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Abstract. In this paper we apply the Full Combination (FC) multi-band approach, which has
originally been introduced in the framework of posterior-based HMM/ANN (Hidden Markov
Model/Artificial Neural Network) hybrid systems, to systems in which the ANN (or Multilayer
Perceptron (MLP)) is itself replaced by a Multi Gaussian HMM (MGM). Both systems represent
the most widely used statistical models for robust ASR (automatic speech recognition). It is shown
how the FC formula for the likelihood-based MGMs can easily be derived from the posterior-based
approach by simply applying Bayes’ Rule. The experiments show that the Full Combination multi-
band system with MGM experts performs better, in all noise conditions tested, than the simple
sum and product rules which are normally used. As compared to the baseline full-band system,
the FC system shows increased robustness mainly on band-limited noise. The goal of this article
is not a performance comparison between Multilayer Perceptrons and Multi Gaussian Models but
between the theory of the two approaches, posterior-based vs. likelihood-based FC approach, so
results are only given for the MGMs.
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TEchniques).
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1 Introduction

The Full Combination multi-band approach to robust ASR was recently proposed [13]. This model,
based on HMM/ ANN hybrid systems, trains an ANN expert for all possible combinations of sub-
bands, thereby avoiding the otherwise necessary assumption of independence between sub-bands. Since
this model was introduced for posterior-based systems, it has been shown to perform better than both
the full-band hybrid system and the former sub-band recombination approaches, in both narrow- and
wide-band noise [9, 12].

As in other domains of ASR, likewise in multi-band ASR, Multi Gaussian Models [1, 6, 15] and
HMM/ANN hybrid systems [5, 11] are the most widely used statistical models. Both approaches have
their advantages and disadvantages, especially when applied to the multi-band paradigm. In favor of
the HMM/ANN hybrid, the ANN (or Multilayer Perceptron (MLP)) is able to capture discriminate,
dynamic features and reduces their dimensionality while preserving contextual information, whereas
MGDMs are trained using the maximum-likelihood criterion, which is not discriminate.

However, there are two important reasons why it is interesting to look at using MGM experts
in place of the MLP (Multi-Layer Perceptron) experts which are usually used in the multi-band
HMM/ANN hybrid. One reason is that to make the best use of full-combination multi-band processing,
a separate MLP expert must be trained for each sub-band combination, which renders this approach
almost infeasible if a higher number of sub-bands is chosen. For Multi Gaussian Models, on the other
hand, all MGM experts can be derived directly from a single full-band MGM, using marginalization
(missing data theory [4]). The other reason is that MGMs can be trained without the necessity of
labeled data, so permitting the use of larger unlabeled data sets. MGMs also permit hidden state
modeling and offer potential for likelihood based noise and speaker adaptation.
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Figure 1: Illustration of Full Combination with ANN or Multi-Gaussian (MGaussian) Classifiers for
two sub-bands.

The FC multi-band scheme has so far only been developed and tested using MLP experts. These
output posterior probabilities which are recombined and then passed on to the HMM decoder as
scaled likelihoods (cf. Section 2). In this paper we show how the FC approach can also be used with
MGM experts (cf. Section 3). The underlying theory for likelihood combination is derived directly from
the theory of posteriors combination, using Bayes’ Rule. Both approaches, with MGM or MLP experts,
use the same expert reliability weighting. It has been found that using equal weights already gives
improved performance over baseline systems, such as the full-band expert or simple recombination
schemes via sum or product of sub-bands. Experiments, incorporating equal weights, were carried out
on the Numbers95 database with different kinds of noise added. They will be discussed in Sections 5
and 6.

