulated as follows: maximise the objective function

∑ ∑
= =

−=
N

i

N

i
j

T
ijijii XXYYQ

1 1

)2/1()( αααα (6)

Subject to the constraints

∑
=

=
N

i
iiY

1

0α (7)

1,...Ni,0 =≥iα (8)

Note that the dual problem is presented only in terms of the training data.
Moreover, the objective function Q(α) to be maximised depends only on the
input patterns in the form of a set of dot products {Xi

TXj}i=1,2,…N .

After determining optimal Lagrange multipliers 0iα , the optimum weight
vector is defined by (4) and the bias is calculated as follows

1for,1 )( +=−= sS
i

T YXWb
Note that from the Kuhn-Tucker conditions it follows that

[ ] 01)( =−+ bXWY i
T

iiα (9)

Only iα that can be nonzero in this equation are those for which constraints are

satisfied with the equality sign. The corresponding points Xi , called Support
Vectors, are the points of the set S closest to the optimal separating hyper-plane.
In many applications number of support vectors is much less that original data
points. The problem of classifying a new data point X is simply solved by
computing

)()( bXWsignXF i
T += (10)

with the optimal weights W and bias b.
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2.2 SVM classification of non-separable data: Soft margin classifier

In case of linearly non-separable set it is not possible to construct a separating
hyper-plane without allowing classification error. The margin of separation
between classes is said to be soft if training data points violate the condition of
linear separability and the primal optimisation problem is changed by using slack
variables.

Problem is posed as follows: given the training sample {Xi,Yi} find the
optimum values of the weight vector W and bias b such that they satisfy
constraints

ibXWY iii
T

i ∀≥−+≥+ ,0,1)( ξξ (11)

The weight vector W and the slack variables ξi minimise the cost function

∑
=

+=
N

i
i

T CWWWF
1

2/)( ξ (12)

where C is a user specified parameter (regularisation parameter is proportional
to 1/C).

The dual optimisation problem is the following: given the training data
maximise the objective function (find the Lagrange multipliers)

∑ ∑
= =

−=
N

i

N

i
j

T
ijijii XXYYQ

1 1

)2/1()( αααα (13)

Subject to the constraints (7) and

1,...Ni,0 =≤≤ Ciα (14)

Note that neither the slack variables nor their Lagrange multipliers appear in
the dual optimisation problem.

The parameter C controls the trade-off between complexity of the machine and
the number of non-separable points.

The parameter C has to be selected by the user. This can be done usually in one
of two ways: 1) C is determined experimentally via the standard use of a training
and testing data sets, which is a form of re-sampling; 2) It is determined
analytically by estimating VC dimension and then by using bounds on the
generalisation performance of the machine based on a VC dimension (Vapnik
1998).

2.3 SVM non-linear classification

In most practical situations the classification problems are non-linear and the
hypothesis of linear separation in the input space is too restrictive.

The basic idea of Support Vector Machines is 1) to map the data into a high
dimensional feature space (possibly of infinite dimension) via a non-linear
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mapping and 2) construction of an optimal hyper-plane (application of the linear
algorithms described above) for separating features. The first item is in agreement
of Cover’s theorem on the separability of patterns which states that input
multidimensional space may be transformed into a new feature space where the
patterns are linearly separable with high probability, provided: 1) the
transformation is non-linear; 2) the dimensionality of the feature space is high
enough (Haykin 1999). Cover’s theorem does not discuss the optimality of the
separating hyper-plane. By using Vapnik’s optimal separating hyper-plane VC
dimension is minimised and generalisation is achieved. Let us remind that in the
linear case the procedure requires only the evaluation of dot products.

Let { }
mjj x

,...1
)(

=
ϕ  denote a set of non-linear transformation from the input

space to the feature space; m – is a dimension of the feature space. Non-linear
transformation is defined a priori.

In the non-linear case the optimisation problem in the dual form is following:
given the training data maximise the objective function (find the Lagrange
multipliers)

∑ ∑
= =

−=
N

i

N

i
j

T
ijijii XXKYYQ

1 1

)()2/1()( αααα (15)

Subject to the constraints (7) and (14). The kernel in (15) is

∑
=

==
m

j
jj

T YXYXYXK
1

)()()()(),( ϕϕϕϕ (16)

Thus, we may use inner-product kernel K(X,Y) to construct the optimal hyper-
plane in the feature space without having to consider the feature space itself in
explicit form.

