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Abstract
The paper presents decision-oriented mapping of

pollution using hybrid models based on statistical learning
theory (support vector regression or SVR) and spatial
statistics (geostatistics). Adaptive and robust SVR
approach is used to model non-linear large scale trends in
the region and geostatistical models – spatial predictions
and spatial simulations – are used to prepare decision-
oriented maps: prediction maps along with maps of error
variance and equiprobable digital models of the pollution
based on conditional stochastic simulations. The quality of
the proposed approach is tested with the validation data
set not used for the model development. Real data on soil
contamination by Chernobyl radionuclides in Russia is
used as a case study.

1. Introduction
In this paper, the ideas of hybrid models based on

machine learning (data-driven) approach and geostatistics
firstly presented in (Kanevski et al., 1996) are developed
using recent developments in statistical learning theory
(Vapnik, 1998) – support vector regression – and
geostatistics. The model is applied to real data on soil
contamination by Chernobyl radionuclides in the most
contaminated region of Russia (Briansk region).
Exploratory data analysis and especially exploratory
variography and variogram modelling are widely used for
better understanding of data and the results.

2. Support Vector Regression
The first publication on the adaptation of support

vector regression (SVR) to spatial data can be found at
Kanevski and Canu (2000). Detailed explanations on SVM
can be found in a number of recent publications (e.g.
Christianini and Shave-Taylor, 2000). In the present paper
only basic equations are presented.

Let us assuming f is a prediction function (i.e. a
function used to predict the value of Z knowing the
geographical co-ordinates (x,y). We define the cost of
choosing this particular function for a given decision
process. First, for a given observation (x,y,Z), we define
the ε-insensitive cost function:
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where ε characterizes some acceptable error.
Now, for all possible observations, we define the

global or generalisation error also known as the integrated
prediction error IPE:
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where ω(x,y) is some economical measure, indicating the
relative importance of a mistake at point (x,y). Usually
ω(x,y) = 1, so that all positions are assumed to be equally
important.

Now we are going to define where to look for the
solution of the problem of minimising the integrated
prediction error:
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The complexity of the solution can be tuned through
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 (Vapnik, 1998). Thus, a relevant strategy

to minimise IPE is to minimise the empirical error

together with maintaining 
2

w small. This can be obtained

by minimising the following cost function:
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But, unfortunately, some data may lie outside of this
epsilon tube due to noise or outliers making these
constraints too strong and impossible to fulfil. In this case
Vapnik suggests to introduce so called slack variables

),( *
ii ξξ . These variables measure the distance between the

observation and the ε tube. The distance between the



observation and the ε and ),( *
ii ξξ  is illustrated by the

following example: imagine you have a great confidence
in your measurement process, but the variance of the

measured phenomena is large. In this case, ε  has to be
chosen a priori very small while the slack variables

),( *
ii ξξ  are optimised and thus can be large. Remember

that inside the epsilon tube ( ) ( )[ ]εε +− yxfyxf ,,,  cost

function is zero.

Note that by introducing the couple ),( *
ii ξξ  the

problem has now 2n unknown variables. But these
variables are linked since one of the two values is
necessary equals to zero. Either the slack is positive

)0( * =iξ  or negative )0( =iξ . Thus:
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Now, we are looking for a solution minimising at the

same time its complexity (measured by 
2

w ) and its

prediction error (represented by max **),( iiii ξξξξ += ). In

this case, let us introduce a user specified trade off
parameter C between these two contradictory objectives.
That leads us to the following problem:
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A classical way to reformulate a constraint based
minimisation problem is to look for the saddle point of
Lagrangian L:
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where ** ,,, iiii ηηαα  are Lagrangian multipliers associated

with the constraints. They can be roughly interpreted as a
measure of the influence of the constraints in the solution.

A solution with 0* == ii αα  can be interpreted as “the

corresponding data point has no influence on this
solution”. At the minimum the derivative of the
Lagrangian equals to zero (Kuhn-Tacker conditions):

n1,...,=ifor    

n1,...,=ifor      

 1,...m=kfor    ),()(

**

1

*

ii

ii

n

i
iikiik

C

C

yxw

αη
αη

ϕαα

−=
−=

−= ∑
=

These variables can be removed from the original
formulation of the minimisation problem to get the dual
formulation of the problem:
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This problem is untractable because of functions ϕ.
Now we are going to solve the optimization problem

without specifying functions ϕk. To do so it is necessary to

choose ϕk such that:
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This is the case in reproducing kernel Hilbert space,

where G is the reproducing kernel. Functions ϕk  are the
eigen functions of G. In this case the solution can be
formulated in the following form:
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with )( *
iiiv αα −= . Note that function ϕk  has

disappeared. This solution only depends on the kernel
function G. Note also that here at least one of alphas is
equalled to zero depending of the observed value Zi, above

or under the ε-tube.
The main difficulty of this QP problem lies in its

dimension. For 1000 data points the problem to be solved
is of dimension 2000 that makes it intractable for most of
the commercial optimisation software. Equality constraints
are not too complex since they are very few. Box
constraints are also rather simple but there are many of
them (4n). This suggests to use a specific algorithm taking
into account the specificity of the box constraints.