2 FC in posterior-based systems

In the Full Combination approach we suppose that at each instant one combination of sub-bands z;
(with j =1..2¢ combinations for d spectral sub-bands) is the largest combination which is free from
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noise, and thus carries the most useful data for identifying the current phoneme. Considering all 2¢
possible combinations of sub-bands (as illustrated in Figure 1 for the case of 2 sub-bands) and using
the fact that the events “ best; = combination x.; is largest clean combination” are exhaustive and
mutually exclusive, we can decompose the full-band posterior probability for each phoneme g into a
composition of weights w; and clean combination posteriors P(gx|z.;) as illustrated in (1). Providing
that the number of combinations is not too large, we can train an MLP expert on the clean data from
each combination z.; to output phoneme posteriors P(qi|z.;).

wj = P(best;|x)
P(q|r) ~ Zwa (gk|ze;) (1)

To avoid training of 2¢ ANNs the combination posteriors P(gx|z.,) can be approximated by only using
the P(qy|x;) issued from the observations z;, i € {1..d} of the d sub-bands. Supposing class-conditional
independence [8], we can thus approximate (1) by:

2d
P(qilr) =~ ijP(QHl“q) (2)
j=1
where  P(qilze;) = oy P'7191(gp) H P(qr|zi)
i€cj

a; chosen such that [], (qk|a:CJ) =1.

This approximation yields improved noise robustness to (artificial) band-limited noise but cannot
compete with the real FC system when used in more realistic, wide-band noise conditions [8]. For
the likelihood-based system, a corresponding approximation is also possible as will be pointed out in
the next section. An approximation for the likelihood-based system though is not as crucial as for
the posterior-based system as the 2¢ combinations could be gained from one single MGM by using
marginalization, i.e. no training of 22 MGMs would be necessary as it is the case (up to now) for
the posterior-based (MLP) experts. A way to also circumvent the extensive training for the posterior-
based system would be possible by substituting the MLP experts by a Gaussian Radial Basis Function
Network as pointed out in [14].

3 FC in likelihood-based systems

When using Multi Gaussian Models in multi-band ASR we receive at each time step from each sub-
band MGM a local stream likelihood for each phoneme. These local stream likelihoods have to be
recombined, just as it was the case with posterior probabilities, to acquire a common local likelihood.
These final likelihoods are then used by the HMM decoder to classify the current phoneme.

As is well known, posterior probabilities can be converted to likelihoods (and v.v.) by applying
Bayes’ Rule:

Plaslo) = P 70) ®

Utilizing (3) to convert (1) we obtain:

Pale) s~ plegla)
plx) Jz_; 7 plae,) )
K
with  p(ze;) = ) plee;law)plaw)

k'=1
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w; = P(best;|x) same as for posterior-based systems.

Though training of MGMs is usually faster than MLP training and the sub-band MGMs could be
derived directly from the full-band MGM as pointed out before, we could theoretically also approxi-
mate the (likelihood-based) FC approach in the same way as for the posterior-based FC system. As
before, the approximation assumes conditional independence:

p(zlar) z " [lice, P(wilax) -
p@) 12:; Yo ice, Pailar )p(ar) (5)

4 Databases and Systems Setup

Experiments were carried out on a test set of 200 utterances from the Numbers95 database [3] of
connected numbers recorded over the telephone line. For robustness tests, different kinds of noise were
added to the clean test set at various signal-to-noise ratios (SNR). We found rather divers behavior
of our posterior-based FC system to different noise conditions [13], and for the reasons outlined in
Section 1, we were interested in employing the same kind of noises for the likelihood-based FC system.
We thus chose artificial narrow-band noise in sub-bands 1 and 2 as well as real-environmental wide-
band noises. These included factory noise from the Noisex92 database [16] and an in-house database
of car noise from Daimler Chrysler.

The multi-band systems were set up as follows. The frequency domain was split into 4 sub-bands,
covering the ranges of [115-629 Hz], [565-1370 Hz], [1262-2292 Hz| and [2122-3769 Hz]. J-rasta fea-
tures [10] were extracted from each of the sub-bands as well as from each of the combinations, resulting
in a set of 15 feature stream vectors! (The stream belonging to combination 0 which does not have
any features was neglected). The number of parameters (i.e. LP analysis order and coefficients count)
for each stream was increased proportional to the size of the stream in such a way that the number of
parameters in a combination corresponds to the sum of the parameters from each of its constituents.
Each feature vector was then used to train the Multi Gaussian Model for the respective stream, after
having been augmented by all delta and delta-delta components. The Multi Gaussian Models were 78
3-state triphone models with 64 Gaussian mixtures per triphone, using diagonal covariance matrices.
Training was carried out on clean data only.