The optimal hyper-plane is now defined as

∑
=

+=
N

j
jjj bXXKYXf

1

),()( α (17)

Finally, the non-linear decision function is defined by the following
relationship:

[ ]bXXKWsignXF j
T += ),()( (18)

The requirement on the kernel K(X, Xj) is to satisfy Mercer’s conditions
(Vapnik 1998). Three common types of Support Vector Machines are widely
used:

Polynomial kernel

p
i

T
j XXXXK )1(),( += (19)
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where power p is specified a priori by the user. Mercer’s conditions are always
satisfied.

Radial basis function RBF kernel is defined by

{ }22
2/exp),( σjj XXXXK −−= (20)

Where the kernel bandwidth σ (sigma value) is specified a priori by the user. In
general, Mahalanobis distance can be used. Mercer’s conditions are always
satisfied.

Two-layer perceptron

{ }00tanh),( ββ += j
T

j XXXXK (21)

Mercer’s conditions are satisfied only for some values of β0 β1.
For all three kernels (learning machines), the dimensionality of the feature

space is determined by the number of support vectors extracted from the training
data by the solution to the constrained optimisation problem. In contrast to RBF
neural networks, the number of radial basis functions and their centres are
determined automatically by the number of support vectors and their values. In the
present study only the results obtained with the RBF kernel are presented.

2.4 Multi-class classification

If there is a binary classifier, the multi-class (M class) classification problem can
be solved by the different reductions of primary problem to several dichotomies.
(Mayoraz and Alpaydin 1998, Weston and Watkins 1998, Vapnik 1998). The most
evident method is one-to-rest or one-against-all classification when M binary
classification models, one per each class is developed. Thus, M decision functions
are derived, one for each class. Final classification label for validated point is
assigned by

)()( ),(maxarg m
i

i
i

m
i

m
j bxxKyy += ∑ λ (22)

Second possibility is pair-wise classification when M(M-1) binary
classification models are developed. Another way is direct generalisation of SVM
to M-class problems. The main disadvantage of this method is that the QP-
problem size becomes very large. One-to-rest and pair-wise schemes seem to give
satisfactory results in the geostatistical applications.

3 Spatial Data Mapping with Support Vector Regression

Assume z∈R is a variable to be predicted based on some geographical
observations (x,y). Our work aims at estimating a dependence between z and the
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geographical co-ordinates based on empirical data (samples) Sn=(xi,yi,zi,εi), i =
1,…n, where

• xi,yi, - are the geographical co-ordinates of samples
• zi - is the observed or measured quantity. It is assumed to be the

realisation of a random variable Zi with an unknown probability
distribution Px,y(Z).

• εi - is the measurement accuracy for the observation zi
• n denotes the sample size

3.1 Prediction problem

3.1.1 The εε-insensitive cost function

Assuming f is a prediction function (i.e. a function used to predict the value of Z
knowing the geographical co-ordinates), we define the cost of choosing this
particular function for a given decision process. First, for a given observation
(x,y,z) we define the ε-insensitive cost function:

î

 >−−−

=
otherwise0

|),(|if|),(|
},,),,{(

εε
ε

zyxfzyxf
fzyxC (23)

where ε characterises some acceptable error.
Now, for all possible observations we define the global or generalisation error

also known as the integrated prediction error IPE:

dxdyyxfzyxCEfIPE
Z

),()),,),,,((()( ωε∫= (24)

where ω(x,y) is some external measure, indicating the relative importance of
a mistake at point (x,y). In case of non-homogeneous monitoring networks this
function can take into account spatial clustering. Usually ω(x,y) = 1, so that all
positions are assumed to be equally important.

