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hnology at Lausanne (EPFL), Lausanne, SwitzerlandABSTRACTCurrent te
hnology for automati
 spee
h re
ognition(ASR) uses hidden Markov models (HMMs) that re
ognizespoken spee
h using the a
ousti
 signal. However, no useis made of the 
auses of the a
ousti
 signal: the arti
ula-tors. We present here a dynami
 Bayesian network (DBN)model that utilizes an additional variable for representingthe state of the arti
ulators. A parti
ular strength of thesystem is that, while it uses measured arti
ulatory dataduring its training, it does not need to know these valuesduring re
ognition. As Bayesian networks are not usedoften in the spee
h 
ommunity, we give an introdu
tionto them. After des
ribing how they 
an be used in ASR,we present a system to do isolated word re
ognition usingarti
ulatory information. Re
ognition results are given,showing that a system with both a
ousti
s and inferredarti
ulatory positions performs better than a system withonly a
ousti
s.1. INTRODUCTIONIn state-of-the-art automati
 spee
h re
ognition (ASR),hidden Markov models (HMMs) utilize two random vari-ables xt and qt, the a
ousti
s and the hidden state, respe
-tively. The likelihood of the a
ousti
 sequen
e given themodel is then 
al
ulated from the emission probabilitiesand the transition probabilities, respe
tively:P (xtjqt) (1)P (qtjqt�1): (2)The in
lusion of a third random variable, at, to representthe arti
ulatory information was shown to be bene�
ialin speaker-dependent ASR (Zlokarnik, 1995). That workrepla
ed the emission probability in (1) withP (xt; atjqt): (3)In one of his tests, the a
tual arti
ulator values were re-pla
ed with estimated values that a multi-layer per
ep-tron (MLP) provided based on the a
ousti
s. This systemperformed better than an a
ousti
s only system.The present paper investigates the use of dynami
Bayesian networks (DBNs) for in
orporating arti
ulatorydata with a
ousti
 data in ASR, building upon the ground-work done in Zweig and Russell (1998); Zweig (1998). Sofar, DBNs have not been used extensively in spee
h re
og-nition. The �nal 
hapter of Zweig (1998) outlines as afuture resear
h area the in
orporation of arti
ulatory in-formation into DBNs. Our 
urrent work is taking thispath. DBNs are well suited for handling arti
ulatory in-formation be
ause

1. they model the 
ausal relationships among the vari-ables, and2. they 
an readily handle missing data.First, in standard ASR, the one 
ausal relationship thatis modeled is that of phoneti
 state!a
ousti
s, as givenin (1); that is, the part of the phone that the speakerwants to say 
auses 
ertain a
ousti
s. A DBN 
an expandthis relationship to also model the more realisti
 
