
AUTOMATIC SPEECH RECOGNITION USING DYNAMICBAYESIAN NETWORKS WITH BOTH ACOUSTIC ANDARTICULATORY VARIABLESTodd A. Stephenson1;2 Herv�e Bourlard1;2 Samy Bengio1 Andrew C. Morris11Dalle Molle Institute for Pereptual Arti�ial Intelligene (IDIAP), Martigny, Switzerland2Swiss Federal Institute of Tehnology at Lausanne (EPFL), Lausanne, SwitzerlandABSTRACTCurrent tehnology for automati speeh reognition(ASR) uses hidden Markov models (HMMs) that reognizespoken speeh using the aousti signal. However, no useis made of the auses of the aousti signal: the artiula-tors. We present here a dynami Bayesian network (DBN)model that utilizes an additional variable for representingthe state of the artiulators. A partiular strength of thesystem is that, while it uses measured artiulatory dataduring its training, it does not need to know these valuesduring reognition. As Bayesian networks are not usedoften in the speeh ommunity, we give an introdutionto them. After desribing how they an be used in ASR,we present a system to do isolated word reognition usingartiulatory information. Reognition results are given,showing that a system with both aoustis and inferredartiulatory positions performs better than a system withonly aoustis.1. INTRODUCTIONIn state-of-the-art automati speeh reognition (ASR),hidden Markov models (HMMs) utilize two random vari-ables xt and qt, the aoustis and the hidden state, respe-tively. The likelihood of the aousti sequene given themodel is then alulated from the emission probabilitiesand the transition probabilities, respetively:P (xtjqt) (1)P (qtjqt�1): (2)The inlusion of a third random variable, at, to representthe artiulatory information was shown to be bene�ialin speaker-dependent ASR (Zlokarnik, 1995). That workreplaed the emission probability in (1) withP (xt; atjqt): (3)In one of his tests, the atual artiulator values were re-plaed with estimated values that a multi-layer perep-tron (MLP) provided based on the aoustis. This systemperformed better than an aoustis only system.The present paper investigates the use of dynamiBayesian networks (DBNs) for inorporating artiulatorydata with aousti data in ASR, building upon the ground-work done in Zweig and Russell (1998); Zweig (1998). Sofar, DBNs have not been used extensively in speeh reog-nition. The �nal hapter of Zweig (1998) outlines as afuture researh area the inorporation of artiulatory in-formation into DBNs. Our urrent work is taking thispath. DBNs are well suited for handling artiulatory in-formation beause

1. they model the ausal relationships among the vari-ables, and2. they an readily handle missing data.First, in standard ASR, the one ausal relationship thatis modeled is that of phoneti state!aoustis, as givenin (1); that is, the part of the phone that the speakerwants to say auses ertain aoustis. A DBN an expandthis relationship to also model the more realisti ausalrelationship of artiulators!aoustis:P (xtjat; qt); (4)it an also model the dependeny of the artiulator on thephoneti state and on the previous artiulator:P (atjat�1; qt): (5)Seond, while this artiulatory data will be available dur-ing the training of the DBN, it will not realistially beavailable in a prodution setting. Nevertheless, DBNs anreadily handle missing data so that during reognition theDBN is able to infer the distribution of the missing arti-ulatory positions, given the observed aoustis.2. BAYESIAN NETWORKSA Bayesian network (Pearl, 1988) (see Figure 1) is om-posed of the following three items:� the variables X that are being modeled,� a direted ayli graph (DAG) where there is aone-to-one mapping between the verties in the graphand the variables,� a onditional, prior probability distribution foreah variable Xi, as given in (6) below.Eah variable has a probability distribution onditionedon the variables who have edges pointing to it (i.e., itsparents), as illustrated in Figure 1. In other words, a vari-able's probability distribution isP (Xijparents(Xi)): (6)Note that the edges themselves do not arry any probabil-ity distributions. The joint probability of all the variablesX is then assumed to be the produt of all the (loal)probability distributions within the variables:P (X) =Y8Xi P (Xijparents(Xi)): (7)
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Figure 1: A Bayesian network (representing one time-frame) for ASR. Possible probabilities for the given valuesare provided. This is for the simpli�ed ase of phonemereognition.A set of observations O may be assigned to a subset ofthe variables in the Bayesian network. The variables thatare left unobserved have an unertainty assoiated withthem as to what their values are. Eah does have its priorprobability distribution, as given in (6), but needs to haveits posterior probability distribution inferred:P (Xijparents(Xi);O) (8)The juntion tree algorithm (Peot and Shahter, 1991) isan algorithm that an be used to infer these posterior prob-ability distributions. A version of it, tailored to the needsof ASR, an be found in detail in Zweig (1998). The jun-tion tree algorithm is similar to the Baum-Welh algorithmused in HMMs (Rabiner and Juang, 1993) in that it workswith variables � and �, whih are analogous to the � and� variables, respetively, used in HMMs:�ij = P (O�i ;O0i jXi = j) (9)�ij = P (O+i ; Xi = j); (10)where O�i are the observations below Xi in the juntiontree, O0i is any observation for Xi itself, and O+i are allthe remaining observations.Equations (9) and (10) an then be used to ompute thelikelihood of the model as well as the marginal posteriorprobability for eah variable, given the observations:8i; P (O) =Xj �ij �ij (11)8i; P (XijO) = �ij �ijPj �ij �ij (12)Dynami Bayesian networks (Dean and Kanazawa,1988) (DBNs, see Figure 2) are an extension of Bayesiannetworks for modeling dynami proesses, in this ase aproess over time. A regular Bayesian network is repli-ated for eah time slie. Edges are then added betweendesired variables in neighboring time slies. When thenode for a variable takes in a onnetion from a previoustime frame, it then has to expand the number of variablesin its onditional probability distribution by one to a-ommodate the possible values for the variable from theprevious time frame.
