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Abstract. Dietterich [1] reviews five statistical tests proposing the 5x2cv ¢ test for determining
whether there is a significant difference between the error rates of two classifiers. In our exper-
iments, we noticed that the 5x2cv ¢ test result may vary depending on factors that should not
affect the test and we propose a variant, the combined 5x2cv F' test, that combines multiple
statistics to get a more robust test. Simulation results show that this combined version of the test
has lower Type I error and higher power than 5x2cv proper.
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1 Introduction

Given two learning algorithms and a training set, we want to test if the two algorithms construct
classifiers that have the same error rate on a test example. The way we proceed is as follows: Given
a labelled sample, we divide it into a training set and test set (or many such pairs) and we train the
two algorithms on the training set and we test them on the test set. We define a statistic computed
from the errors of the two classifiers on the test set, which if our assumption that they do have the
same error rate — the null hypothesis — holds, obeys a certain distribution. We then check the
probability that the statistic we compute actually has a high enough probability of being drawn from
that distribution. If so we accept the hypothesis, otherwise we reject and say that the two algorithms
generate classifiers of different error rates. If we reject when no difference exists, we incur a Type |
error. If we accept when a difference exists, we incur a Type II error. 1 — Pr{Type II error} is called
the power of the test and is the probability of detecting a difference when a difference exists.

Dietterich [1] analyzes in detail five statistical tests and concludes that two of them, McNemar
test, and a new test, the 5x2cv ¢ test, have low Type I error and reasonable power. He proposes to
use McNemar test if due to high computational cost, the algorithms can be executed only once. For
algorithms that can be executed ten times, he proposes to use the bx2cv ¢ test.

2 5x2cv Test

In the 5x2cv ¢ test, proposed by Dietterich [1], we perform 5 replications of 2-fold cross-validation.
In each replication, the dataset is divided into two equal-sized sets. pgj) is the difference between the
error rates of the two classifiers on fold j = 1,2 of replication z = 1,...,5. The average on replication

iisp; = (pgl) + pgz))/Q and the estimated variance is s7 = (pgl) -7+ (pgz) -p)%
()

Under the null hypothesis, p;”’ is the difference of two identically distributed proportions so can be

safely treated as a normal distribution with zero mean and unknown variance o2 [1]. Then pgj)/a 1s

) (2)

unit normal. If p}™ and p;

: .~/ are independent normals, s7/c? is chi-square with one degree of freedom.
Then

5
Zi:l 522

M = 2

is chi-square with 5 degrees of freedom. If Z ~ Z and X ~ X2

A
X/n

is t-distributed with n degrees of freedom. Therefore

T, =

(1) (1)
t= b1 = P1 (1)

is approximately ¢-distributed with 5 degrees of freedom [1]. We reject the hypothesis that the two
classifiers have the same error rate with 95 percent confidence if ¢ is greater than 2.571.

)

We note that the numerator p; ’ is arbitrary and actually there are ten different values that can

be placed in the numerator, i.e., pgj),j =1,2,i=1,...,5, leading to ten possible statistics
: ()
)= = 2 (2)
>iz15i/5
Changing the numerator corresponds to changing the order of replications or folds and should
not affect the result of the test. A first experiment is done on eight datasets to measure the effect of
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Table 1: Comparison of the 5x2cv ¢ test with its Combined version. Just changing the order of folds
or replications (using a different numerator), the 5x2cv ¢ test sometimes give different results whereas
the combined version takes into account all ten statistics and averages over this variability.

LP vs MLP

5x2cv tgj) Combined
rejects 5x2cv F

out of 10 rejects
GLASS 0 no
WINE 0 no
IRIS 2 no
THYROID 2 no
VOWEL 2 no
ODR 8 yes
DIGIT 7 ves
PEN 10 yes

changing the numerator where we compare a single layer perceptron (LP) with a multilayer perceptron
with one hidden layer (MLP). ODR, DIGIT are two datasets on optical handwritten digit recognition
and PEN is on pen-based handwritten digit recognition. These three datasets are available from the
author. The other datasets are from the UCI repository [2].

As shown in Table 1, depending on which of the ten numerators we use, i.e., which of the ten
tgj),j =1,2,i=1,...,5 we calculate, the test sometimes accepts and sometimes rejects the hypothesis.
That is if we change the order of folds or replications, we get different test results; this is disturbing
as this order is not a function of the error rates of the algorithms and should clearly not affect the
result of the test.

3 Combined 5x2cv F test

A new test that combines the results of the ten possible statistics promises to be more robust. If

: N 2
pg])/O'NZ, then (pgj)) Jo? ~ X2 and

N = Z?:l Z]i:; (ng))z

is chi-square with 10 degrees of freedom. If X7 ~ X? and X5 ~ X2 then

Xl/n
Xz/m n,m

Therefore, we have

5 y G2
B N/10 B Zz’:l Zj:l (Pz'] )
TMB Tyl

is approximately F' distributed with 10 and 5 degrees of freedom. For example we reject the hypothesis
that the algorithms have the same error rate with 0.95 confidence if the statistic f is greater than 4.74.
Looking at Table 1, we see that the combined version combines the ten statistics and i1s more robust;

f

(3)

it 1s as if the combined version “takes a majority vote” over the ten possible bx2cv ¢ test results.
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Figure 1: Type I errors of two tests are compared. All the points are under the y = x line; combined
test leads to lower Type I error.

