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LIKELIHOOD RATIO ADJUSTMENT
FOR THE COMPENSATION OF MODEL MISMATCH
IN SPEAKER VERIFICATION

Frédéric BIMBOT Dominique GENOUD

AvugusTt 1997

TO APPEAR IN
Eurospeech, Rhodos 1997

Abstract. Cet article présente une méthode d’ajustement des seuils de vérification du locuteur
basée sur un modéle Gaussien des distributions du logarithme du rapport de vraisemblance.
L’article expose les hypotheéses sous lesquelles ce modele est valide, indique plusieurs méthodes
d’ajustement des seuils, et en illustre les apports et les limites par des expériences de vérification
sur une base de données de 20 locuteurs.
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1 Introduction

Speaker verification systems rely on two main modules : a speaker modeling module and an accept-
ance/rejection decision module. When probabilistic models are used as speaker models (and non-
speaker models), a classical decision rule is based on the likelihood ratio (LR) test, namely the com-
parison of the ratio between the speaker model and non-speaker model likelihoods to a pre-determined
threshold. Usually, this threshold is set so as to optimise the overall system performance according to
a particular cost function. In theory, it should not depend on the speaker.

In practice however, a mismatch between the model and the data is often observed, which invalidates
the use of a pre-determined, speaker-independent threshold. Among the reasons for such a mismatch
are the choice of an improper class of speaker models, the inappropriate dimensioning of the model
with respect to the amount of training data, the non-representativity of the training material, the
possible presence of outliers within the training utterances,; etc...

In this paper, we present a way to adjust the LR test in order to correct for (some of) the model
mismatch, under a few hypothesis concerning the statistical model. We show how an adjusted threshold
can be estimated from the mean and standard deviation of the distribution of the frame-by-frame
likelihood values at the output of the speaker model and of the non-speaker model. We compare
several ways for estimating these means and standard deviations. We finally illustrate the benefits
and the limits of this adjustment by a series of experiments in speaker verification on telephone data.

2 Theoretical aspects

2.1 Formalism

Let X denote a speaker, and X a probabilistic model of that speaker. Let X denote the non-speaker
model for speaker X, i.e the model of the rest of the population. Let Y be a speech utterance claimed
as belonging to speaker X.

If we denote as X (resp. )?) the acceptance (resp. rejection) decision of the system, and px (resp.
px) the a priori probability of the claimed speaker to be (resp. not to be) speaker X, the total cost
function of the system is [1] :

C = Cixxy px - PXIX) + Cixpx) - Px - P(X]X) (1)
where P (X|X) and P ()?|X) denote respectively the probability of a false acceptance and of a false
rejection, while C(X|X) and C()?|X) represent the corresponding costs'.

If we now denote by Py and Pg the likelihood functions of the speaker and of the non-speaker models,
the minimisation of C' in equation (1) is obtained by implementing the likelihood ratio (LR) test [2] :

LR(Y) = P D e = R )

where Py and Pg denote the likelihood functions for the speaker and the non-speaker, and R is the
risk ratio :
Cxix) px @)

R:C

(X|x) PX

1We assume a null cost for a true acceptance and a true rejection.
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As can be seen from equation (3), the optimal threshold does not depend, in theory, of anything else
than the false acceptance / rejection cost ratio and the impostor / client a priori probability ratio.
In the particular case when the costs C(Xp?) and C' X|x) are equal, and when genuine speakers and
impostors are assumed a priori equiprobable, the system is set to the equirisk condition, and the choice
of @ = 1 as a decision threshold should then lead to a minimum Total Error Rate for the system :

TER = P(X|X)+ P (X|X).

2.2 Adjustment of the LR test

In practice, it is often observed that the LR test with ® = R as a decision threshold may not yield
the minimum of the cost function C'. In fact, the LR in equation (2) is calculated from estimations of
the likelihood functions, which do not match the exact speaker and non-speaker distributions. As a
consequence, it 1s usually beneficial to adjust the threshold of the LR test, in order to correct for the
improper fit between the model and the data.

By denoting as Py and p;g the respective model likelihood functions for the speaker and the non-
speaker, the LR test can be rewritten in a more general framework as :

RO = 502 ex(r (@

with n corresponding to the number of frames in the test utterance Y. The function ©x can be
viewed as a speaker-dependent adjusted threshold that accounts for the speaker and non-speaker
model mismatch causing a difference between LR and LR and for the influence of the utterance
length on the distribution of LR.