Our approach is a “cost driven” modelling. For the ε-insensitive cost function
it is possible to compute the best prediction function (i.e. the one minimising the
IPE). For ω(x,y) = 1, this target function is such that:

∫∫
+≥−<

=
εε ),(
,

),(
, )()(

yxrz
yx

yxrz
yx dZZPdZZP (25)

This function equilibrates the tails of the distribution. For ε = 0 solution
r(x,y) is the conditional median function.
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3.1.2 Non symmetrical cost function

The same calculation can be done for asymmetric cost function. For some
practical application, it may appear that the errors under a certain level are not as
much important as the errors above (over-estimations and under-estimations are
not equivalent). In this case the cost function should be the following

î





−−
−−

=
otherwise0

<z)-y)(f(x,)),((
>z)-y)(f(x,if)),((

),,),,((
a

uu

a

d yxfzb

zyxfa

fzyxC εε
εε

ε

where a and b are parameters controlling the asymmetry of the cost function.
In this case rs(x,y) the target function minimising the IPE is defined from the
following relationship:

∫∫
+≥−<

=
asls yxrz

yx
yxrz

yx dZZaPdZZbP
εε ),(

,
),(

, )()(

It equilibrates the weighted tails. Other robust cost functions are detailed in
(Vapnik, 1998, chapter 11).

3.2 Empirical Risk Minimisation and Structural Risk
Minimisation

3.2.1 Function Modelling

Let us assume this solution is a function that can be decomposed into two different
components: a trend plus a remaining random process. A nice way to take into
account this prior, is to look for the solution in a functional space that can be
decomposed into two orthogonal subspaces, one modelling the trend, while the
other one deals with the remaining random process.

Assume H is such a Hilbert space. Assume Kj(x,y) is a basis of the trend
component and ϕk, k=1,..m is an orthonormal basis of the remaining part (note
that m can be infinity)

f x y w x y K x yk k j j
j

J

k

m∧

==

= + ∑∑( , ) ( , ) ( , )ϕ β
11

(26)

The complexity of the solution can be tuned through ||w||2=Σk=1..mwk
2

(Vapnik 1998). Thus, a relevant strategy to minimise IPE is to minimise the
empirical error together with maintaining ||w||2 small. This can be obtained by
minimising the following cost function:
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minimize
1
2

subject to | ( , ) - Z | , for i = 1,...ni

|| ||w

f x yi i i

2

≤





î ε
(27)

But, unfortunately, some data may lie outside of this epsilon tube due to noise
or outliers making these constraints too strong and impossible to fulfil. In this case
Vapnik suggests to introduce so called slack variables ξi , ξi

* . These variables
measure the distance between the observation and the ε tube (see the example in
Figure 2.1). The distance between the observation and the ε and ξi , ξi

* is
illustrated by the following example: imagine you have a great confidence in your
measurement process, but the variance of the measured phenomena is large. In this
case, ε  has to be chosen a priori very small while the slack variables ξi , ξi

* are
optimised and thus can be large. Remember that inside the epsilon tube ([f(x,y)-
ε, f(x,y)+ ε ]) cost function is zero.

Figure 1. Support vector regression. Explanation of the ε–tube and slack variables.

Note that by introducing the couple (ξi , ξi
*) the problem has now 2n

unknown variables. But these variables are linked since one of the two values is
necessary equals to zero. Either the slack is positive (ξi

* = 0) or negative (ξi =
0). Thus, zi ∈ [f(x,y)- ε -ξi, f(x,y)+ ε +ξi

*].
Now, we are looking for a solution minimising at the same time its complexity

(measured by ||w||2) and its prediction error (represented by max (ξi , ξi
*)= ξi +

ξi
*) . In this case, let us introduce a user specified trade off parameter C between

these two contradictory objectives. That leads us to the following problem:
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minimise
1
2

|| || ( )*ω ξ ξ2

1

+ +
=
∑C i i
i

n

subject to
for i = 1,...n

f x y Z

f x y Z
i i i i i

i i i i i

i

( , )
( , )

,

*

*

− − ≤
− + − ≤

≥





î

ε ξ
ε ξ

ξ ξ 0 (28)

3.2.2 Dual formulation

A classical way to reformulate a constraint based minimisation problem is to look
for the saddle point of Lagrangian L:

∑ ∑

∑ ∑

= =

= =

+−++−

−++−−++=
n

i

n

i
iiiiiiiiii

n

i

n

i
iiiiiiii

Zyxf

yxfZCwwL

1 1

****

1 1

*2*

)()),((

)),(()(||||
2
1

),,(

ξηξηξεα

ξεαξξαξξ

where α α η ηi i i i, , ,* * are Lagrangian multipliers associated with the
constraints. They can be roughly interpreted as a measure of the influence of the

constraints in the solution. A solution with α αi i= =* 0 can be interpreted as
“the corresponding data point has no influence on this solution”.