A typical practical choice for the kernel is the
Gaussian Kernel:
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where σ denotes the bandwidth of the kernel.
The hyperparameters of the SVR can be tuned using

splitting of the original data into training, testing and
validation sets.

3. Ordinary Kriging
Details on the geostatistical spatial predictions can be

found in a number of recent books (e.g. Goovaerts, 1997;
Deutsch and Journel, 1997). In the present study, so-called
ordinary kriging model (valid under the hypotheses of
second order stationarity and intrinsic random function) is
used for the spatial predictions of the residuals.

4. Case study
Case study is based on a real data on soil

contamination by Chernobyl radionuclides. Data
demonstrates variability at several spatial scales (spatially
non-stationary data). In this case traditional geostatistical
models based on a hypothesis of second order stationarity
or intrinsic hypothesis can not be used directly. In the
present research hybrid models based on SVR adaptive
modeling of large scale trends and analysis and modeling
of the residuals with geostatistical model (ordinary
kriging) is applied. The approach follows the ideas
presented in (Kanevski et al., 1996) where artificial neural
networks were used for the large scale de-trending.
The SVRRK/SVRRSIMM – Support Vector Regression
Residual Kriging/Support Vector Regression Residual
Simulations - models follow the ideas of the NNRK
approach and consist of several main phases:
•  Exploratory data analysis,
•  Trend analysis,
•  Exploratory variography and modeling,

Semivariogram/variogram is the basic tool of the
spatial structural analysis and variography. Theoretical
formula (under the intrinsic hypotheses, Deutsch and
Journel 1997)

Empirical estimate of the variogram (experimental
variogram) is following

here N(h) – is a number of pairs separated b y a vector h.

•  SVR trend modeling (de-trending),
•  Comprehensive analysis of the residuals,
•  Exploratory variography and modelling of the

residuals,
•  Validation of the results and final predictions.
The main outputs of the SVRRK model are presented
below.

SVR detrending
Let us present the results of large scale modelling

using Support Vector Regression approach. In order to
model large scale trend in the region, kernel bandwidth of
the SVR was selected equal to the scale of the region. The
results are presented in Figure 1.

Figure 1. Support Vector Regression trend modeling.

Figure 2. Omnidirectional variograms: training data, trend
model, SVR residuals.

The general spatial correlation structures can be
understood from the omnidirectional variograms,
presented in Figure 2. Raw training data represent
variability at different scales. Variogram of trend model
represents smooth function behaviour, and the variogram
of the residuals represents small scale variability (second
order stationary random function).

Geostatistical modeling of the residuals
In order to use geostatistical models – anisotropic
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measures of spatial continuity (variograms) have to be
analyzed and modeled (Goovaerts ). Directional variogram
modeling of the residuals using Geostat Office software
(Kanevski et al 1999b) is presented in Figure 2.

Prediction mapping with SVRRK model
The results of the Support Vector Machine Residual

Kriging Model consist of trend modeling with SVR and
residual predictions with ordinary kriging. The results of
the residuals modeling with ordinary kriging are presented
in Figure 3.

Figure 3. Variogram modelling of the SVR residuals.

 Figure 4. Mapping of SVR residuals. Small scale
structures can be recognized.

The main result is presented in Figure 4. Let us remind
that SVRRK model is an exact model: at the measurement
points outputs of the model equals to the measurement
data.

Figure 5. Support Vector Regression residual Kriging
Model Mapping.

Validation of SVRRK model
The model was used to predict independent (not used

for training and tuning of the parameters) validation data
set. The results are presented in Figure 7.

Figure 6. Validation of the SVRRK model with
independent validation data set.

Support Vector Regression Residuals Simulation
Model

All regression models, by definition, give some
averages of data and do not represent spatial variability
and uncertainty. Usually, reproducing of variability is a
target of simulation models. In case of spatial data there
have been developed several approaches and models for
the conditional (to the original data) spatial simulations
preserving basic spatial statistical characteristics:
histograms of declustered data, variograms (see details in
Goovaerts 1997): sequential gaussian simulations,
indicator simulations, simulated annealing, etc. Most of
the simulation models are based on so-called second order
stationary random functions, when conditional mean value
in the region is constant and spatial covariance function
depends only on the separation vector between points.

One of the possibility how to avoid problems of
second order stationarity is based on the same ideas as
SVRRK model. Trends (large scale structures) are
modeled with SVR and spatially correlated residuals are



used for simulations.
Simulations differs from any interpolation model.

