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Abstract. The Multi-Stream automatic speech recognition approach was investigated in this
work as a framework for Audio-Visual data fusion and speech recognition. This method presents
many potential advantages for such a task. It particularly allows for synchronous decoding of
continuous speech while still allowing for some asynchrony of the visual and acoustic information
streams. First, the Multi-Stream formalism is briefly recalled. Then, on top of the Multi-Stream
motivations, experiments on the M2VTS multimodal database are presented and discussed. To our
knowledge, these are the first experiments about multi-speaker continuous Audio-Visual Speech
Recognition (AVSR). It is shown that the Multi-Stream approach can yield improved Audio-Visual
speech recognition performance when the acoustic signal is corrupted by noise as well as for clean
speech.
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1 INTRODUCTION

The Multi-Stream approach used in this work is a principled way for merging different sources of
information. In this approach, 1t is assumed that the speech signal 1s described in terms of multiple
input streams, each stream representing a different characteristic of the input signal. If the streams are
supposed to be entirely synchronous, they may be accommodated simply. However, it is often the case
that the streams are not synchronous, that they do not even have the same frame rate and it might
be useful to define models that do not have the same topology. The Multi-Stream approach discussed
in [2] allows to deal with this. In this framework, the input streams are processed independently of
each other up to certain anchor points where they have to synchronize and recombine their partial
segment-based likelithoods. While the phonological level of recombination has to be defined a priori,
the optimal temporal anchor points are obtained automatically during recognition.

The subband-based speech recognition approach, a particular case of Multi-Stream, was shown on
several databases to yield significantly better noise robustness [1, 8] compared to standard approaches.
The general idea of this subband-based approach is to split the whole frequency band (represented in
terms of critical bands) into a few subbands on which different recognizers are independently applied
and then recombined at a certain speech unit level to yield global scores and a global recognition
decision. This subband-based approach has many other motivations, including the possibility to better
accommodate the possible asynchrony between different components of the speech spectrum [9].

Another application that was investigated recently is the possibility to incorporate multiple time
resolutions as part of a structure with multiple length units, such as phone and syllable. In the
same framework, 1t is indeed possible to define subword models composed of several cooperative
HMM models focusing on different dynamic properties of the speech signal. Preliminary results were
presented in [4].

The feature that will be investigated here is the possibility to combine several information sources.
The Multi-Stream formalism and decoding scheme will indeed be used as framework for an Audio-
Visual continuous speech recognition system.

2 Automatic AVSR and the Multi-Stream Approach

Speech-reading as well as integration of auditory and visual parameters for speech recognition has
gained interest in the scientific community these past few years [6, 7, 10, 12]. This is probably because
Audio-Visual integration offers many potential advantages for automatic speech recognition systems.
Several studies have indeed shown that the use of lip movement information, in addition to the acous-
tics, can significantly improve the recognition performance in the case of speech corrupted by acoustic
noise. Moreover, 1t is acknowledged that the acoustics and the lip movements carry complementary
information. For instance, discriminating between the phonemes /t/ and /p/ can be easier with the
visual information than with the acoustic information. A more extensive insight into the problem can
be found in other publications [12].

This work was particularly motivated by the fact that the Multi-Stream formalism, introduced
earlier as framework for subband-based speech recognition [1] and then used for multiscale-based
speech recognition [4], could be an efficient approach for continuous Audio-Visual speech recognition.
Other contributors, cited in the previous paragraph, have essentially addressed the problem of isolated
word recognition. The proposed approaches were based on a recombination of likelihoods from the
visual and acoustic streams at the end of the uttered word, or on the feature combination at the frame
level. Most of these contributions were mainly focused on finding an appropriate automatic weighting
scheme so as to guarantee good performance in a wide range of acoustic signal-to-noise ratios.

