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Auto-Association by Multilayer Perceptrons and
Singular Value Decomposition

Hervé Bourlard

Jury 2000

Abstract. This report is an electronic reprint (with minor extensions and adaptations) of a pa-
per entitled “Auto-Association by Multilayer Perceptrons and Singular Value Decomposition”, by
H. Bourlard and Y. Kamp, and initially published in Biological Cybernectics, vol. 59, pp. 291-294,
in 1988. Given regular reprint requests received by the authors, and the fact that the journal is
not easily accessible, it was decided to make this electronic version available on the web.

The multilayer perceptron (MLP), when working in auto-association mode, is sometimes con-
sidered as an interesting candidate to perform data compression or dimensionality reduction of
the feature space in information processing applications. The present paper shows that, for auto-
association, the nonlinearities of the hidden units are useless and that the optimal parameter values
can be deriwved directly by purely linear techniques relying on singular value decomposition and low
rank matriz approrimation, similar in spirit to the well-known Karhunen-Loéve transform. This
approach appears thus as an efficient alternative to the error back-propagation algorithm commonly
used for training multilayer perceptrons. Moreover, it gives a clear interpretation of the role of
the different parameters.
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1 Introduction

When used for speech recognition applications (or other classification problems), the emphasis is often
put on the use of MLPs as discriminant pattern classifiers. Although pattern classification plays a
crucial role, it is only part of the vast speech recognition task. In spite of the spectacular progress
made over the last decade, unrestricted speech recognition is still out of reach, and it is suspected
that part of the difficulty lies in the use of inappropriate features for recognizing speech. A priori
phonetic knowledge seems of little practical use in this respect. The elementary sounds composing
speech can indeed be described by place and manner of articulation for instance, but it seems difficult
to translate this knowledge to a precise characterization at the signal level. On the other hand, one
can consider that the hidden units of an MLP develop an internal representation of the input signal
which is the most appropriate for the classification task. From this point of view, the MLP performs
some type of feature extraction which is given by the activity levels of the hidden units. This view of
an MLP as a trainable feature extractor for speech processing was described in [1], was systematically
investigated in[2], and was more generally the original perspective in some of the work of Rosenblatt
and his students.

In most MLP architectures used for feature extraction, the number of units on the hidden layer is
smaller than on the input layer. Consequently, the hidden layer acts as a narrow-band channel and
thus performs some form of dimensionality reduction. Again, if the learning procedure of the MLP
is successful, one could expect that this reduction extracts the most salient features in the signal. In
view of this observation, the MLP can be considered as an attractive alternative for efficient speech
coding and image compression as examined in [2] and [3].

Feature extraction and dimensionality reduction can be learned in many ways but the most efficient
one is to use teaching signals which are identical to the input since this avoids explicit segmentation
and labeling of the signal and thus allows unsupervised training of the MLP. For this particular mode
of operation, known as auto-association or identity mapping, the output layer generally does not
contain any nonlinear function (at least for real valued inputs) since the output target is identical to
the input pattern.

Of course, there are other techniques by which data compression and feature extraction can be
achieved. Most important among these is the Karhunen-Loéve or principal components transform,
which is a purely linear method, in contrast with the nonlinear operation mode of the MLP, due to
the sigmoidal function at the hidden units. In spite of this opposition, it was already anticipated in [3]
that the auto-associative MLP should somehow be related to more classical techniques, the more so
that a linear version of it produced results which were compatible with the nonlinear version. At this
point, however, the exact nature of this relationship was not fully understood.

The purpose of this paper is to show on a rigorous basis that an auto-associative MLP with linear
output units is nothing but an indirect way of performing data compression by a Karhunen-Loeve
transform (at best). More precisely, it will be shown that the optimal weight values can be derived by
standard linear algebra, consisting in singular value decomposition (SVD) thus making the nonlinear
functions at the hidden layer unnecessary. The advantages are obvious: the solution is obtained
explicitly in terms of the training data, whereas the EBP algorithm generally used for training MLPs
proceeds iteratively and may well miss the optimum solution since it relies on a gradient technique
and can get trapped in local minima. The analysis presented below offers the additional benefit that
the optimal parameters are given a meaningful interpretation in terms of reconstruction of the average
value and covariance of the input patterns.