At the minimum the derivative of the Lagrangian equals to zero (Kuhn-Tucker
conditions). Thus it can be checked that:

w x y

C

C

k i i k i i
i

n

i i

i i

= −

= −
= −

=
∑ ( ) ( , )*

* *

α α ϕ

η α
η α

for k = 1,...m

for i = 1,..., n
for i = 1,..., n

1

These variables can be removed from the original formulation of the
minimisation problem to get the dual formulation of the problem:

maximise -
1
2

subject to
for = 1,. .. m

for i, ... n
i=1

n
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3.2.3 The nature of the solution

To solve the problem without specifying functions ϕk it is necessary to choose ϕk
such that:

( )ϕ ϕk
k

m

i i k j j i i j jx y x y G x y x y
=

∑ =
1

( , ) ( , ) ( , ), ( , ) (29)

This is the case in reproducing kernel Hilbert space, where G is the reproducing
kernel. Functions ϕk are the eigen functions of G. In this case the solution can be
formulated in the following form:

∑ ∑
= =

∧
+=

n

i

m

j
jjiii yxKyxyxGwyxf

1 1

),()),(),,((),( β (30)

with )( *
iiiw αα −= . Note that the function ϕk has disappeared. This

solution only depends on the kernel function G. Note also that here at least one of
alphas is equalled to zero depending of the observed value zi , above or under the
ε-tube.

Remark: the solution proposed in equation (30) is the same as the regression
spline and kriging estimates (since they are positive definite and reproducing
kernels can be interpreted as covariance function (Wahba 1990). The difference
between these methods lies in the underlying hypotheses and thus in the way
weights in (29) are estimated. In the SVR framework the regularisation is not
performed on w but on the representation of the function in some feature space.
This is a way to define a regularisation principle that guarantees an explicit bound
on the IPE error. From the practical point of view, due to L1 type minimisation,
many of the wi can be either zero or C. wi is zero when associated measurement
point lies within the ε-tube and thus has no influence on the estimation. This point
is useless for the estimation and can be removed without changing the result. wi is
equals to C when the associated measurement point is too far from the ε-tube. In
this case, the influence of the point is bounded at C. Another way to formulate this
remark is to establish the link between SVR and sparse approximation (Girosi
1998).

3.2.4 Kernel choice

As in the case of classification the practical choice for the kernel is the Gaussian
kernel:







î



 −+−

−=
σ

(31)

where σ denotes the bandwidth of the kernel. In this case j=1 and the trend
function K is a constant.
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3.2.5 Hyper parameters

For practical implementation the hyper parameters of the method have to be tuned.
These parameters are the following:
• C: although often recommended as very large, geostatistical applications

show a great deal of dependence on this parameter. It has to be tuned
carefully.

• εi : if no additional information is available the easiest way to tune it is to put
it small in comparison to standard deviation of data. See below details on
influence of the epsilon on training and mapping. In general, it can be related
to error measurements and/or small scale variations not resolved by sampling
network usually described by nugget effect in variogram.

• σ: the bandwidth of kernel. Here again the IPE of the proposed solution is
very sensitive to this parameter. More generally, the performance of the
solution is sensitive to the distance matrix used in the kernel

4 Case studies. Description of data

Let us list the main phases (steps) of the classification/regression studies applied
by using SVC/SVR:

1. Visualisation of data. Monitoring network analysis and description.
Understanding of data clustering.

2. Exploratory data analysis. Univariate statistical analysis, outliers detection,
data transformation and data pre-processing, trend detection, etc .

3. Exploratory structural analysis (variography). Understanding and modelling
of spatial correlations.

4. Splitting data into data sets: Training, Testing, Validation.
5. Training of SVC/SVR with different models. Selection of the optimal SVM

hyper-parameters.
6. Pattern completion (categorical data mapping). Regression, spatial predictions

of continuous variable.
7. Statistical analysis and variography of the residuals.
8. Understanding and interpretation of the results.
9. Conclusions.