Compared to isolated word recognition, the problem of continuous speech recognition i1s more tricky
as we do not want to wait until the end of the spoken utterance before recombining the streams.
Indeed, this introduces a time delay and this also requires to generate N-best hypothesis lists for
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the two streams. Indeed, one can only recombine the scores from identical hypothesis. As the best
hypothesis for the acoustic stream is not necessarily the same as the best hypothesis for the visual
stream, N-best lists are required. Identical hypothesis must then be matched to recombine the scores
from the two streams. An alternative approach would be to generate an N-best list for one of the two
streams, to compute the score of these best hypothesis for the other stream, and finally to recombine
the scores. The Multi-Stream approach does not require to use such an N-best scheme and is an
interesting candidate for multimodal continuous speech recognition as it allows for:

e synchronous multimodal continuous speech recognition: by using the HMM recombina-
tion or the two-level decoding schemes [2].

e asynchrony of the visual and acoustic streams: The Multi-Stream approach can force the
two modalities to be synchronous where synchrony is required and can allow for asynchrony
of the visual and acoustic stream where asynchrony might take place. The level of required
synchrony might be chosen heuristically, as was done in the experiments presented in this paper,
or might be learned from training data (see Section 4).

e specific audio and video word or sub-word topologies: The Multi-Stream model is com-
posed of parallel models which do not necessarily have the same topologies.

Tomlinson and al. [10] already addressed the issues of visual and acoustic components asynchrony
and continuous Audio-Visual speech recognition. The technique was based on HMM decomposition.
Under the independence assumption, composite models were defined from independently trained audio
and visual models. Although our work is related with [10], it presents an attempt to better formalize the
problem and allows to consider different recombination formalisms and continuous speech decoding
schemes. Moreover, the scope of asynchrony between the two streams was here extended from the
phone level to the word level.

The next section presents speech recognition experiments done on the multimodal M2VTS data-
base. In addition to using the novel Multi-Stream scheme, this work is one of the first about multi-
speaker continuous Audio-Visual speech recognition.

3 Experiments on the M2VTS Multimodal Face Database

M2VTS was developed as part of the M2VTS project granted by the European ACTS program.
The primary goal of the M2VTS project (Multi Modal Verification for Teleservices and Security
applications) was to address the problem of secured access to buildings by using multimodal identi-
fication /verification methods. The database is thus made of synchronized images and speech as well
as sequences allowing to access multiple views of a face.

The part of the database we have been using in this work consists of 37 different persons, each
pronouncing 5 times the sequence of digits from ’0’ to "9’ in French. This is the only part of the
database which can be used for multimodal speech recognition, the rest of the database consisting of
people rotating their head. The video sequences consist in 286*360 pixel color images with a 25 Hz
frame rate and the audio track was recorded at a 48 kHz sampling frequency and 16 bit PCM coding.
Further information can be found in [13].

3.1 Database Partitioning

Although M2V'TS is the biggest database of its type, it is still relatively small compared to audio
databases used in the field of speech recognition. To increase the significance level of our experiments,
we used a jack-knife approach. Five different cuts of the database were used. Each cut consisted of:

e 3 pronunciations from the 37 speakers as training set.
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e | pronunciation from the 37 speakers as development set. It was used to optimize parameters
such as weighting coefficients between audio and video streams.

e | pronunciation from the 37 speakers as test set.

This procedure allowed to use the whole database as test set (185 utterances) by developing five
independent speech recognition systems for each of the compared approaches. These systems could
be qualified as multi-speaker (but speaker dependent) continuous digits recognition systems. We note
here that the digit sequence to be recognized is always the same (digits from 0’ to ’9’). This somewhat
simplify the task of the speech recognition system which always “see” the pronounced words in the
same context.

Systems were first developed to recognize the pronounced digit sequences using the information
conveyed by the audio stream only or by the video stream only.

3.2 Audio-based Speech Recognition

The audio stream was first downsampled to 8 kHz. We used PLP parameters [5] computed every 10 ms
on 30 ms sample frames. The complete feature vectors consisted of 25 parameters: 12 PLP coefficients,
12 APLP coefficients and the Aenergy.

We used left-right digit HMM models with between 3 and 9 independent states, depending on the
digit mean duration. This yielded a total of 52 states. The digit sequences were first segmented into
digits using standard Viterbi alignment with a system trained on the Swiss-FRENCH POLYPHONE
database [3] Each M2V'TS digit was then linearly segmented according to the number of states of the
corresponding HMM model. This segmentation was used to train the HMM-state statistical models
which were mixture of two multidimensional Gaussian distributions with diagonal covariance matrices,
yielding to 5200 parameters. Iterative Viterbi alignment and reestimation of the model parameters
was also performed.