Wide Band Noise Clean
Car Factor
12dB|0dB |12 dB | OydB 45 dB
Full-band 14.2 | 37.1| 134 | 36.4| 85
simple sum 225 | 56.2 | 239 | 614 | 12,5
simple product | 20.1 | 55.9 | 19.2 | 57.5 | 11.8
FC-sum 16.0 | 49.9 | 16.5 | 52.0 | 10.6
FC-product 11.0 | 39.0 | 11.8 | 41.9| 8.1

Table 1: Word error rates (WER) for clean speech and for speech corrupted with band-limited noise
in sub-bands 1 and 2 for the Full Combination system using MGM experts according to (4).

Besides the FC sum in (4), another approach for combining expert outcomes which has proven to be
very efficient is combination by multiplication (the so-called “product rule”) [2, 7]. While the product
rule implies the assumption of independence between the probabilities from different experts, which
is clearly not the case for FC experts, so the “sum rule” for probabilities assumes mutual exclusivity

IThe feature stream comprising all 4 sub-bands and with that the full frequency domain constitutes the input to our
(full-band) baseline system.
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— which is apparently not always the case. Experimental results have demonstrated that this method
can be a very effective way to combine multiple classifiers.

5 Experimental Results

The results for the experiments on wide-band car and factory noise can be seen in Table 1 (as well
as Figure 2 for factory noise). The FC approach for both the sum (FC-sum) and product rule (FC-
product) did significantly improve performance as compared to the original methods [2, 11] of combin-
ing the outputs from only the d experts by a simple sum or product. When comparing to the baseline
full-band system in line 1, on the other hand, none of the proposed sub-band methods showed any
significantly increased noise robustness. On clean speech, only the FC-product method was able to
compete with the baseline system.

Factory Noise

SNR

Figure 2: Comparison of WERs for the baseline full-band system, the simple sum and product rules
as well as the FC-sum and FC-product systems for speech with factory noise.

Narrow Band Noise
Band 1 Band 2
12dB | 0dB | 12dB | 0dB
Full-band 164 | 31.1 17.9 | 429
simple sum 15.8 32.5 26.8 52.5
simple product | 15.8 | 31.6 | 26.8 | 47.8
FC-sum 14.0 | 309 | 20.1 | 43.8
FC-product 10.6 24.6 15.5 33.4

Table 2: Word error rates (WER) for speech corrupted with artificial narrow-band noise in sub-bands
1 and 2 for the baseline full-band system, the simple sum and product rules as well as the FC-sum
and FC-product systems.

As with the posterior-based FC system, the likelihood-based FC system showed its main advantage
on band-limited noise (cf. Table 2). Whereas the simple product and sum rules deteriorate also on
band-limited noise, as compared to the baseline full-band system, the FC-product rule resulted in
significantly improved noise robustness on this kind of noise.
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6 Conclusion

Results presented show that the Full Combination multi-band system with MGM experts performs
better, in all noise conditions tested, than both the simple sum and product rules. The same result has
also been found for the posterior-based FC system. When compared to the baseline full-band system,
on the other hand, the likelihood-based FC approach (using equal weights) was only competitive
on clean speech and high SNR conditions and only when using the product rule. The multi-band
experiments conducted in this article used equal weights only. Although these were often found to
work well, especially for band-limited noise, performance improvements are still possible when more
appropriate weighting strategies are used. Different weighting schemes as employed for the posterior-
based approach in [9], will be investigated also for the likelihood-based FC approach in the future.
As pointed out in the introduction, all MGM experts could directly be derived from a single full-
band MGM by using marginalization. We plan to investigate this approach in order to compare its
performance to the FC approach where all 2¢ experts were explicitly trained as done in this article.
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