Because of the large differences in magnitude, both porosity and co-ordinate
values were re-scaled to between zero and one before any calculations were
performed. All mapping and classification results will thus be presented using
such re-scaled values; however,, it is understood that the original raw values can
be obtained by performing a simple back-transform. Batch statistics and data post
plots are presented below.

In the present paper two case studies are considered in detail:
• Binary classification of porosity data. To pose this problem original continuous

data were transformed into “low” and “high” level of porosity. Indicator cut
corresponds to the level of 0.5 (about mean value): porosity data higher/less
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than 0.5 are coded as class +1 and -1. The results of SVC binary classification
are compared with indicator kriging. The generalisation of the binary task is a
multi class classification problem (Mayoraz and Alpaydin 1998, Weston and
Watkins 1998, Kanevski et al. 2000b). Review on geostatistical approach for
spatial data classification can be found in (Atkinson and 2000).

• Spatial predictions/mapping of porosity data. Support Vector Regression model
is developed for the spatial predictions of continuous porosity data. Results of
the SVR mapping are compared with ordinary kriging.
From the beginning original data were split several times into two data sets:

200 and 94 measurements. The first data set was used to develop SVM models
(training data set) and the second one (validation data set) was used to validate the
results. Because monitoring network is not clustered, random splitting was used
(in case of clustered monitoring networks spatial declustering procedures can be
used to have representative testing data set). Another proportions between data
sets were used as well.

Batch statistics of the entire data set (294 measurements): minimum = 0.0; Q
1/4 = 0.3778; median = 0.515; Q 3/4 = 0.69; max = 1.000e+00; mean = 0.53;
variance = 0.048; skewness = 0.12; kurtosis = -0.63.

Post plots of training and validation data sets are presented in Figure 2.

Figure 2. Presentation of training data set as area-of-influence polygons. Post plot of testing
(“+”) and validation (“O”) data sets.
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An important phase of spatial data analysis (despite of the methods used) deals
with description of spatial continuity using exploratory variography (Chiles and
Delfiner 1999). The most widely used measure of spatial continuity for the spatial
function Z(x) is a semivariogram

{ } ( ){ }γ γ( , ) ( ) ( ) ( ) ( ) ( )x h x x h x x h h= − + = − + =1
2

2
Var Z Z E Z Z

(32)

where h is a separation vector between points in space. In case of intrinsic
hypotheses semivariogram (variogram) depends only on separation vector
between pairs.

The empirical estimate of the semivariogram is given by
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where N(h) is a number of pairs separated by vector h.
Variogram rose – semivariogram computed for the different separation vectors

for the training data is presented in Figure 3. Geometrical anisotropy is present in
the Northeast and Southwest trending directions.

Figure 3. Variogram rose of training data.

In case of second order stationary regionalized random function the relationship
between covariance function C(h) and variogram is following: γ(h)=C(0)-C(h).
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Behaviour of the variogram near the origin at small distances describes the
smoothness of the function and characterises the relationship between random and
spatially structured parts of information.

In the present study the variography is widely used to control the quality of
models’ performance.

4.1 Classification of reservoir data

In the present paper only the binary classification problem is considered. Original
data were transformed into indicators (2 classes) and split into training, testing and
validation data set used to develop a model, to tune hyper-parameters (kernel
bandwidth and regularisation parameter C) and to validate the model. The splitting
was performed several times in different proportions.

4.1.1 Binary classification with Support Vector Machines

The particular case of data splitting into training (includes 150 training and 50
testing data points) and validation data (94 data points) sets is presented in Figure
4. The problem is clearly non-linear. Validation data represents different regions
classes.

Figure 4. Binary (2 classes) classification problem. “+” – post plot of validation data.

In order to find optimal hyper-parameters comprehensive search was carried
out by computing training and testing error surfaces depending on kernel
bandwidth and C parameter. The optimal choice is the one with low values of
training and testing errors and small values of Support Vectors.
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The behaviour of the error surfaces is following:
• Training error is small and even zero in the region of small kernel

bandwidths – overfitting region. All data points are important (overfitting)
and are Support Vectors: In this region generalisation is bad and testing
error is high. Testing error and number of Support Vectors do not depend
on C parameter. For the training error at higher values of C overfitting is
achieved at larger values of kernel bandwidths (see Figures 5-7).