System training and tests were then performed according to the database partitioning described
earlier. Results are summarized in Figure 3 for clean speech as well as for speech corrupted by additive
white noise with different signal-to-noise ratios. As can be observed, recognition performance is severely
affected by additive noise, even at such moderate noise levels.

3.3 Video-based Speech Recognition

In this case, geometric features and grey-level features from the mouth region were used, assuming that
they carry relevant linguistic information. An appearance based model of the articulators is learned
from example images and is used to locate, track and recover visual speech features [10]. The method
decomposes the lip shape and the grey-level intensities in the mouth region into a weighted sum of
basis shapes (inner and outer lip contour) and basis intensities, respectively, using the Karhunen-
Loeve expansion. These features, obtained by lip tracking, were normalized with respect to the mouth
center, orientation, and width. The 12 most relevant shape features and the 12 most relevant intensity
features together with their temporal difference parameters, yielding 48 parameters, were used for the
HMM based speech recognition system.

We used the same HMM topologies and the same initial segmentation as for the previously de-
scribed acoustic-based recognition system. In this case, the HMM-state statistical models were single
mixture multidimensional Gaussian distributions with diagonal covariance matrices.

The mean error rate for the five database cuts defined earlier was 44.0%.

Since the visual signal only provides partial information, the error rate for the video-based system
was considerably higher than for the audio-based system This is mainly due to the high visual sim-
ilarity of certain digits like “quatre”, “cing”, “six”, and “sept”. About half of the errors were due to
substitutions of these highly confusable digits and the other half were caused by deletion errors.
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3.4 Multimodal Speech Recognition

Audio-Visual speech recognition was experimentally investigated and 2 kinds of model topologies were
compared. These were based on the HMM word topologies already used in the two previous sections.
The differences between the models lay in the possible asynchrony of the visual stream with respect to
the acoustic stream. In the experiments that were carried out, the word topologies were the same for
the two modalities. Let’s recall however that the Multi-Stream approach would allow to use specific
audio and video HMM topologies.

The first model (MoDEL 1) did not allow for any desynchronization between the two streams. Tt
corresponds to a Multi-Stream model with recombination at the state level and allows to use fusion
criteria that can weight differently the two streams according to their respective reliability.

The second model (MODEL 2) was a Multi-Stream model with recombination of the streams at
the word level. This model thus allows the dynamic programming paths to be independent from the
beginning up to the end of the words. This relaxes the assumption of piecewise stationarity by allowing
the stationarity of the two streams to occur on different time regions, while still forcing the modalities
to resynchronize at word boundaries. This also account for the possible asynchrony of the streams
inherent to the production mechanism. Indeed, lip movements and changes in the vocal tract shape
are independent up to a point.

clean speech (bp_01) - auditory spectrogram (dB)
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Figure 1: Auditory spectrogram (evolution of the critical band energies) and evolution of the first
visual shape parameter for one portion (’0’ to ’8’) of an M2VTS utterance.

MoDEL 2 also allows the transition from silence to speech and from speech to silence to occur
at different time instants for the two streams !. Indeed, it seems likely that lip movement can occur
before and after sound production and conversely. Figure 1 clearly illustrates what we mean. It shows
in parallel a speech spectrogram as well as the evolution of the first visual shape parameter, mainly
representing the changes in the position of the lower lip contour [6]. MODEL 2 is presented in Figure 2.

We used the same parameterization schemes as in the two previous sections. However, as the visual
frame rate (25 Hz) is a quarter of the acoustic frame rate, visual vectors were artificial added at the
probability level (by copying frames), so that acoustic and video stay synchronous, simplifying the
data fusion implementation (although the Multi-Stream approach would allow to cope with this).

Recombination of the independent likelihoods was done linearly, by multiplying segment (sub-
units) likelihoods from the two streams, thus assuming conditional independence of the visual and
acoustic streams. This was done according to:

p(X|M) = p(Xacou |Macou)w ~p(Xvis |Mvis)(1_w)a (1)

1"Visual silence’ could be defined as a portion of the visual signal that doesn’t carry any relevant linguistic information.
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Figure 2: Multi-stream model for Audio-Visual speech recognition with optional begin and end silence
states (MODEL 2).

where p(Xacou|Macou) represents the likelihood of the time limited acoustic information stream given
the acoustic part of model M (lexical sub-unit model),
p(Xyis|Myis) is the corresponding likelihood for the visual stream and w is a parameter allowing
to weight the two streams according to their respective reliability. It was optimized on the develop-
ment set. If MODEL 1 is used, this simply boils down to multiplying local likelihoods. For the other
model (MoDEL 2), this multiplication has to be done at the word boundaries. This was done in a syn-

chronous way using the HMM recombination algorithm [2], an adaptation of the HMM decomposition
algorithm [11].