Figure 1: MLP with one hidden layer for auto-association.

2 MLP and Auto-Association

Consider an MLP with a single hidden layer as represented in Figure 1 where p is the number of hidden
units. When using this type of network to achieve dimensionality reduction by auto-association, it
is desired that the input units communicate their values to the output units through a hidden layer
acting as a limited capacity bottleneck which must optimally encode the input vectors. Thus, for this
particular application, n; = ng = n and p < n. When entering an n-dimensional real input vector xy
(k=1,2,...,N), the output values of the hidden units form a p-vector given by

hk:F(Wll’k-l-wl), k=12,...,N (].)

where W, is the (input-to-hidden) p x n weight matrix, w; is a p-vector of biases and the nonlinear
(typically sigmoid) function F'is operated component wise. For most applications of MLPs, e.g., for
classification, the values in the output layer are obtained in a similar way. However, in the case of auto-
association, the output values should approximate the inputs as closely as possible. Consequently, in
the case of real valued inputs, the non-linearity at the output must be removed and the output values

form an n-vector given by
Y = Wa h + w2 (k=1,2,...,N) (2)

where W5 is the (hidden-to-output) n x p weight matrix and ws is an n-vector of biases. The problem
is to find optimal weight matrices Wy, W and bias vectors w;, ws minimizing the mean-square error
E = Eszl Il zx — yx ||?, which corresponds to the standard optimization criterion used for MLP
training.

Let X = [#1,%2,...,2N] be the n x N real matrix formed by the N input vectors of the training
set and let H = [hy,hs,...,hn] and Y = [y1,y2,...,yn] be the p x N and n x N matrices formed
by the corresponding vectors of the hidden and output units respectively. Given (1) and (2), the
output matrix Y of the auto-associative MLP is obtained from the input matrix X as the result of
the following sequence of operations illustrated by Figure 2:

B:W1X+U71UT (3)

H=F(B), (4)



Figure 2: Sequence of operations in the auto-associative MLP.

Y:W2H+’LU2UT (5)

where B is a p X N real matrix and u is an N-vector of ones. With this notation, the squared error
norm E can be rewritten as

E=[|X-Y|? (6)

where || - || now denotes the Euclidean matrix-norm (or Frobenius norm). The training problem is to
minimize F with respect to the parameter set Wy, Ws, wy, ws.

3 Explicit and Optimal Solution

Using (5) the squared error norm can be rewritten as
E=|| X - WoH —wou® || (7)
and, in view of || A |2 = tr(AAT), one easily verifies that minimization of E with respect to ws yields
By = ~ (X — W H)u (8)
N
Substituting (8) in (7) one obtains for the squared error norm:
E =|| X' — WyH'" |]? (9)

where X' = X(I —uu”/N) and H' = H(I —uu® /N). In view of the fact that W5 normally has rank
p < n, expression (9) shows that the product Wo H' minimizing E is the best rank p approximation
of X' in Euclidean norm. This is a standard problem and can be solved as follows. Consider the SVD
of X' [4, 5, 6]:

X' =U,2,VrI (10)

where U, (V;,) is an n x n (N x n) matrix formed by the normalized eigenvectors of X'X'T (X'TX")
associated with the eigenvalues A\; > A2 > --- > A\, and where ¥, = diag[oy,03,...,0,] is a diagonal
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matrix with o; = /\;. For simplicity we will assume that X has full row rank (¢, > 0). It is
known [4, 6] that the best rank p approximation of X' is given by

WoH' = U, %, VT (11)

with ¥, = diag [01,09,...,0,] and where U,(V},) is formed by the first p columns in U, (V},). Conse-
quently

W,=U,T ", H=T%,V}l (12)

where 7T is an arbitrary non-singular p X p matrix which will subsequently play an important role as
a scaling matrix.

Let us pause here to comment on the results derived so far and to point out a few interesting properties
of the optimally trained auto-associative MLP.

Let px denote the average of the training input vectors xi,zs,...,xyN ie., ux = % Xu and let
similarly py = & Y u be the average of the MLP output vectors. Taking (5) and (8) into account, it
follows that the optimal bias vector - insures

Hy = px (13)

or, in other words, that the average input and output vectors are equal. Observe also that, in the very
special case where all training vectors are identical, i.e., X = px uT, this vector is exactly reproduced
at the output (Y = py uT) since then X’ = 0 and hence WjH' = 0 by (11).