In the general case, there is no straightforward way of modeling or estimating Ox (R, n). However,
if we assume that the model log-likelihood function is obtained as the average of a large number of
independent frame-based log-likelihood values; the adjusted threshold © x relates directly to the mean
and the variance of the distributions followed by the client and impostor frame-by-frame likelihoods
at the output of the speaker and non-speaker models.

2.3 Distribution of the LR

In fact, for most conventional probabilistic models, the logarithm of the numerator in IR can be
rewritten as the average of a set of frame-based log-likelihoods?

log Py (Y Z og Px (ui) (5)

where y; denotes the i'® frame in utterance Y, of total length n. If n is large enough and if the
frame-based log-likelihood values log Py (y;) are assumed independent, log Py (V) follows a Gaussian
distribution G (px; ox/+/n), where uy and oy are the mean and variance of the distribution of the
frame-by-frame likelihood, whatever type of distribution is actually followed by this function (Central
Limit Theorem). The same property also stands for the logarithm of the denominator, i.e log p;g (Y).

Therefore :
log Px (Y) — G (px; 0x//n)
log Py (Y) — G (px; ox/vn)

2 A very similat approach can be readily adapted to classifiers using the sum instead of the average log-likelihood.
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If we now distinguish between utterances which were actually uttered by speaker X and those that

were not (X ), the numerator and the denominator follow distinct conditional distributions :

For client utterances :

log Py (Y|X) — G (px(X); ox(X)/v/n)
log Py (Y]X) — G (nx(X); ox(X)/V/n)

For impostor utterances :

log Px (Y[X) — G (pa(X); ox(X)/v/n)
log Py (Y[X) — G (pe(X); ox(X)/Vn)

For instance, the notation py(X) represents the expected value of the log-likelihood of impostor
utterances when scored by the speaker model.

Ultimately, under the assumption that log Py (y;) and log Py (y;) are independent random variables,
the log-L R follows the two conditional distributions :

log LR (Y| X) — G (mx: sx/vn) = 6§
log TR (Y|X) — G (my; sx//n) = G

with :

mx = pa(X) —pp(X) | sx = /ox ()P ¥ o2 (XP

mx = px(X) = pp(X) | sx = Vox(X)? +og(X)?

2.4 Expression of the adjusted threshold

If we now denote :

F&(r) = 768 (v) dv
FI(r) = [7_60) (v) dv

the functions (1 — }-%n) (7)) and fg(n) (1) can then be understood as models of the false acceptance
and false rejection probabilities as a function of the threshold 7, and can be used for the minimisation
of the overall cost of equation (1). In this case, ©x (R, n) is expressed as :

log ©x (R,n) =
Argmin {R (1= 70 (1) + 72 (1)} (6)

The adjusted threshold ©x (R, n) is thus estimated from the Gaussian model of the log-likelihood
distributions yielded by the speaker and the non-speaker models, for speech data uttered by the true
speaker and by other speakers.

3 Estimation of the threshold

3.1 Data sets

For each client speaker X, the speaker model X is trained from an enrollment set £ and the non-
speaker model A is estimated from an other set of data £. This last set is composed of speech data
produced by a given population of non-speakers. We also have an other set of data, denoted Z and
produced by a third population of pseudo-impostors, which has no intersection with the two previous

populations. Tt is then possible to estimate the means px (X) and p(X) and the standard deviations
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ox(X) and o5 (X) by scoring the pseudo-impostor data Z both with the speaker and the non-speaker
models.

If we have an additional set of data 7, corresponding to speech material uttered by speaker X, which
have not yet been used for the enrollment of model X', these tuning data can be used in order to
estimate the two remaining means and standard deviations gy (X), pp(X) and oy (X), o¢(X), by
simply scoring them with models X and X'. In a first series of experiments reported below, we adopted
this approach based on separate tuning data.

3.2 Estimation of the means and variances

In our experiments, we have used 3 distinct estimators of the mean and variance of the likelihood
distributions :

1) 100 % data : the maximum likelihood estimators are used, i.e the classical mean and standard
deviation of a data population.