System Video | Audio | Audio-Visual
Error rate | 43.9% | 3.4% 2.6%

Table 1: Word error rate of audio-, video- and Audio-Visual-based (MODEL 2) speech recognition
systems on clean speech.
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Figure 3: Word error rate of audio-, video- and Audio-Visual-based speech recognition systems at
different acoustic SNR levels. This graph presents the results obtained after embedded training of the
2 kind of models and of the acoustic-only model (training on clean speech only). The solid line is for
the acoustic system, the dashed line is for MoODEL1 and the dotted line is for MODEL2. The horizontal
line represents the performance of the visual-only system.

Results are summarized in Figure 3 for different levels of noise degradation. In the case of clean
speech, using visual information, in addition to the acoustics, does not yield significant performance
improvement at p < .05 (see Table 1). In the case of speech corrupted with additive stationary Gaussian
white noise, significant performance improvement can be obtained by using the visual stream as an
additional information source. The figure also clearly show, and this i1s one of the main result of this
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work, that we can get a significant performance improvement by allowing the acoustic and visual dp
paths to be different (by using the Multi-Stream formalism to allow some independence of the two
modalities, i.e. by using MODEL 2 instead of MODEL 1).

This should be noted however that decoding using such Multi-Stream models is somewhat more
complex than decoding using models forcing synchrony across the streams (Multi-Stream with state-
level recombination - MoDEL 1). Computational requirements significantly increase but stay within
an order of magnitude above the classical model. In the next Section, we will propose a method that
would allow to reduce the computational load.

In these experiments, the optimal recombination weight was optimized on the development set for
each of the test conditions. Consequently, these results do not represent what could be achieved with
a practical system. In practice, one should design an automatic way of estimating the recombination
parameter. One way could be to define a mapping between this parameter and an SNR, estimate.
However, this mapping would be defined on the basis of a particular noise type and would not neces-
sarily be optimal for another noise type. Moreover, SNR estimation is very tricky in the case of rapidly
varying noise. It would thus be better to use an appropriate statistically-based confidence measure for
both acoustic and visual streams as proposed by some of the contributors in [12].

4 Extensions of the work

This work has shown the interest of the Multi-Stream approach as framework for continuous mul-
timodal speech recognition. It was applied on a continuous Audio-Visual digit recognition task. This
work could now be extended into several directions:

e Design specific audio and video word or sub-word topologies: The parallel HMMs
associated with the two modalities in the Multi-Stream model can have different topologies.

e Static state pruning and synchrony/asynchrony learning: If we use the HMM recombin-
ation decoding approach, we can easily remove the multidimensional HMM states which are the
least frequently encountered in the forced Viterbi alignment of the training set. In addition to
reducing the computational load, this would introduce constraints in the dynamic programming
search by forcing the streams to resynchronize at points resulting from an analysis of the training
data.

e Noise cancellation methods: experiments were done in the case of speech corrupted by
stationary additive acoustic white noise. Well-established noise-cancellation methods could be
used to increase the overall robustness to stationary acoustic noise.

e Two-Level decoding approach: in this work, we used the HMM recombination decoding
approach. However, the two-level approach would allow for more flexibility with respect to the
recombination formalism.

5 Conclusions

We have presented a framework for the fusion of acoustic and visual information in an Audio-Visual
speech recognition system based on the Multi-Stream approach. Several significant advances have been
reported in this paper. Firstly, the method enables synchronous Audio-Visual decoding of continuous
speech and we have presented one of the first continuous AV speech recognition experiments. Secondly,
it allows for asynchronous modeling of the two streams, which is inherent in the acoustic and visual
speech signal and which has been shown to lead to more accurate modeling and to improved perform-
ance. Thirdly, the approach allows to design specific Audio-Visual word or sub-word topologies. This
also includes the modeling of possible monomodal or multimodal “silence” states.
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