If ug = % Hu denotes the average of the vectors at the output of the hidden units, then the definitions
of X' and H' can be rewritten as X’ = X —puxu” and H' = H—pgu” which means that they represent
respectively the input and hidden unit vectors after subtraction of their average value. Consequently,
the computational effect of the bias vector ws is thus to reduce the training problem (9) to zero-average
patterns.

Finally, one can show that the covariance of the output vectors {yi, y2,...,yn} is the best rank p
approximation of the covariance of the input vectors {x, 2,...,2n5} and, in this sense, the auto-
associative MLP is nothing but an indirect way of performing data compression by a Karhunen-Loeve
transform on zero-average data [8]. Indeed, owing to (10),

Cx =X'XT=vU,¥2U" (14)
On the other hand, the output covariance matrix defined as
Cy = (Y —pyul)(Y" —upy)
can, in view of (13), (5), (11) and orthogonality properties, be rewritten as

Cy =U,x2UuT (15)

p~=p~p

and comparison of (15) with (14) terminates the proof.

It is a remarkable fact that the optimal expressions in (8) and (12), as well as the preceding properties,
have been obtained completely independently of the way in which H’ is produced by the MLP and,
more specifically, independently of the particular nonlinear function used at the output of the hidden
units. In the following section, we will first consider the case where this nonlinear function is absent
which implies H = B. Next, we will show that this optimal situation can be approximated as closely
as required even when a sigmoidal function is present at the output of the hidden units, as is usually
the case in an MLP.
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4 Linear Hidden Units

Since B = H, we have to prove that H' as prescribed by (12) can be generated in accordance with
equation (3) by an appropriate choice of W; and w;. Multiplying both sides of (3) by (I — uu®/N)
we have thus to solve the following equation for W and w;

T,V =X +wu’ (I—-uw’/N) (16)

In view of uTu = N, the second term on the right-hand side vanishes, showing that w, is arbitrary.
Next, taking (10) into account, the left-hand side can be rewritten as T Ul X' and (16) then becomes
TUpTX’ = W1 X', so that

Wy =TUT (17)
Finally, to find the optimal value of the bias vector ws, it is sufficient to eliminate H = B from (8),
via equation (3) and to incorporate results (12) and (17). One finds

Wy = (I = U UL ) px — UpT (18)

Thus, for arbitrary w, vector @, should be adjusted according to (18) which, as observed before,
insures px = py. In summary, after SVD of X', equations (12), (17) and (18) give the optimal
solutions for Wy, W5, w; and wsy of the “linear” MLP.

5 Nonlinear Hidden Units

Now consider the case where a nonlinear function F' is present at the output of the hidden units. We
will not need strong assumptions about the particular form of this function except that, for small
values of its argument, it can be approximated as closely as desired by the linear part of its power
series expansion, i.e.,

F(z) ~ag+ajz  for z small (19)

with nonzero ay. For the asymmetric sigmoid, F(z) = 1/(1+e~7%), this gives ag = 1/2 and a; = 1/4;
whereas for the symmetrical sigmoid, F'(z) = (1 —e *)/(1+e %), one has ap =0, oy = 1/2.

We will now show that, within minor modifications, the optimal values obtained in the previous
sections still produce the expression for H' required by (12). If we take

W, =o' TUY (20)
we obtain by (3),
B=o'TU X +wu” (21)

Obviously, if we want to use approximation (19), then B should be made small by acting on w; and
on the arbitrary scaling matrix 7. This leaves still some freedom on @; which could e.g., be chosen
equal to zero. Another interesting possibility is to force up = % Bu, the average vector of matrix B
defined in (3), to be zero by selecting

W = —aflTUg nx (22)

In both cases, || T' || should be sufficiently small but nonsingular. With @; as given in (22), one finally
obtains R
B=o,'TU X'=a;'TE, V) (23)

and equation (4) yields H = apuu” + oy B, leading to

~

H=aouu" +TE, V] (24)
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Since H' has been defined by H' = H(I — uu/N), this gives, as desired, H' = TS, VI As for the
optimal bias ws, it can easily be computed from (8), (12) and (24) as

Wy = px —aoU, T " u (25)

Thus, in the case of a sigmoidal function at the hidden units, the optimal parameters of the MLP are
given via the SVD of X' by expressions (12), (20), (22) and (25).