2) 95 % most typical : the mean and standard deviation computed from the 95 % most typical
frames (at the utterance level), i.e. after having removed the 2.5 % minimum and 2.5 % maximum
frame likelihood values.

3) 95 % best : the mean and standard deviation computed from the 95 % frames with the highest
likelihood (at the utterance level), i.e. after having removed the 5 % minimum frame likelihood
values.

When a 95 % frame selection approach was used for the mean and standard deviation estimations, the
same approach was used during the test, before computing the average client likelihood of equation
(5), and the average non-speaker likelihood.

3.3 Enrollment data as tuning data

In the context of practical applications, the need for collecting separate tuning data for each client can
be a quite heavy constraint. It 1s indeed desirable to estimate the decision threshold from the training
data themselves. In this context, we have considered a particular case, consisting in calculating px (X),
pp(X) and ox(X), o£(X) using the enrollment data &.

For what concerns the means and standard deviations estimated for non-speaker data, we continue
resorting to the separate set of pseudo-impostor data 7, as this is not a severe constraint for a practical
application.

3.4 Approximation of the adjusted threshold

An approximation of the solution of equation (6) can be obtained numerically using the approximation

F(7) of J7_ G (v) dv, calculated as follows [3] :

1

1
s = sgn (u) g:Ee

T— /-
T l4asu

o

1
2U

f =1- q (blt + bztz + b3t3 + b4t4 + b5t5)

1—s

and ultimately : 7 = sf + 5

with the following numerical constants :

a = 0.231641900 b; = 0.319381530
by = —0.356563782 bs = 1.781477937
by = —1.821255978 b5 = 1.330274429
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4 Experiments

4.1 Database

The approach described above was tested in text-dependent speaker verification. The database is
composed of 35 speakers who recorded up to 10 telephone sessions containing 5 times their 7-digit
card number and 5 times the 10 (connected) digits in a random order. The language is French.

A sub-population C of 20 speakers (15 male and 5 female) made 10 calls, and are considered as clients.
Each call is composed of a maximum of 4 utterances. The client data are split into 3 subsets : the
enrollment set &, corresponding to 1 or 2 calls times 4 utterances (resp. & and &), a tuning set 7
consisting of the first utterance of 1, 2 or 3 other calls (71, 72, 73) and a test set A composed of
all valid utterances in the 5 remaining calls (374 tests altogether). Clients are also used randomly as
impostors against other clients (set A : 3496 impostor attempts).

Part of the utterances from the 15 other speakers (10 male, 5 female) are used as the set of pseudo-
impostors data. The non-speaker model is a world-model trained on a set of 500 speakers (distinct
from the 35). Thus 7 and & are distinct and both independent of the client.

Pseudo-impostor and impostor (test) utterances against a given client are generated by rearranging
digit segments from the 10-digit sequence in the same order as those in the client’s 7-digit number.
The segmentation is yielded by the world-model.

4.2 Speaker verification algorithm

The speech signal is represented by 12 LPC-Cepstrum coefficients plus the log-energy, together with
their delta and delta-delta, totalling 39 acoustic features per frame3. Each speaker model and the
world-model are word-based Left-Right Hidden Markov Models, with 3 states per phoneme and 1
Gaussian mixture per state.

Viterbi decoding is used for verification, and frame-based likelihoods are taken along the Viterbi path.

4.3 Results

Tables 1, 2 and 3 summarize results obtained on the test set, with various threshold tuning procedures.
They correspond respectively to the 3 estimations of the means and variances exposed in section 3.2.
The False Acceptance and False Rejection Rates (FAR and FRR) are computed as the average of
each speaker’s FAR and FRR. The threshold adjustment procedure is used to tune the system to a
minimum 7'E R, in the equirisk condition (R =1).

In each table, the top part corresponds to enrollment set &, whereas the bottom part corresponds
to &. Scores 1 and 2 are obtained with a threshold setting procedure that uses only the enrollment
data. Scores 3, 4 and 5 resort to 1, 2 or 3 additional client (tuning) utterances. Scores 6 and 7 are
obtained a posteriori, on the test data : they are reported for comparison with the others, but they
are not relevant from an application point of view.