There are two major differences between estimations and
simulations:
•  The main objectives of the interpolators are to provide

“best” local estimates z*(u) of each unsampled value
z(u) without specific regard to the resulting spatial
statistics of the estimates. In case of simulations the
resulting global features and statistics (the same first
two experimentally found moments - mean and
covariance or variogram,  as well as the histogram) of
the simulated values  take precedence over local
accuracy. Stochastic simulation is a process of
preparing alternative, equally probable, high
resolution models of the spatial distribution of z(u).
The variable can be categorical, indicating presence or
absence of a particular characteristic, or it can be
continuous.

•  Kriging, for example, provides a single numerical
model, which is the “best” in some local sense.
Simulations provide many alternative numerical
models zl(u), each of which is a “good” representation
of the reality in some global sense. The difference
between these alternative models or realizations
provides a measure of joint spatial uncertainty.
In general, the objectives of simulation and estimation

are not compatible. Simulations reproduce spatial
variability and can take into account different sources of
information (data integration).

In the present paper sequential gaussian simulations
are considered. Gaussian random function models are
widely used in statistics and simulations due to their
analytical simplicity, they are well understood, they are a
limit distributions of many theoretical results and were
successfully applied in many cases. In this work we shall
use algorithm known as a Sequential Gaussian
Simulations.

Sequential Gaussian simulation methodology consists
of several steps:
1. Determine the univariate cdf (cumulative distribution

function) FZ(z) representative of the entire study area
and not only of the z-sample data available.
Declustering may be needed.

2. Using the cdf FZ(z), perform the normal score
transform of z-data into y-data with a standard normal
cdf.

3. Check for bivariaty normality of the normal score y-
data.

4. If a multivariate Gaussian normality random function
model can be adopted for the y-variable, local
conditional distribution is normal with mean and
variance obtained by simple kriging.
The stationarity  requires that simple kriging (SK) with
zero mean should be used. If there are enough
conditioning data to consider inference of a non-

stationary random function model it is possible to use
mowing window estimations with ordinary kriging
(OK) with the re-estimation of the mean. But in any
case SK variance should be used for the variance of the
Gaussian conditional cumulative distribution function
if there are enough conditioning data it might be
possible to keep the trend as it is.

5. Start with sequential Gaussian simulations:
•  Define a random path, that visits each node of

the grid (not necessarily regular) once. At
each node u, retain a specified number of
neighboring conditioning data including both
original y-data and previously simulated grid
node y-values.

•  Use simple kriging with the normal score
variogram model to determine the parameters
(mean and variance) of the ccdf (conditional
cumulative distribution function) of the
random function Y(u) at location u.

•  Draw a simulated value yl(u) from that ccdf.
•  Add the simulated value yl(u) to the data set.
•  Proceed to the next node, and loop until all

nodes are simulated.
6. Back transform the simulated normal values yl(u) into

simulated values for the original variable zl(u).

An important phase of sequential gaussian simulations
deals with variography of normal score values
(transformation form original data to univariate gaussian
distribution N(0,1).

Some results of the sequential gaussian conditional
simulations are presented in Figures 7-9. These figures are
much variable in space.

The similarity and dissimilarity between digital models
of the reality describes spatial variability and uncertainty.
The next step deals with the probabilistic mapping:
mapping to be Above some predefined decision level. This
is a topic of another research related to decision oriented
mapping of contaminated territories.

Figure 7. Conditional Sequential Gaussian
Simulations. Realization #1.



 Figure 8. Conditional Sequential Gaussian Simulations .
Realization #3.

Figure 9. Conditional Sequential Gaussian Simulations.
Realization # 76.

Usually hundreds of simulated models (realizations)
are generated. The similarity and dissimilarity between
different equiprobable realizations of the reality (using
data and available knowledge) describes spatial variability
and uncertainty of data. By developing many of
equiprobable  realizations probabilistic/risk mapping is
possible as well: mapping of probability to be
above/below some predefined decision/regulation levels.
Detailed description of SVRRSim models and their
application to the decision oriented mapping is under
study and will be published elsewhere.

5. Conclusion
The results of spatial data mapping with hybrid model

SVRRK are promising. Application of Support Vector
Regression data driven and robust approach allowed to
develop non-linear large scale model (trend model) in the
region under study. The remaining residuals describing
small scale variability of pollution were efficiently
modelled using ordinary kriging model of geostatistics.
There is a mutual relationship between models in SVRRK:

from one side geostatistical approach help to understand
how much spatially structured information described by
variograms was extracted from data by SVR, and from
another side SVR can be used as an efficient tool for
spatial data detrending in case of spatially non stationary
data. Application of the conditional stochastic simulation
models for the SVR residuals is under study.

The results of conditional simulations seems to be
promising. After SVR detrending nscore transformation of
the residuals demonstrates that second order stationary
model can be accepted.

In conclusion, when working with spatially distributed
data, self-consistent hybrid models using machine learning
algorithms and geostatistics can bring mutual benefit for
the both data driven and model dependent approaches.
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