ausalrelationship of arti
ulators!a
ousti
s:P (xtjat; qt); (4)it 
an also model the dependen
y of the arti
ulator on thephoneti
 state and on the previous arti
ulator:P (atjat�1; qt): (5)Se
ond, while this arti
ulatory data will be available dur-ing the training of the DBN, it will not realisti
ally beavailable in a produ
tion setting. Nevertheless, DBNs 
anreadily handle missing data so that during re
ognition theDBN is able to infer the distribution of the missing arti
-ulatory positions, given the observed a
ousti
s.2. BAYESIAN NETWORKSA Bayesian network (Pearl, 1988) (see Figure 1) is 
om-posed of the following three items:� the variables X that are being modeled,� a dire
ted a
y
li
 graph (DAG) where there is aone-to-one mapping between the verti
es in the graphand the variables,� a 
onditional, prior probability distribution forea
h variable Xi, as given in (6) below.Ea
h variable has a probability distribution 
onditionedon the variables who have edges pointing to it (i.e., itsparents), as illustrated in Figure 1. In other words, a vari-able's probability distribution isP (Xijparents(Xi)): (6)Note that the edges themselves do not 
arry any probabil-ity distributions. The joint probability of all the variablesX is then assumed to be the produ
t of all the (lo
al)probability distributions within the variables:P (X) =Y8Xi P (Xijparents(Xi)): (7)
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Figure 1: A Bayesian network (representing one time-frame) for ASR. Possible probabilities for the given valuesare provided. This is for the simpli�ed 
ase of phonemere
ognition.A set of observations O may be assigned to a subset ofthe variables in the Bayesian network. The variables thatare left unobserved have an un
ertainty asso
iated withthem as to what their values are. Ea
h does have its priorprobability distribution, as given in (6), but needs to haveits posterior probability distribution inferred:P (Xijparents(Xi);O) (8)The jun
tion tree algorithm (Peot and Sha
hter, 1991) isan algorithm that 
an be used to infer these posterior prob-ability distributions. A version of it, tailored to the needsof ASR, 
an be found in detail in Zweig (1998). The jun
-tion tree algorithm is similar to the Baum-Wel
h algorithmused in HMMs (Rabiner and Juang, 1993) in that it workswith variables � and �, whi
h are analogous to the � and� variables, respe
tively, used in HMMs:�ij = P (O�i ;O0i jXi = j) (9)�ij = P (O+i ; Xi = j); (10)where O�i are the observations below Xi in the jun
tiontree, O0i is any observation for Xi itself, and O+i are allthe remaining observations.Equations (9) and (10) 
an then be used to 
ompute thelikelihood of the model as well as the marginal posteriorprobability for ea
h variable, given the observations:8i; P (O) =Xj �ij �ij (11)8i; P (XijO) = �ij �ijPj �ij �ij (12)Dynami
 Bayesian networks (Dean and Kanazawa,1988) (DBNs, see Figure 2) are an extension of Bayesiannetworks for modeling dynami
 pro
esses, in this 
ase apro
ess over time. A regular Bayesian network is repli-
ated for ea
h time sli
e. Edges are then added betweendesired variables in neighboring time sli
es. When thenode for a variable takes in a 
onne
tion from a previoustime frame, it then has to expand the number of variablesin its 
onditional probability distribution by one to a
-
ommodate the possible values for the variable from theprevious time frame.

x[t] 155 23 201

     =0.02
P(x2=201|q2=T)

     =0.05
P(x1=23|q1=T)

     =0.01
P(x0=155|q0=T)

q[t] T T O

     =0.04
P(q0=T)

     =0.82
P(q1=T|q0=T)

     =0.06
P(q2=O|q1=T)

Figure 2: A dynami
 Bayesian network (representingthree time-frames), using the Bayesian network in Figure 1as its base. For ea
h su