It is not difficult to see that essentially the same approach can be used in the case of multiple hidden
layers. The key operation remains the SVD of X’ and its rank p approximation where p is now given
by the last hidden layer. The freedom in the choice of the weight matrices and bias vectors becomes
then even wider.

Finally, when the units on the output layer contain nonlinear functions, then of course, the approach
presented above breaks down. However, even in this case, some interesting results can still be derived
by analytical ways and are shown to be closely connected with low rank realizations of prescribed sign
matrices [7].

6 Experiments and Discussions

A simple training database was composed of 60 vectors in R16 (hence X is a 16 x 60 real matrix).
These were cepstral vectors obtained from 10-ms frames of speech signal and corresponded to the
mean vectors associated with the states of phonemic hidden Markov models [9]. In order to confirm
the theoretical results, we determined by the SVD of X’ and equations (12), (20), (22) and (25), the
optimal weight matrices Wy, W5 and biases wy, we for a rank 5 approximation (corresponding to 5
hidden units) and used these values as initialization of the EBP training algorithm. In that case, the
EBP was unable to improve the parameters by reducing the mean square error (6). Moreover, when
starting the EBP training algorithm several times with random weights, it always got stuck in local
minima, giving higher error values. This illustrated that the linear approach was preferable.

One could object that the MLP and the associated EBP algorithm allow on-line learning, which is
an important advantage when the number of training patterns becomes large. However, the SVD
algorithm also has a sequential version [10], so this argument does not apply. Similarly, while the
MLP can be implemented on fast parallel hardware, similar mappings can be made for SVD. Perhaps
the only hardware-oriented argument that may favor the MLP approach is that MLP training can be
done with lower precision (e.g., 16 bits for weights and 8 bits for activation), while SVD requires more
precision (typically 32-64 bit floating point is used).

It is also important to remember that the theoretical developments presented in this paper are only
valid for the auto-associative MLP with linear outputs and linear or nonlinear hidden units, where
the number of hidden units is smaller than the number of input (and output) units. In the case
where the (bottleneck) hidden layer with p < n hidden units is preceded and followed by at least one
additional hidden layer with g > n units, this network will perform a nonlinear expansion of the input
space before doing SVD in that expanded space. In this case, an explicit solution by linear algebra
is no longer possible. However, this kind of nonlinear preprocessing has been shown to lead to better
classification performance on some speech recognition problems [11].

Some parts of the theory developed in this paper can also be used to improve our understanding of
hetero-associative MLPs used for classification and their relationships with discriminant analysis (see,
e.g., [12]). However, this will never enable us to find the optimal solution for all the weights of an
MLP (as done here for auto-association) except in some very particular cases where all the hidden
and output units have a linear transfer function. In this case, of course, more strict mathematical
treatments about the absence of local minima, the presence of saddle points, learning properties and
relationships with principal component analysis is possible (see, e.g., [13, 14]).
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7 Conclusion

We have investigated here the possibility to use MLP for feature extraction, related to the front-end
processing of a speech recognizer. In this case, MLPs working in “auto-association” mode are usually
used to extract relevant features from rough data. Such a network was studied here and it was shown
that EBP can be avoided by analytically determining the optimal parameters of the network. It
was proved that the optimal solution of the MLP was strictly equivalent to the standard singular
value decomposition (SVD) approach and that, in this case, the nonlinearity in the hidden units is
theoretically of no help. It was shown that the network actually projects the input onto the subspace
spanned by the first p principal components of the input, where p is the number of hidden units.

Although this conclusion sounds a bit pessimistic, this approach has some merits: while allowing a
better understanding of neural network processing and its relationships with standard signal processing
techniques, it also provides us with an efficient parallel implementation of the SVD algorithm which
can be integrated easily in a general neural network framework. Such a framework, as noted earlier,
can be based on low or moderate precision hardware.
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