• In the region of high values of kernel bandwidths (comparable with the
scale of the region) there is an oversmoothing. Training error is high and
testing error after reaching some minimum at optimal intermediate values
of bandwidth is also increasing. In this region the number of Support
Vectors is also slowly increasing.

• An optimal region is reached at intermediate values of kernel bandwidth
and C parameter. In our case the optimal parameters were the following:
kernel bandwidths about 0.11 and C=10.

Figure 5. SVM binary classification. Estimate of training error surface.

The classification solution with the optimal hyper-parameters is presented in
Figure 8. Validation data are post plot as well. In the following section of the
paper the same problem is solved with indictor kriging. Let us remind that the
classical output of SVC is deterministic classification, in case of indicator kriging
output is a probability map to be above or below the threshold.
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Figure 6. SVM binary classification. Estimate of testing error surface.

Figure 7. SVM binary classification. Number of Support Vectors surface.
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Figure 8. SVM optimal classification along with validation data post plot. Filled circles
belong to the validation data of white zone class, empty circles belong to validation data of
coloured class. Number of Support Vectors (“+”) equals 56.

Thus, in order to make classification, SVC needs only 56 data points (they are
Support Vectors). Training error was 4.6%, testing error = 18% and validation
error = 11%. Only at the border of decision surface where there is the biggest
uncertainty in classification, SVC has some problems with classification of
validation data. In fact, it should be taken into account that data can be
contaminated by noise and it is not necessary to follow exactly training and
validation classes for the particular realisation of the regionalized function.

4.1.2 Binary classification with indicator kriging

In order to compare the results of SVM binary classification with geostatistical
approach indicator kriging was used. Indicator kriging is a kriging applied to the
indicator transformed data:

î

 ≤

= (34)

where zk is a threshold.
In terms of probability indicator can be represented as
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Thus, the output of the indicator kriging spatial predictions is interpreted as a
probability to be below threshold. It gives a probabilistic interpretation of the
binary classification problem.

The indicator kriging is a BLUE Best Linear Unbiased Estimator applied to the
indicators (Deutsch and Journel 1997). The basic equations of the indicator
kriging written in terms of covariance function are following:
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After exploratory variography based on data, covariance functions/variograms
should be modelled. This is performed by fitting the theoretically valid models to
the experimental ones.

The results of indicator kriging are presented in Figure 9 along with validation
data post plot.

Figure 9. Results of indicator kriging (probability to belong to class “O”) along with
validation data post plot.
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The output of indicator kriging is a probabilistic map to be above or below
threshold. In our case the interpretation is to belong to one or another class. The
solution of indicator kriging is more variable, because of exactitude properties of
IK – the solution follows training data points. The same kind of solution can be
obtained by SVC by reducing kernel bandwidth moving into overfitting region.

Another comments is related to anisotropy. In case of SVC isotropic kernel was
used. In case of IK anisotropic variogram model was developed taking into
account anisotropic spatial correlations. Next step in the development of SVC
deals with the implementation of anisotropic kernels and/or pre-processing of data
(e.g., co-ordinates transformations). Finally, other kernels can be applied as well
(see Vapnik 1998, where wide choice of kernels is presented).

4.2 Support Vector Regression

In the present section the problem of reservoir data mapping – spatial regression –
using SVR is considered.

4.2.1 SVR Training

In case of SVR there are three hyper-parameters and error cubes should be
analysed to find the optimal solution. Comprehensive search in a 3D hyper-
parameter space was performed. Some 2D errors surfaces with fixed C parameter
are presented in Figures 10-12.

The same discussion as in the case of classification concerning overfitting and
oversmoothing regions is applicable as well. The optimal parameters were chosen
taking into account training and testing errors, number of Support Vectors.

Figure 10. Estimate of SVR training error surface. C= 10000
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Figure  11. SVR testing error surface. C= 10000.

Figure 12. Surface of the number of Support Vectors. C= 10000.

An important phase of the training procedure deals with understanding how
much “useful” information was extracted by SVR from data and what is left. In
terms of spatial data and geostatistics useful information is spatially structured
information. Spatial structures are described basically by variograms. That’s why
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variographic tools are efficient to understand and to explain the results. In the
present study they were used to control the performance of SVR.