essive time frame, a possiblevalue for the phoneti
 state variable qt is given as well as apossible value for the a
ousti
 emission, xt. Possible prob-abilities for the given values are also provided. This alsois for the simpli�ed 
ase of phoneme re
ognition.3. ISOLATED WORDRECOGNITION WITH DBNS3.1. A
ousti
s-based re
ognitionBayesian networks are most easily used in problemswhere ea
h variable is dis
rete. For ASR, this meansthat the spee
h signal needs to be quantized. This alsomeans that instead of Gaussian distributions being usedfor 
al
ulating the emission probabilities, dis
rete proba-bility tables are used. The DBN in Figure 2 is for doingsimple phoneme re
ognition. A DBN for doing isolatedword re
ognition is illustrated in Figure 3 (further exten-sions for DBNs, whi
h are not 
urrently addressed in thiswork, su
h as language modeling, noise modeling, speak-ing rate modeling, et
. 
an be found in Zweig (1998));it uses the following deterministi
 and sto
hasti
 variablesfor a
ousti
s-based re
ognition (for explanation of the Ar-ti
ulator variable, see Se
tion 3.2):� Deterministi
{ Position refers to the 
urrent position in the wordmodel. It takes values 1; : : : ; N , where N is themaximum length of a word model.{ Phone refers to whi
h phone is asso
iated withthe 
urrent Position.� Sto
hasti
{ Transition refers to whether a transition is beingtaken out of this phone. It has only two possiblevalues: true or false.{ A
ousti
s refers to the spee
h signal. In the 
aseof multiple a
ousti
 streams, it 
an be repli
atedfor ea
h stream for ea
h time frame. The numberof values it takes is the size of the 
odebook forthe stream.The in
reased 
omplexity of Figure 3 over Figure 2 en-for
es whi
h phones 
ome in whi
h order in the model(whi
h is the responsibility of the Position and Phonedeterministi
 variables).The topology of the DBN di�ers signi�
antly from thatof HMMs. In HMMs, the transition probabilities areen
oded by the edges between the state variables; in
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Figure 3: Based on Zweig (1998), a dynami
 Bayesian network for isolated word re
ognition, 
overing four time steps.This DBNmodels the word \
at", pronoun
ed using three phonemes: /k/-/�/-/t/. This is for the a
ousti
s/arti
ulatory-based re
ognition; a
ousti
s-based re
ognition uses the same model but with the Arti
ulator variable and its dashededges removed. The bla
k verti
es (the A
ousti
s and the �nal Position and Transition variables) are alwaysobserved. The grey verti
es (the arti
ulators) are observed in training (when available) but not in normal re
ognition.DBNs the transition probabilities are en
oded within theTransition variable. Furthermore, the legal sequen
e ofphones in an HMM is en
oded by 
on
atenating the dif-ferent phone models. In DBNs, the legal sequen
e ofphones is determined by using the Position and Phonevariables; that is, the Phone variable will determin-isti
ally indi
ate whi
h phone 
an o

ur at ea
h posi-tion in the word model (e.g., for Figure 3, P (Phone =KjPosition = 1) = 1, P (Phone = �jPosition = 2) = 1,P (Phone = TjPosition = 3) = 1, with all other values ofP (PhonejPosition) equal to 0).3.2. A
ousti
s/Arti
ulatory-basedre
ognitionIn Figure 3, theA
ousti
s variable models the emissionprobability using (1) (if the Arti
ulator variable and itsdashed edges are ignored). This is interpreted as sayingthat the Phone that is being pronoun
ed 
auses 
ertaina
ousti
s. A more plausible model would in
orporate thedire
t 
auses of the a
ousti
s, i.e., the arti
ulators, giv-ing (4). The dependen
y of at on both at�1 and qt isgiven by (5). This is represented graphi
ally by the DBNin Figure 3 when the arti
ulator variable and dashed 
on-ne
tions are utilized.The exa
t same algorithms are used for training of andre
ognition with the a
ousti
s/arti
ulatory DBN as whenusing an a
ousti
s only DBN. This is be
ause the DBNalgorithms are independent of the topology of the DBN.These algorithms 
an also be used if part of the datais missing. This is vitally important during re
ognition.While it is reasonable to have observed arti
ulatory infor-mation available during the training phase, arti
ulatoryobservations generally will not be available during re
og-nition. The DBN 
an readily handle missing data be
auseduring re
ognition it is able to infer the distribution of themissing arti
ulatory positions, given the observed a
ous-ti
s. 4. EXPERIMENTSUsing the University of Wis
onsin X-ray Mi
robeamSpee
h Produ
tion database (Westbury et al., 1994), wedid experiments on speaker-independent, task-dependent,isolated word re
ognition. The spee
h is re
orded at