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Figure 2: A dynami Bayesian network (representingthree time-frames), using the Bayesian network in Figure 1as its base. For eah suessive time frame, a possiblevalue for the phoneti state variable qt is given as well as apossible value for the aousti emission, xt. Possible prob-abilities for the given values are also provided. This alsois for the simpli�ed ase of phoneme reognition.3. ISOLATED WORDRECOGNITION WITH DBNS3.1. Aoustis-based reognitionBayesian networks are most easily used in problemswhere eah variable is disrete. For ASR, this meansthat the speeh signal needs to be quantized. This alsomeans that instead of Gaussian distributions being usedfor alulating the emission probabilities, disrete proba-bility tables are used. The DBN in Figure 2 is for doingsimple phoneme reognition. A DBN for doing isolatedword reognition is illustrated in Figure 3 (further exten-sions for DBNs, whih are not urrently addressed in thiswork, suh as language modeling, noise modeling, speak-ing rate modeling, et. an be found in Zweig (1998));it uses the following deterministi and stohasti variablesfor aoustis-based reognition (for explanation of the Ar-tiulator variable, see Setion 3.2):� Deterministi{ Position refers to the urrent position in the wordmodel. It takes values 1; : : : ; N , where N is themaximum length of a word model.{ Phone refers to whih phone is assoiated withthe urrent Position.� Stohasti{ Transition refers to whether a transition is beingtaken out of this phone. It has only two possiblevalues: true or false.{ Aoustis refers to the speeh signal. In the aseof multiple aousti streams, it an be repliatedfor eah stream for eah time frame. The numberof values it takes is the size of the odebook forthe stream.The inreased omplexity of Figure 3 over Figure 2 en-fores whih phones ome in whih order in the model(whih is the responsibility of the Position and Phonedeterministi variables).The topology of the DBN di�ers signi�antly from thatof HMMs. In HMMs, the transition probabilities areenoded by the edges between the state variables; in
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Figure 3: Based on Zweig (1998), a dynami Bayesian network for isolated word reognition, overing four time steps.This DBNmodels the word \at", pronouned using three phonemes: /k/-/�/-/t/. This is for the aoustis/artiulatory-based reognition; aoustis-based reognition uses the same model but with the Artiulator variable and its dashededges removed. The blak verties (the Aoustis and the �nal Position and Transition variables) are alwaysobserved. The grey verties (the artiulators) are observed in training (when available) but not in normal reognition.DBNs the transition probabilities are enoded within theTransition variable. Furthermore, the legal sequene ofphones in an HMM is enoded by onatenating the dif-ferent phone models. In DBNs, the legal sequene ofphones is determined by using the Position and Phonevariables; that is, the Phone variable will determin-istially indiate whih phone an our at eah posi-tion in the word model (e.g., for Figure 3, P (Phone =KjPosition = 1) = 1, P (Phone = �jPosition = 2) = 1,P (Phone = TjPosition = 3) = 1, with all other values ofP (PhonejPosition) equal to 0).3.2. Aoustis/Artiulatory-basedreognitionIn Figure 3, theAoustis variable models the emissionprobability using (1) (if the Artiulator variable and itsdashed edges are ignored). This is interpreted as sayingthat the Phone that is being pronouned auses ertainaoustis. A more plausible model would inorporate thediret auses of the aoustis, i.e., the artiulators, giv-ing (4). The dependeny of at on both at�1 and qt isgiven by (5). This is represented graphially by the DBNin Figure 3 when the artiulator variable and dashed on-netions are utilized.The exat same algorithms are used for training of andreognition with the aoustis/artiulatory DBN as whenusing an aoustis only DBN. This is beause the DBNalgorithms are independent of the topology of the DBN.These algorithms an also be used if part of the datais missing. This is vitally important during reognition.While it is reasonable to have observed artiulatory infor-mation available during the training phase, artiulatoryobservations generally will not be available during reog-nition. The DBN an readily handle missing data beauseduring reognition it is able to infer the distribution of themissing artiulatory positions, given the observed aous-tis. 4. EXPERIMENTSUsing the University of Wisonsin X-ray MirobeamSpeeh Prodution database (Westbury et al., 1994), wedid experiments on speaker-independent, task-dependent,isolated word reognition. The speeh is reorded at

