View metadata, citation and similar papers at brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

—

O 4 \I

o

LLl

o

I

O OPTIMAL SETTING OF WEIGHTS,
o

< LEARNING RATE, AND GGAIN
L G. Thimm and E. Fiesler

o Email: Thimm@idiap.ch, EFiesler@idiap.ch
LLl

e IDIAP-RR 97-04

o

O

_ APRIL 1997

Dalle Molle Institute

for Perceptive Artificial

Intelligence @ P.O.Box 592 e

Martigny e Valais e Switzerland

phone +41 — 27 —721 77 11

fax +41 — 27 —-721 77 12

e-mail secretariat@idiap.ch

internet http://www.idiap.ch



https://core.ac.uk/display/147914747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IDTAP Research Report 97-04

OPTIMAL SETTING OF WEIGHTS, LEARNING RATE, AND
GAIN

G. Thimm and E. Fiesler
Email: Thimm®@idiap.ch, EFiesler@idiap.ch

APRIL 1997



2 IDIAP-RR 97-04

he optimal setting of the initial weights, learning rate, and gain of the activation function, which
are key parameters of a neural network, influencing training time and generalization performance,
are investigated by means of a large number of experiments using ten benchmarks using high order
perceptrons.

The results are used to illustrate the influence of these key parameters on the training time and
generalization performance and permit general conclusions to be drawn on the behavior of high order
perceptrons, some of which can be extended to the behavior of multilayer perceptrons. Furthermore,
optimal values for the learning rate and the gain of the activation function are found and compared
to those recommended by existing heuristics.

Keywords: high order perceptron, learning rate, initial weights, gain, generalization, training time

1 Introduction

The time to train neural networks with the backpropagation learning rule depends much on the initial
values of the weights and biases, the learning rate(s), the type of sigmoidal function(s), the network
topology, and on learning rule parameters like the momentum term. The optimal values for these
parameters are a prior: unknown because they depend on the training data set used. In practice it
is infeasible to perform a global search for obtaining the optimal values of these parameters in this
multidimensional space.

However, there are many possible ways to optimize the training time, the generalization perform-
ance, or other properties of neural networks. Specialized techniques modify the topology of neural
networks [5] or the learning rule [9]. Others try to find optimal values for the initial weights, learning
rate, momentum term, and so on. The sophisticated methods, which for example modify the network
topology, usually assume that the more basic parameters, like the learning rate, the initial weights,
and so on, are (almost) optimal, or at least assume such values to be initially optimal. Tt is therefore
the intension of this study to gain more insight on the influence of these parameters on the neural
network behavior. Furthermore, it is attempted to find a good approximation of the optimal initial
value of some basic parameters, where “good” means that the behavior of the network is close to that
with optimal values.

2 Optimization of Initial Weights and Learning Rate, and
Gain

The study of weight initialization methods, of which an overview is given in [15], shows that researchers
mainly try to optimize learning speed and generalization performance of neural networks initialized
with random weights in two ways. Firstly, by using different distributions for the weights. Secondly,
by estimating a good initial weight variance! based for example on:

e the steepness of the sigmoidal function,

e the number of connections feeding into a neuron (= fan-in of a neuron),

e (analysis of) the data set on which the network will be trained,

e the number of connections in the network, and

e constants that emerged from experiments (for example: a constant multiplied with the maximum
of the first derivative of the activation function determines the initial weight range).

. . . . . . 2
1For a uniform distribution over the interval [—u, u] the variance 02 equals =
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As a previous study showed that the shape of the weight distribution has almost no influence on
the training time or the generalization performance of a trained neural network [15], it is chosen to
be a uniform distribution in this publication.

Another parameter for the optimization of the training that can be neglected 1s either the learning
rate or the gain of the activation functions as a theorem proven in [16] shows that two neural networks
N and N’ that differ only in their learning rates 5 and %', their weights w' and w, and the gain of
the activation function @ and 3’ behave in the same way if

Loy L=t (1

I N ow

This relation permits to neglect a variation of one of the three parameters during a search for an
2

optimal combination. Hence, the gain will be chosen to be one in the following sections”.