4 Comparing Type I and Type II Errors

To compare the Type I error of bx2cv with its combined version, we use two MLP with equal number
of hidden units. Thus the hypothesis is true and any reject is a Type I error. On six datasets using
different number of hidden units, we have designed 15 experiments of 1000 runs each. In each run, we
have a 5x2cv ¢ test result (Eq. 1) and one combined 5x2cv F result (Eq. 3). As shown in Fig. 1, the
combined test has a lower probability of rejecting the hypothesis that the classifiers have the same
error rate when the hypothesis is true and thus has lower Type I error. The details are given in the
Appendix.

To compare the Type II error of the two tests, we take two classifiers which are different; these are
a linear perceptron (LP) and a MLP with hidden units. Again on six datasets using different number
of hidden units, we have designed 15 experiments of 1000 runs each where in each run, we have a
bx2cv t test result and a combined 5x2c¢v F' result. More details are given in the Appendix.

As shown in Fig. 2, the combined test has a lower probability of rejecting the hypothesis when the
two classifiers have similar error rates (lower Type IT error) and has a larger probability of rejecting
when they are different (higher power). The normalized difference in error rate between two classifiers
is computed as
Ep — Emip

z =
Smip

where €,,1,, smip are the average and stdev of error rate of the MLP over the test folds. Note that z is
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Figure 2: Type IT errors of two tests are compared. (a) zooms the lower left corner of (b) for small z,
the normalized distance between the error rates of the two classifiers. The combined test has a lower
probability of rejecting the hypothesis when the two classifiers have similar error rates and larger when
they are different.



6 IDIAP-RR 98-04

Table 2: Average and standard deviations of error rates on test folds of a linear perceptron and
multilayer perceptrons with different number of hidden units (given before ¢’).

LP MLP MLP MLP
IRIS 3.75,2.06  3:3.85,2.57 10: 3.18,1.95  20: 2.77, 1.73
WINE 2.84,1.66  3: 2.86,2.02 10: 2.57,1.61  20: 2.63,1.61
GLASS 38.66,4.03 5: 37.52,4.21 10: 35.81,4.32 20: 35.04, 4.19
VOWEL 38.70, 2.48 5: 36.86,2.86 10: 27.69,2.60 20: 22.48, 2.37
ODR 5.31,1.08 10: 5.14,1.07  20: 3.16, 0.78

THYROID  4.61,0.38 10: 4.26, 0.34

an approximate measure for what we are trying to test, i.e, whether the two classifiers have different
error rates.

Small difference in error rate implies that the different algorithms construct two similar classifiers
with similar error rates thus the hypothesis should not be rejected. For large difference, the classifiers
have different error rates and the hypothesis should be rejected.

5 Conclusions

The combined version of the bx2cv ¢ test, named the combined 5x2cv F' test, that averages over the
variability due to replication and fold order, as the simulation results indicate, has lower Type I error
and higher power than the 5x2cv ¢ test proper.

Appendix

On six datasets we trained a one-layer linear perceptron (LP) and multilayer perceptrons (MLP) with
different number of hidden units to check for Type I and Type II errors. The average and standard
deviation of test error rates for LP and MLP are given in Table 2. Reject probabilities with the
bx2cv t test and the combined bx2cv F' test are given in Table 3. The probabilities are computed as
proportions of rejects over 1000 runs.
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Table 3: Probabilities of rejecting the null hypothesis, i.e.,; proportions of times the corresponding test
rejected in 1000 trials. When comparing two MLPs with equal number of hidden units, any reject is
a Type I error and when comparing an LP with an MLP, if their accuracies are different, any reject
is lower Type II error and implies higher power.

MLP vs MLP (Type I error) LP vs MLP (Type II error)
hid  b5x2cv Combined 5x2cv 5x2cv Combined 5x2c¢v

IRIS 3 0.032 0.009 0.037 0.007
10 0.040 0.008 0.029 0.007
20 0.029 0.016 0.023 0.013
WINE 3 0.037 0.011 0.033 0.018
10 0.032 0.013 0.031 0.024
20 0.047 0.016 0.033 0.016
GLASS 5 0.034 0.021 0.025 0.021
10 0.026 0.012 0.063 0.039
20 0.047 0.015 0.070 0.075
VOWEL 5 0.033 0.018 0.050 0.027
10 0.027 0.021 0.722 0.970
20 0.034 0.015 0.962 1.000
ODR 10 0.033 0.019 0.025 0.019
20 0.024 0.019 0.364 0.557

THYROID 10 0.031 0.014 0.041 0.031