4.2.2 SVR Mapping

The two particular results of Support Vector Regression mapping are presented
in Figures 13 and 14. It should be noted that by varying hyper-parameters it was
possible to develop models of very different complexity, covering regions from
overfitting to oversmoothing.

An interesting oversmoothing case deals with large scale modelling – so called
detrending. Non-linearity and flexibility of SVR highly simplifies detrending
problem. The quality of detrending can be controlled with geostatistical tools,
including variography.

Actually, hierarchy of SVR models can be developed to extract anisotropic
information from data at different scales and in different regions. One possibility
could be mixtures of SVR, another one – local SVR models.

An important question, not elaborated in this paper, deals with influence of data
pre-processing: linear and non-linear transformations of spatial co-ordinates and
data. It seems that in case of anisotropic structures data pre-processing can make
them more isotropic and less Support Vectors will be necessary, perhaps leading
to better generalisation properties. This problem should be studied with a well
defined simulated data sets.

Figure  13. SVR porosity mapping. Kernel bandwidth = 0.1, epsilon parameter = 0.0, all
training data are Support Vectors (“O”).
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Figure 14. SVR porosity mapping. Kernel bandwidth = 0.1, e parameter = 0.08, the number
of Support Vectors (“O”) equals 50.

The results on validation data by using SVR(C=10000, kernel bandwidth = 0.1,
ε = 0.08) are presented in Figure 17. Let us remind that only 50 (!) data (Support
Vectors) were used to get almost the same quality of the model as OK. Here we
can pose an interesting question about the use of SVR in monitoring network
design and redesign. The methodological work in this direction should be related
to the developments of corresponding objective functions. Let us remind that in
case of OK kriging variance is often used to optimise monitoring network. An
analogue of estimation variance can be derived for the SVR based on the training
residuals. This approach was applied with General Regression Neural Networks in
(Kanevski 1999).

4.2.3 Geostatistical Mapping. Ordinary Kriging

Ordinary kriging OK was used as a geostatistical model for the porosity
mapping. Ordinary kriging is a BLUE model also based on the analysis and
modelling of spatial correlation structures – variography and is described by the
following system of equations (n – number of data measurements):
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In accordance with geostatistical methodology deep structural analysis –
exploratory variography, and modelling were carried out. The main attention
during variogram fitting was paid to the directions in which drift is negligible.
Geostat Office was used at all stages of geostatistical analysis and modelling.

The result of ordinary kriging mapping of porosity data is presented in Figure
15.

The same OK model was used to estimate validation data. The results of the
validation for SVR models and OK are presented in Figure 16. They are quite
good.

Figure 15. Porosity mapping with ordinary kriging.
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Figure 16. Validation results. SVR and ordinary kriging.

The quality of mapping can be qualitatively described by omnidirectional
variograms of the residuals ( see Figure 17.). SVR training residuals demonstrate
pure nugget effect – all spatially structured information was extracted by SVR
model from data. Nugget effect of the training residuals corresponds to the nugget
effect of raw data. The variograms of the validation residuals both of OK model
and SVR have pure nugget effect as well. It means good results on validation data.

Figure 17 . Omnidirectional variograms of raw data, SVR training residuals, SVR
validation residuals, kriging validation residuals.
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5 Conclusion

The paper presents adaptation of the SVM algorithms – Support Vector
Classification and Support Vector Regression to the spatially distributed reservoir
data. Two problems were considered in detail: 1) binary classification of spatial
categorical data and 2) spatial regression/mapping of porosity data. The basic
ideas of SVM training by using errors surfaces was demonstrated. In was shown
that near the optimal solution the number of Support Vectors is rather low that is a
good indication for low generalisation/validation error. The obtained results are
promising that was demonstrated with validation data in both cases.

The results were compared with geostatistical approach – indicator kriging in
case of classification and ordinary kriging in case of regression.

The future developments of the present work deal with the study of kernel types
(polynomial, MLP- like, splines, etc.) on the training procedures and final results.
An important issue is related the problems of estimation of prediction variance
(like kriging variance in geostatistics). This problem can be solved partly by using
training residuals. Finally, a generalisation of the SVM to the multivariate case,
when quality and quantity of information on different variables differ is of great
importance for wider application of SVM approach to environmental data.
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