On the other hand, no rule for the optimal selection of the learning rate exist: the learning rate
is usually chosen by some rule of thumb and changed until the network appears to converge. It is
however not justifiable on the basis of equation 1 to hold two parameters fixed and to search only for
an optimal value for the remaining one. The experiments will show that this is indeed insufficient.

In order to circumvent the problem of finding the optimal learning rate, an adaptive approach is
used where the learning rate is automatically modified and optimized during the training process. It
should be remarked that these methods are not applied here, as they aim at decreasing the training
time independent of the initial learning rate [9, 13]. This means that they can always be used as “add-
on”. Furthermore, these methods often introduce new parameters, which reduces the user-friendliness.
Another drawback is that most of these methods require off-line learning, which is commonly assumed
to be slower than on-line training [7, page 119]. However, some adaptive learning rates methods can
compensate to a large extent for a bad initial value [9].

3 The Choice of the Activation Function

The convergence of the training process, the generalization performance of the network, etc. depends,
besides the learning parameters and the topology, also on the activation function. It is, for example,
easily verifiable that for classification tasks (with Boolean target values), the linear activation function
leads to bad results: the weighted sum of the connection outputs has to be almost exactly 0 and 1
(respectively -1 and 1), which is very restrictive: the training does not only aim at separating the classes
by adjusting a hyper-surface® between them but maximizing the distances between this surface and
the data. Better performance is therefore often obtained if a logistic activation function is used in the
output neurons, which prevents the network to “overshoot” the correct output values. Furthermore,
high order perceptrons appear to learn classification problems faster if the hyperbolic tangent is used
as activation function. As compared to the case when the standard sigmoid is used, the weight changes
for incorrectly classified patterns with a network output false are more important.

In this publication, Boolean values true and false are represented by 0.9 and —0.9, in order to
prevent the absolute weight values from growing without bound. Alternatively, a modified logistic in
the range (0,1.1), or hyperbolic tangent function in the range (—1.1,1.1) could be used.

For data sets with continuous valued targets, the choice of the sigmoidal function is more difficult,
and arguments similar to those given for the Boolean case are not conclusive. The experiments for
this type of data sets are therefore performed with both the linear and logistic activation function.

2 Another application of equation 1 are optical hardware implementations of neural networks which impose a certain
gain on the activation function, and therefore require an adaptation of the other two learning parameters [12].

3 A n-dimensional surface(s) represented by input vectors for which the output of the network is zero, and on either
side of the surface, the network output has a different sign.
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3.1 Experiments with Weight Variance and Learning Rate

In order to relate the initial weight variance, learning rate, and training time to the generalization
performance, as well as to evaluate the weight initialization techniques and to determine the best
learning rate, the following scheme is used:

1. The optimal learning rate and weight initialization variance for fast convergence are globally
searched for several data sets and three different activation functions with a fixed gain. These
functions are the hyperbolic tangent, the logistic, and the (linear) identity function. A search
for an optimal gain is not required, as any network can be “normalized” to have only activation
functions with a gain equal to one (compare equation 1).

2. Similarly, the optimal learning rate and weight initialization variance for good generalization
performance are searched for.

3. The outcome of these experiments is used to estimate the efficiency of some heuristics for the
estimation of the optimal weight range (compare [15] and table 2).

The search for an optimal combination of learning rate and weight initialization variance can
theoretically be done by a line-search algorithm, assuming that both the average training time and
the generalization performance, form functions with a smooth surface: the gain is kept to a standard
value of one, and either the initial weight range or the learning rate is varied until an optimum for
both values 1s found. However, due to the randommness of the initial parameters, the results of a
simulation are subject to statistical fluctuation. Observable effects of this fluctuation are; among
others, variations of the convergence time and generalization performance of neural networks for
different sets of initial weights, even if they are drawn from the same distribution. Consequently, first
a line-search algorithm is used to get close to the optimal combination of the initial weight variance
and learning rate. Then, the surrounding of this found combination is then searched for the optimal
combination of learning rate and weight variance.