21739 Hz with a reording of seleted artiulator positions(lower lip, upper lip, four tongue positions, lower fronttooth, and lower bak tooth) at approximately 146 Hz(6.866 ms between samples). Of the 48 speakers in thedatabase, eight were randomly seleted to be in the testset; of the remaining 40 speakers, eight were randomly se-leted to be in the validation set with the remaining 32speakers omprising the training set. All three lists wereonstruted as to be gender-balaned. There are di�erenttasks that the speakers were asked to do. For this work,we hose to use the \Citation Words" tasks, where thespeaker reads a list of single words, separated by pauses.Using a segmentation produed by a fored alignment atIDIAP with an HTK system (Young et al., 1999), the set ofwords for eah Citation Words task were ut into individ-ual �les with some surrounding silene. The lexion sizewas 106 words; some of the words were repeated multipletimes by the same speaker, giving an average, aross all ofthe data, of about 260 utteranes per speaker. Thirty-ninemonophones were used in addition to beginning and end-ing silene. Three states were used for eah monophoneand silene being modeled.Twelve mel-frequeny epstral oeÆients (MFCCs)plus C0, the energy oeÆient, were extrated per windowfrom the speeh, using a Hamming window of 20.598 mswith suessive windows shifted by 6.866 ms. This shiftrate was hosen so as to have one artiulatory observationper window. There were 26 �lterbanks with a preemphasisoeÆient of 0.97. Energy normalization as well as ep-stral mean subtration were performed. The delta (i.e.,�rst derivative) oeÆients for all 13 MFCC oeÆientswere used as well.The epstral oeÆients are then quantized using K-means lustering. Four odebooks are generated from thetraining data: a 256 value odebook for the 12 MFCCoeÆients, a 256 value odebook for the 12 MFCC deltaoeÆients, a 16 value odebook for the C0 oeÆient, anda 16 value odebook for the C0 delta oeÆient. The C0and the C0 delta values are onatenated bitwise in theDBN to give a single 256 value variable.Likewise, the artiulatory values are also quantized, us-ing K-means lustering. The measurements of the eightartiulators are used for the odebook. Oasionally (22%of the frames, aross all of the data), an artiulator valuewas not reorded for some time slies; in these ases, the



WER # Param.Aoustis Only (baseline) 9.8% 314882 Disrete Artiulatory Values 8.5% 629764 Disrete Artiulatory Values 7.7% 1266908 Disrete Artiulatory Values 8.4% 257070Table 1: Reognition results, given as Word Error Rate(WER), for models trained on the training set, with reog-nition performed on the validation set. The number of freeparameters is given in the �nal olumn. WERAoustis Only (baseline) 8.6%4 Disrete Artiulatory Values 7.8%Table 2: Reognition results, given as Word Error Rate(WER), for models trained on both the training set and thevalidation test with reognition performed on the test set.Only the best aoustis/artiulatory system from Table 1was used.whole vetor was thrown out and not used in any partof the experiments. One odebook was generated to rep-resent all eight artiulator positions. Various values forthe size of the odebook are presented in this paper: two,four, and eight. The baseline DBN system did not usean artiulatory variable; with suh a on�guration, it wastheoretially equivalent to a standard ASR HMM.We used an in-house DBN program for training andtesting the models. This program has previously beentested against the performane given by an standard dis-rete HMM implemented using HTK, and the reogni-tion performane between the two, aoustis-only sys-tems were omparable on a large referene database(Phonebook). All models were trained using expetation-maximization (EM) training; after the log likelihood in-reased by less then 1% from the previous iteration, onemore maximization step was done before termination.Dirihlet priors of 0.1 were used on all probabilities toprevent any from beoming 0. Exept where noted, reog-nition was then performed using only the aoustis fromthe validation set (the artiulators were ignored and thustreated as hidden). Results are given in Table 1 for a sys-tem trained on the training set with reognition on thevalidation set. As an be seen, the word error rate is im-proved when artiulatory information is added.Using the optimal number of disrete artiulatory valueson the validation set given in Table 1, we then started theexperiments over using only the baseline system (aous-tis only) and the best aoustis/artiulatory system (withfour artiulatory values). However, this time all odebookgeneration and DBN training were done on the ombina-tion of the training set and the validation set. Reognitionwas then done on the test set. The results are given in Ta-ble 2. The results of these reognition tests are the trueestimates of the two systems' performanes on new dataas the test set was not used previously to selet any pa-rameters for either system. WER4 Disrete Artiulatory Values 7.6%Table 3: Using observed artiulator values, reognitionresults, given as Word Error Rate (WER), for modelstrained on both the training set and the validation testwith reognition performed on the test set. Only the bestaoustis/artiulatory system from Table 1 was used.
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