21739 Hz with a re
ording of sele
ted arti
ulator positions(lower lip, upper lip, four tongue positions, lower fronttooth, and lower ba
k tooth) at approximately 146 Hz(6.866 ms between samples). Of the 48 speakers in thedatabase, eight were randomly sele
ted to be in the testset; of the remaining 40 speakers, eight were randomly se-le
ted to be in the validation set with the remaining 32speakers 
omprising the training set. All three lists were
onstru
ted as to be gender-balan
ed. There are di�erenttasks that the speakers were asked to do. For this work,we 
hose to use the \Citation Words" tasks, where thespeaker reads a list of single words, separated by pauses.Using a segmentation produ
ed by a for
ed alignment atIDIAP with an HTK system (Young et al., 1999), the set ofwords for ea
h Citation Words task were 
ut into individ-ual �les with some surrounding silen
e. The lexi
on sizewas 106 words; some of the words were repeated multipletimes by the same speaker, giving an average, a
ross all ofthe data, of about 260 utteran
es per speaker. Thirty-ninemonophones were used in addition to beginning and end-ing silen
e. Three states were used for ea
h monophoneand silen
e being modeled.Twelve mel-frequen
y 
epstral 
oeÆ
ients (MFCCs)plus C0, the energy 
oeÆ
ient, were extra
ted per windowfrom the spee
h, using a Hamming window of 20.598 mswith su

essive windows shifted by 6.866 ms. This shiftrate was 
hosen so as to have one arti
ulatory observationper window. There were 26 �lterbanks with a preemphasis
oeÆ
ient of 0.97. Energy normalization as well as 
ep-stral mean subtra
tion were performed. The delta (i.e.,�rst derivative) 
oeÆ
ients for all 13 MFCC 
oeÆ
ientswere used as well.The 
epstral 
oeÆ
ients are then quantized using K-means 
lustering. Four 
odebooks are generated from thetraining data: a 256 value 
odebook for the 12 MFCC
oeÆ
ients, a 256 value 
odebook for the 12 MFCC delta
oeÆ
ients, a 16 value 
odebook for the C0 
oeÆ
ient, anda 16 value 
odebook for the C0 delta 
oeÆ
ient. The C0and the C0 delta values are 
on
atenated bitwise in theDBN to give a single 256 value variable.Likewise, the arti
ulatory values are also quantized, us-ing K-means 
lustering. The measurements of the eightarti
ulators are used for the 
odebook. O

asionally (22%of the frames, a
ross all of the data), an arti
ulator valuewas not re
orded for some time sli
es; in these 
ases, the



WER # Param.A
ousti
s Only (baseline) 9.8% 314882 Dis
rete Arti
ulatory Values 8.5% 629764 Dis
rete Arti
ulatory Values 7.7% 1266908 Dis
rete Arti
ulatory Values 8.4% 257070Table 1: Re
ognition results, given as Word Error Rate(WER), for models trained on the training set, with re
og-nition performed on the validation set. The number of freeparameters is given in the �nal 
olumn. WERA
ousti
s Only (baseline) 8.6%4 Dis
rete Arti
ulatory Values 7.8%Table 2: Re
ognition results, given as Word Error Rate(WER), for models trained on both the training set and thevalidation test with re
ognition performed on the test set.Only the best a
ousti
s/arti
ulatory system from Table 1was used.whole ve
tor was thrown out and not used in any partof the experiments. One 
odebook was generated to rep-resent all eight arti
ulator positions. Various values forthe size of the 
odebook are presented in this paper: two,four, and eight. The baseline DBN system did not usean arti
ulatory variable; with su
h a 
on�guration, it wastheoreti
ally equivalent to a standard ASR HMM.We used an in-house DBN program for training andtesting the models. This program has previously beentested against the performan
e given by an standard dis-
rete HMM implemented using HTK, and the re
ogni-tion performan
e between the two, a
ousti
s-only sys-tems were 
omparable on a large referen
e database(Phonebook). All models were trained using expe
tation-maximization (EM) training; after the log likelihood in-
reased by less then 1% from the previous iteration, onemore maximization step was done before termination.Diri
hlet priors of 0.1 were used on all probabilities toprevent any from be
oming 0. Ex
ept where noted, re
og-nition was then performed using only the a
ousti
s fromthe validation set (the arti
ulators were ignored and thustreated as hidden). Results are given in Table 1 for a sys-tem trained on the training set with re
ognition on thevalidation set. As 
an be seen, the word error rate is im-proved when arti
ulatory information is added.Using the optimal number of dis
rete arti
ulatory valueson the validation set given in Table 1, we then started theexperiments over using only the baseline system (a
ous-ti
s only) and the best a
ousti
s/arti
ulatory system (withfour arti
ulatory values). However, this time all 
odebookgeneration and DBN training were done on the 
ombina-tion of the training set and the validation set. Re
ognitionwas then done on the test set. The results are given in Ta-ble 2. The results of these re
ognition tests are the trueestimates of the two systems' performan
es on new dataas the test set was not used previously to sele
t any pa-rameters for either system. WER4 Dis
rete Arti
ulatory Values 7.6%Table 3: Using observed arti
ulator values, re
ognitionresults, given as Word Error Rate (WER), for modelstrained on both the training set and the validation testwith re
ognition performed on the test set. Only the besta
ousti
s/arti
ulatory system from Table 1 was used.