During the experiments, the networks are considered to have converged if the criteria of table 1
were met. The Digits data set is a subset of the NIST 3 data base [6], whereas the others are available
from [10]. Their details are discussed in [15].

| Data set | precision on training set |
Solar MSE smaller than 0.06
CES MSE smaller than 0.1

Monk 1-3 | 100% correctly classified
Auto-mpg | MSE smaller than 0.06

Glass MSE smaller than 0.03
Servo MSE smaller than 0.07
Wine 100% correctly classified
Digits 99% correctly classified

Table 1: The convergence conditions for the experiments concerning the optimal choice of training
parameters.

4 First results

To give a typical example of the behavior of the required training time as a function of initial weight
variance and learning rate, a series of experiments using the Solar data set is discussed here in detail.
The outcome of these experiments is shown in figure 1, where the training time in number of iterations
is displayed as a function of the learning rate and the initial weight variance. The contour plot beneath
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the graph shows its channel-like shape with an outlet towards where the weight variance 1s zero. It
can be seen that for a constant learning rate the convergence time remains almost constant for weight
variances in the interval [0.0,0.1]. If the learning rate is well-chosen, and the weight variance is
optimal, then the high order perceptrons always converge in a near-optimal number of training cycles.
The overall shape of the plot in figure 1 is common to all the experiments performed during this study,
only the location and the width of the channel vary with the data set, the order of the network, as
well as with other parameters.

Interestingly, the optimal learning rate for high order perceptrons is sometimes, as for this example,
well above 1.0. In stark contrast to this observation is the recommendation of using a learning rate
below 1.0 for a “standard” setting® of the other training parameters.

training time
o688888388

Figure 1: The training time of a high order perceptron as a function of weight variance and learning
rate for the Solar data set.

These results are in contrast with the behavior of multilayer perceptrons. In figure 2 it can be seen
that the training time of the multilayer perceptron as a function of the weight variance and learning
rate has a bowl-like shape if trained on the Solar data set. The overall shape of this graph is probably
representative for most multilayer perceptrons and data sets as it was observed during all experiments
performed for this study (only the location of the minimum and the width of the bowl changed). Also,
multilayer perceptrons usually fail to converge for weight variances equal to zero, and their training
becomes slow when the initial weights become very small, as already stated by S. E. Fahlman [4]. In
figure 2 it 1s shown that, similar to high order perceptrons, the optimal learning rate for multilayer
perceptrons can also be bigger than one.

The average generalization performance of high order perceptrons, that have the same topology
and are trained on the same data set, as a function of the learning rate and initial weight variance
is displayed in figure 3. It can be seen that, similar to the training time, the generalization error is
almost constant if the initial weight variance is below a certain value and the learning rate is unchanged.
Furthermore, the generalization error increases for values above this limit; only a few exceptions to
this behavior were encountered among 27 series of experiments. For a constant weight variance below
this limit, the generalization performance improves (the error decreases) with a decreasing learning
rate - just up to the point where the high order perceptrons cease to learn, that is, they do not
converge in a certain number of iterations. This point is symbolized by the gray bar in figure 3.

* A “standard” setting is based on a gain of 1.0. Any other learning rate could be used if the gain is not defined [16].
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Figure 2: The training time of a multilayer perceptron as a function of weight variance and learning
rate for the Solar data set.

Multilayer perceptrons behave similarly, as shown in figure 4, as confirmed by experiments per-
formed with the Solar, Wine, Glass and Servo data sets. The most important difference with high
order perceptrons is that the networks do not or only very slowly converge for weight variances close
to zero. Such variances should therefore not be used for multilayer perceptrons.