The difference between scores 1 and 2 illustrates the benefit of using a speaker-dependent adjusted
threshold. Scores 3, 4 and b show that the use of 2 utterances of tuning data yields a lower TER than
the one obtained with the enrollment data. Frame selection for computing the LR and adjusting the
threshold seems an efficient strategy, with a slight advantage for the 95 % best. The difference between
scores b and 6 are owed to a better estimation of the test log-likelihood distribution parameters using
the test data, whereas the difference between scores 6 and 7 translate the fact that the Gaussian model
for the log-likelihood distribution does not match exactly the test data log-likelihood distribution.

3The frame size is 25.6 ms, with a frame shift of 10 ms. Pre-emphasis coefficient is 0.94. A Hamming window is used.
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[ Estim.of © [ FAR (%) | FRR (%) | TER (%) ||

) e=1 0.40 28.11 28.51
2) & and Z 0.47 8.94 941
3) 7, and I 5.37 3.18 8.55
1) T, and I 511 259 7.70
5) T, and I 431 158 6.39
6) Aand A 2.83 1.00 3.83
7) min TER 0.11 1.29 1.40
) o=1 1.21 6.47 7.68
2) & and Z 0.37 6.68 7.05
3) 7, and I 468 2.25 6.93
1) T, and I 3.84 2.25 6.09
5) T; and I 3.84 1.25 5.09
6) Aand A 244 1.00 3.44
7)  min TER 0.03 1.29 1.32

Table 1: False Acceptance Rate, False Rejection Rate and Total Error Rate for various adjustments of
the threshold ©. Top : 1 enrollment session - Bottom : 2 enrollment sessions. Estimation of the means
and variances using the 100 % data method.

5 Conclusions

The use of Gaussian models of the speaker and impostor log-likelihood ratio distributions provides
a simple yet reasonably accurate procedure for a priori threshold setting in speaker verification. The
means and variances of these models can be estimated from the enrollment data and/or from very
few tuning data. Future work will aim at increasing the robustness of the method, will consolidate 1t
with wider scale experiments, and will study its behaviour in other risk conditions.

References

[1] R.O. DUDA, P.E. HART : Pattern Classtfication and Scene Analysis. John Wiley & Sons,
1973.

[2] L.L. SCHARF : Statistical Signal Processing. Detection, Estimation and Time Series Analysis.
Addison-Wesley Publishing Company, 1991.

[3] G. SAPORTA : Probabilités, analyse des données et statistique. Editions Technip, 1990.



8 IDIAP-RR 97-05

[ Estim.of ® | FAR (%) | FRR (%) | TER (%) |

1) e=1 0.58 20.89 21.47
2) & andZ 0.76 5.49 6.25
3) TiandZ 4.29 2.77 7.06
4) Trand T 3.21 2.47 5.68
5) Tsand T 3.00 2.47 5.47
6) Aand A 2.90 1.00 3.90
7)  min TER 0.18 2.00 2.18
1) o=1 1.74 5.88 7.62
2) &andZ 0.31 3.43 3.74
3) TiandZ 3.13 1.84 4.97
4) Trand T 2.68 1.84 4.52
5) Tz and T 2.45 1.84 4.29
6) Aand A 2.57 1.00 3.57
7)  min TER 0.03 1.00 1.03

Table 2: False Acceptance Rate, False Rejection Rate and Total Error Rate for various adjustments of
the threshold ©. Top : 1 enrollment session - Bottom : 2 enrollment sessions. Estimation of the means
and variances using the 95 % most typical method.

[ Estim.of © [ FAR (%) | FRR (%) | TER (%) ||

1) e=1 1.08 16.54 17.62
2) & andZ 0.95 4.94 5.89
3) TiandZ 4.26 2.00 6.26
4) Tyand T 3.55 1.50 5.05
5) Tz and T 2.89 1.00 3.89
6) Aand A 2.96 1.00 3.96
7)  min TER 0.05 1.54 1.59
1) ©e=1 2.21 5.34 7.55
2) &andZ 0.71 4.09 4.80
3) TiandZ 3.66 1.50 5.16
4) Trand T 2.95 1.25 4.20
5) Tsand T 2.87 1.00 3.87
6) Aand A 2.65 1.00 3.65
7)  min TER 0.00 1.00 1.00

Table 3: False Acceptance Rate, False Rejection Rate and Total Error Rate for various adjustments of
the threshold ©. Top : 1 enrollment session - Bottom : 2 enrollment sessions. Estimation of the means
and variances using the 95 % best method.