5. CONCLUSIONSWe presented a system for doing isolated word re
ogni-tion that infers arti
ulatory information from the a
ousti
sand uses this information for enhan
ed re
ognition. Ar-ti
ulatory observations are provided during training, butarti
ulatory information is only inferred from the a
ous-ti
s as a probability distribution during re
ognition. Theresults of Table 2 show that the performan
e of an a
ous-ti
s/arti
ulatory system was superior to that of the tra-ditional, a
ousti
s only system, 7:8% verses 8:6%, respe
-tively. Thus, a 10% redu
tion in the word error rate wasa
hieved. For 
omparison, Table 3 gives re
ognition re-sults with the arti
ulatory variable observed (even thoughthis is not a realisti
 s
enario). The small di�eren
e of there
ognition performan
e of the arti
ulatory/a
ousti
 sys-tem with missing arti
ulatory data verses observed arti
u-latory data, 7:8% verses 7:6%, respe
tively, suggests thatthe DBN is able to fairly a

urately infer the arti
ulatorypositions from the a
ousti
s.ACKNOWLEDGEMENTSThis work is supported by the Swiss National S
ien
eFoundation under grant # 21-53960.98. We also thankSa
ha Krstulovi
 for sharing his work previously done onthe database. Referen
esDean, T. and Kanazawa, K. (1988). Probabilisti
 tempo-ral reasoning. In Pro
eedings of the Seventh NationalConferen
e on Arti�
ial Intelligen
e.Pearl, J. (1988). Probabilisti
 Reasoning in Intelligent Sys-tems: Networks of Plausible Inferen
e. Morgan Kauf-mann Publishers, In
., San Fran
is
o, California, revisedse
ond printing edition.Peot, M. A. and Sha
hter, R. D. (1991). Fusion and prop-agation with multiple observations in belief networks.Arti�
ial Intelligen
e, 48, 299{318.Rabiner, L. and Juang, B.-H. (1993). Fundamentals ofSpee
h Re
ognition. PTR Prenti
e-Hall, In
., EnglewoodCli�s, NJ.Westbury, J. R., Turner, G., and Dembowski, J. (1994).X-ray Mi
robeam Spee
h Produ
tion Database User'sHandbook . Waisman Center on Mental Retardation &Human Development, University of Wis
onsin, Madi-son, WI, �rst edition.Young, S., Kershaw, D., Odell, J., Ollason, D., Valt
hev,V., and Woodland, P. (1999). The htk book . Entropi
,Ltd., Cambridge, UK, htk version 2.2 edition.Zlokarnik, I. (1995). Adding arti
ulatory features to a
ous-ti
 features for automati
 spee
h re
ognition. The Jour-nal of the A
ousti
al So
iety of Ameri
a, 97(5), 3246.Abstra
t 1aSC38.Zweig, G. and Russell, S. (1998). Probabilisti
 modelingwith Bayesian networks for automati
 spee
h re
ogni-tion. In R. H. Mannell and J. Robert-Ribes, editors, IC-SLP '98 Pro
eedings, volume 7, pages 3011{3014, Syd-ney.Zweig, G. G. (1998). Spee
h Re
ognition with Dynami
Bayesian Networks. Ph.D. thesis, University of Califor-nia, Berkeley.