However, the average over many simulations, which figure 3 displays, is somewhat misleading: the
minimal error observed for all pairs of learning rate and initial weight variance for which the high
order perceptrons converge is almost constant. Only the upper limit of the interval, in which errors
can be observed, depends on the learning rate and weight variance. In other words, the minimal error
is constant, whereas its maximum varies, as shown in figure b, where the lower and the upper graph
are the minimal, respectively the maximal, error as a function of learning rate and weight variance.

In contrast to the behavior of the learning time as described above, the behavior of generalization
performance is less uniform and decreases for some data sets before the network ceases to learn due
to too small a learning rate (giving a similar graph as for the learning rate in figure 1). A variation of
this behavior is shown by a network with a logistic activation function trained on the CES data set:
the generalization performance decreases together with a decreasing learning rate. More precisely, the
distance between the minimal and maximal generalization performance, as displayed in figure 6, is
almost constant over the whole range of learning rates and weight variances. Other variations of this
behavior can be expected.

5 Optimizing Learning Speed

Table 3 shows an overview of the approximately 800,000 simulations performed with high order per-
ceptrons. It lists the combinations of initial weight variances and learning rates for which the conver-
gence time is (near) optimal for the different activation functions and network orders. The notation
a = 1.04+8 means that the 95% confidence interval is (smaller than) the interval given by the limits
obtained by adding 8 to, respectively subtracting 8 from, the last digit of 1.04. In other words, a lies
in the interval [0.96,1.12].
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Figure 3: Generalization performance of a high order perceptron as a function of weight variance and
learning rate for the Solar data set.

Globally, for fixed learning rates not far from the optimum, a weight variance exists below which
the network converges in almost the same number of iterations. This includes zero weights. Above a
certain weight variance, the convergence time increases very fast.

When comparing the results of other methods for determining the ‘optimal’ weight variances from
table 2 with the results in table 3 or table 4, one observes that these methods rarely give a good
estimation for the upper limit of the weight variance. However, as high order perceptrons converge in
an almost optimal time if all weights are zero or very close to, there is no reason to use a higher value.

It can be easily seen that the activation function has an important influence on the optimal learning
rate: the latter is for high order perceptrons with a logistic activaton function on average 25 times
higher than for a linear activation function. This factor varies between 5 and 85 for the different data
sets. This behavior is at least partly related to the lower first derivative of the logistic as compared to
the linear activation function (% at zero and even smaller for other values). If the logistic activation
function is scaled to have a first derivative of one at zero, then the learning rate has to be divided
by 16 in order to obtain the same network behavior. This number compares well with the difference
between the optimal learning rate for the linear and logistic activation function (compare equation 1).

For the linear activation function, optimal learning rates between 0.02 and 0.6 have been observed.
Surprisingly, for the logistic activation function this range is [0.5,7.0], where most rates are above
1.0, even though a learning rate smaller than 1.0 is usually recommended. The range [0.005,2.5], in
which optimal learning rates have been found for the networks with the hyperbolic tangent activation
function and trained on the classification problems, is very big as compared to the approximation
problems. However, it is more likely that the data sets and target patterns being Boolean causes this
behavior rather than the use of a different activation function (compare section 2).

The choice of the activation function changes also the convergence time: networks with a logistic
activation function converge on average faster than those with a linear one. Although for the Solar
data set, the network using logistic functions is not able to attain the same precision as a network
with a linear activation function. Vice versa, first order perceptrons with a logistic activation function
are able to learn the Servo data set up to a higher precision than the ones with a linear activation
function.
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Figure 4: Generalization performance of a multilayer perceptron as a function of weight variance and
learning rate for the Solar data set.

