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Abstract� Dietterich ��� reviews �ve statistical tests proposing the �x�cv t test for determining
whether there is a signi�cant di�erence between the error rates of two classi�ers� In our exper�
iments	 we noticed that the �x�cv t test result may vary depending on factors that should not
a�ect the test and we propose a variant	 the combined �x�cv F test	 that combines multiple
statistics to get a more robust test� Simulation results show that this combined version of the test
has lower Type I error and higher power than �x�cv proper�
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� Introduction

Given two learning algorithms and a training set� we want to test if the two algorithms construct
classi�ers that have the same error rate on a test example� The way we proceed is as follows� Given
a labelled sample� we divide it into a training set and test set �or many such pairs� and we train the
two algorithms on the training set and we test them on the test set� We de�ne a statistic computed
from the errors of the two classi�ers on the test set� which if our assumption that they do have the
same error rate � the null hypothesis � holds� obeys a certain distribution� We then check the
probability that the statistic we compute actually has a high enough probability of being drawn from
that distribution� If so we accept the hypothesis� otherwise we reject and say that the two algorithms
generate classi�ers of di�erent error rates� If we reject when no di�erence exists� we incur a Type I
error� If we accept when a di�erence exists� we incur a Type II error� 	�PrfType II errorg is called
the power of the test and is the probability of detecting a di�erence when a di�erence exists�

Dietterich 
	� analyzes in detail �ve statistical tests and concludes that two of them� McNemar
test� and a new test� the �x�cv t test� have low Type I error and reasonable power� He proposes to
use McNemar test if due to high computational cost� the algorithms can be executed only once� For
algorithms that can be executed ten times� he proposes to use the �x�cv t test�

� �x�cv Test

In the �x�cv t test� proposed by Dietterich 
	�� we perform � replications of �fold crossvalidation�

In each replication� the dataset is divided into two equalsized sets� p�j�i is the di�erence between the
error rates of the two classi�ers on fold j � 	� � of replication i � 	� � � � � �� The average on replication

i is pi � �p
���
i � p

���
i ��� and the estimated variance is s�i � �p

���
i � pi� � �p

���
i � pi�

��

Under the null hypothesis� p
�j�
i is the di�erence of two identically distributed proportions so can be

safely treated as a normal distribution with zero mean and unknown variance �� 
	�� Then p
�j�
i �� is

unit normal� If p
���
i and p

���
i are independent normals� s�i ��

� is chisquare with one degree of freedom�
Then

M �

P�
i�� s

�
i

��

is chisquare with � degrees of freedom� If Z � Z and X � X �
n

Tn �
Zp
X�n

is tdistributed with n degrees of freedom� Therefore

t �
p
���
�p
M��

�
p
���
�qP�

i�� s
�
i ��

�	�

is approximately tdistributed with � degrees of freedom 
	�� We reject the hypothesis that the two
classi�ers have the same error rate with �� percent con�dence if t is greater than ����	�

We note that the numerator p
���
� is arbitrary and actually there are ten di�erent values that can

be placed in the numerator� i�e�� p�j�i � j � 	� �� i � 	� � � � � �� leading to ten possible statistics

t
�j�
i �

p
�j�
iqP�

i�� s
�
i ��

���

Changing the numerator corresponds to changing the order of replications or folds and should
not a�ect the result of the test� A �rst experiment is done on eight datasets to measure the e�ect of



IDIAP�RR ����� �

Table 	� Comparison of the �x�cv t test with its Combined version� Just changing the order of folds
or replications �using a di�erent numerator�� the �x�cv t test sometimes give di�erent results whereas
the combined version takes into account all ten statistics and averages over this variability�

LP vs MLP

�x�cv t
�j�
i Combined

rejects �x�cv F
out of 	� rejects

GLASS � no
WINE � no
IRIS � no
THYROID � no
VOWEL � no
ODR � yes
DIGIT � yes
PEN 	� yes

changing the numerator where we compare a single layer perceptron �LP� with a multilayer perceptron
with one hidden layer �MLP�� ODR� DIGIT are two datasets on optical handwritten digit recognition
and PEN is on penbased handwritten digit recognition� These three datasets are available from the
author� The other datasets are from the UCI repository 
���

As shown in Table 	� depending on which of the ten numerators we use� i�e�� which of the ten

t
�j�
i � j � 	� �� i � 	� � � � � � we calculate� the test sometimes accepts and sometimes rejects the hypothesis�
That is if we change the order of folds or replications� we get di�erent test results� this is disturbing
as this order is not a function of the error rates of the algorithms and should clearly not a�ect the
result of the test�

� Combined �x�cv F test

A new test that combines the results of the ten possible statistics promises to be more robust� If

p
�j�
i �� � Z� then

�
p
�j�
i

��
��� � X �

� and

N �

P�
i��

P�
j��

�
p
�j�
i

��

��

is chisquare with 	� degrees of freedom� If X� � X �
n and X� � X �

m then

X��n

X��m
� Fn�m

Therefore� we have

f �
N�	�

M��
�

P�
i��

P�
j��

�
p
�j�
i

��

�
P�

i�� s
�
i

���

is approximatelyF distributed with 	� and � degrees of freedom� For example we reject the hypothesis
that the algorithms have the same error rate with ���� con�dence if the statistic f is greater than �����
Looking at Table 	� we see that the combined version combines the ten statistics and is more robust�
it is as if the combined version �takes a majority vote� over the ten possible �x�cv t test results�
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Figure 	� Type I errors of two tests are compared� All the points are under the y � x line� combined
test leads to lower Type I error�

� Comparing Type I and Type II Errors

To compare the Type I error of �x�cv with its combined version� we use two MLP with equal number
of hidden units� Thus the hypothesis is true and any reject is a Type I error� On six datasets using
di�erent number of hidden units� we have designed 	� experiments of 	��� runs each� In each run� we
have a �x�cv t test result �Eq� 	� and one combined �x�cv F result �Eq� ��� As shown in Fig� 	� the
combined test has a lower probability of rejecting the hypothesis that the classi�ers have the same
error rate when the hypothesis is true and thus has lower Type I error� The details are given in the
Appendix�

To compare the Type II error of the two tests� we take two classi�ers which are di�erent� these are
a linear perceptron �LP� and a MLP with hidden units� Again on six datasets using di�erent number
of hidden units� we have designed 	� experiments of 	��� runs each where in each run� we have a
�x�cv t test result and a combined �x�cv F result� More details are given in the Appendix�

As shown in Fig� �� the combined test has a lower probability of rejecting the hypothesis when the
two classi�ers have similar error rates �lower Type II error� and has a larger probability of rejecting
when they are di�erent �higher power�� The normalized di�erence in error rate between two classi�ers
is computed as

z �
elp � emlp

smlp

where emlp � smlp are the average and stdev of error rate of the MLP over the test folds� Note that z is
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Figure �� Type II errors of two tests are compared� �a� zooms the lower left corner of �b� for small z�
the normalized distance between the error rates of the two classi�ers� The combined test has a lower
probability of rejecting the hypothesis when the two classi�ers have similar error rates and larger when
they are di�erent�
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Table �� Average and standard deviations of error rates on test folds of a linear perceptron and
multilayer perceptrons with di�erent number of hidden units �given before �����

LP MLP MLP MLP
IRIS ����� ���� �� ����� ���� 	�� ��	�� 	��� ��� ����� 	���
WINE ����� 	��� �� ����� ���� 	�� ����� 	��	 ��� ����� 	��	
GLASS ������ ���� �� ������ ���	 	�� ����	� ���� ��� ������ ��	�
VOWEL ������ ���� �� ������ ���� 	�� ������ ���� ��� ������ ����
ODR ���	� 	��� 	�� ��	�� 	��� ��� ��	�� ����
THYROID ���	� ���� 	�� ����� ����

an approximate measure for what we are trying to test� i�e� whether the two classi�ers have di�erent
error rates�

Small di�erence in error rate implies that the di�erent algorithms construct two similar classi�ers
with similar error rates thus the hypothesis should not be rejected� For large di�erence� the classi�ers
have di�erent error rates and the hypothesis should be rejected�

� Conclusions

The combined version of the �x�cv t test� named the combined �x�cv F test� that averages over the
variability due to replication and fold order� as the simulation results indicate� has lower Type I error
and higher power than the �x�cv t test proper�

Appendix

On six datasets we trained a onelayer linear perceptron �LP� and multilayer perceptrons �MLP� with
di�erent number of hidden units to check for Type I and Type II errors� The average and standard
deviation of test error rates for LP and MLP are given in Table �� Reject probabilities with the
�x�cv t test and the combined �x�cv F test are given in Table �� The probabilities are computed as
proportions of rejects over 	��� runs�
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Table �� Probabilities of rejecting the null hypothesis� i�e�� proportions of times the corresponding test
rejected in 	��� trials� When comparing two MLPs with equal number of hidden units� any reject is
a Type I error and when comparing an LP with an MLP� if their accuracies are di�erent� any reject
is lower Type II error and implies higher power�

MLP vs MLP �Type I error� LP vs MLP �Type II error�
hid �x�cv Combined �x�cv �x�cv Combined �x�cv

IRIS � ����� ����� ����� �����
	� ����� ����� ����� �����
�� ����� ���	� ����� ���	�

WINE � ����� ���		 ����� ���	�
	� ����� ���	� ����	 �����
�� ����� ���	� ����� ���	�

GLASS � ����� ����	 ����� ����	
	� ����� ���	� ����� �����
�� ����� ���	� ����� �����

VOWEL � ����� ���	� ����� �����
	� ����� ����	 ����� �����
�� ����� ���	� ����� 	����

ODR 	� ����� ���	� ����� ���	�
�� ����� ���	� ����� �����

THYROID 	� ����	 ���	� ����	 ����	