The estimation of the optimal learning rate according to P. Haffner et al. does not depend on the
number of inputs or connections. This coincides with table 3 which reveals no correlation of these
parameters and the optimal learning rate. On the contrary, the experiments performed with the Solar
and Servo data sets show that two networks can have the same topology but different optimal settings
for the learning rate and weight variance. These special settings for these parameters can therefore
be regarded as a property depending on the information contents of the data set. However, those
values are only of little help: the discrepancies among optimal learning rates for different data sets
are big, and a learning rate can cause non-convergence for a certain data set, although it is optimal
for another. No value for the constant ¢ in his formula exists which is can be used for any data set.

The method of Y. K. Kim et al. does not match with the outcome of the experiments performed
with the high order perceptrons, as he states that very small weight variances are not good.

The optimal settings seem also independent of the complexity of the problem: the Servo data set,
which is supposed to be difficult to learn (which is confirmed by the high order perceptrons needing a
larger number of training cycles to learn this data set as compared to others), has an optimal learning
rate comparable to “simpler” data sets, as for example the Solar data set. Similar hypotheses based
on a relation between the number of inputs, outputs, or patterns and an optimal setting of a training
parameter can not be confirmed from the experiments.

6 Optimizing Generalization Performance

Table 4 shows the ranges of initial weight variances and learning rates for which the high order
perceptrons performed best on the test data in terms of generalization performance.

In all but one experiment, high order perceptrons initialized with zero weights, or random values
of a variance close to zero, performed optimally. The exception is represented by a first order per-
ceptron with a linear activation function trained on the Servo data, which has a better generalization
performance for initial weight variances above 3.0 (experiments were performed for variances up to
10%, for which the training time was about 11 times as high as for a zero weights and 5 times as
compared to a weight variance of 3.0).
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Figure 5: Minimal and maximal error as a function of weight variance and learning rate for the Solar
data set.

No activation function is overall preferred since for three experiments the networks with the lo-
gistic function yield a better performance and during three experiments those where linear activation
functions are used performed better (in the other cases the differences are within statistical error
margins, or the results are not comparable due to different convergence criteria).

Note that the networks with all initial weights equal to zero do not produce the same solution for
each simulation. The presentation of the patterns in a random sequence is sufficient to diversify them.
Furthermore, the variance of the generalization performance on trained networks initialized with zero
weights is usually similar to those for initial weight variances in the range of optimal values. This
leads to the conclusion that the variety of the solutions for zero and small random weights is equal.
However, small random weights may perform better for data sets for which a random presentation of
the elements is insufficient to prevent weights from assuming similar values [11], although this behavior
was not observed during all the experiments with high order perceptrons.

Comparing the optimal learning rates for fast convergence with those for a good generalization
performance, the following can be observed: for the linear and hyperbolic tangent activation functions,
the values are equal or similar. This behavior differs for the logistic activation function: the learning
rate for fastest convergence is almost always higher as compared to those for best generalization per-
formance. Similar to the results for fast convergence, a correlation between the number of connections
and the optimal learning rate is not observed, even if only networks of the same order are considered.

7 Conclusion

For high order perceptrons an upper limit for the initial weight variance exists, below which both
the network convergence and generalization performance are near-optimal (only one exception was
observed for 27 series of experiments). In contrast to the multilayer perceptrons, even an initialization
with zero weights gives near-optimal results if the learning rate is well-chosen. Consequently, a near-
optimal generalization performance can be achieved with an initialization of high order perceptrons
using zero or very small random weights. The latter choice should be preferred in order to prevent
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Figure 6: Minimal and maximal error as a function of weight variance and learning rate for the CES
data.

trouble with exceptional data sets. However, the use of all initial weights equal to zero does not
prevent the networks to assume different solutions: the presentation of the patterns in a random order
(which is in any case advantageous to ensure convergence) is sufficient to ‘break the symmetry’.

The optimal initial weight variance depends on the data set for both an optimal training time
and generalization performance. These values do not depend in an observable way on the number of
connections or the order of the network.

A data set independent method for the determination of an optimal learning rate could not be
found. Moreover, the experiments show that the methods using only parameters concerning the
network topology, such as the number of connections or the order of the network, as well as the type
and steepness of the activation function, are most likely to fail. The optimal learning rate probably
depends mainly on the clustering of the data and is therefore impossible to estimate in a simple way.
However, the shape of the activation function changes the range of optimal learning rates (see the
tables 3 and 4 for these ranges) which further depends on whether one optimizes training time or
generalization performance. The best generalization performance can even be observed for learning
rates which sometimes cause slow or non-convergence.
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| o x| | |07 | 3] | [8] | [14] |

Linear activation function
CES 2 6 | - 0.5 0.4 0.2 0.08n -

3 10 | - 0.3 0.1 0.03n -
Auto- 1 8 | - 0.4 0.5 0.2 0.057n -
mpg 2 36 | - 0.8 0.03 0.05 0.002n -
Solar 1 13 | - 0.2 0.3 0.1 0.02n -

2 79 | - 0.04 0.007 0.02 0.0005n -
Servo 1 13 | - 0.2 0.3 0.1 0.029n -

2 79 | - 0.04 0.007 0.02 0.0005n -
Glass 1 16 | - 0.2 0.3 0.1 0.01n -

2 121 | - 0.03 0.003 0.02 0.0002n -
Logistic activation function
CES 2 6 | 0.3 0.5 1.7 0.2 0.08n 0.1

3 10 | 0.2 0.3 0.1 0.03n 0.04
Auto- 1 8§ | 0.2 0.4 2.0 0.2 0.057n 0.06
mpg 2 36 | 0.05 0.8 0.1 0.05 0.002n 0.003
Solar 1 13 | 0.2 0.2 1.2 0.1 0.02n 0.02

2 79 | 0.02 0.04 0.03 0.02 0.0005n 0.0006
Servo 1 13 | 0.2 0.2 1.2 0.1 0.02n 0.02

2 79 | 0.02 0.04 0.03 0.02 0.0005n 0.0006
Glass 1 16 | 0.1 0.2 1.0 0.1 0.01n 0.02

2 121 | 0.02 0.03 0.01 0.02 0.0002n 0.0003
Hyperbolic tangent activation function
Br. vowels 2 66 | 0.002 0.05 0.009 0.03 0.0002n 0.001
Wine 2 92 | 0.002 0.03 0.005 0.02 0.0001n 0.005
Monk 1-3 2 154 | 0.0009 | 0.02 0.002 0.01 4*10_517 0.0002
Fi. vowels 2 231 | 0.0006 | 0.01 0.0009 0.008 2*10_517 8+10~°
Digits 2 2081 | 0.0009 | 0.001 | 1%107° | 0.0009 | 710 "n | 9%107"

An entry ’-’ means that this method could not be applied.

Table 2: Initial weight variances as calculated by different authors.
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Linear activation function

Learing rate | Weight variance Q | Iterations
CES 0.5-0.6 0.0-0.1 2 14.9%+4
CES 0.4 0.0-0.1 3 11. 75
Auto-mpg? 0.1-0.15 0.0-0.01 1 10.4+6
Auto-mpg 0.1 0.0-0.01 2 34.3+33
Solar 0.2-0.3 0.0 - 0.001 1 5.3+4
Solar 0.2 0.0 - 0.0005 2 4142
ServoP 0.07 0.0 - 0.001 1 3.043
Servo 0.12 0.0-0.1 2 1664
Glass 0.1 0.0-0.01 1 8.7+5
Glass 0.02 0.0 - 0.0001 2 6.0+2
range [0.02, 0.6] max: [0.0001, 0.1]
Logistic activation function
CES 3.0 0.0-0.5 2 15.446
CES 2.0 0.0-0.01 3 10.1z4
Auto-mpg? 2.0-4.0 0.0-0.01 1 1.6+1
Auto-mpg 1.5-2.0 0.0-0.2 2 34.0435
Solar® 5.0 -7.0 0.0-0.01 1 1.741
Solar 5.0-7.0 0.0-0.1 2 8.T+4
Servo 6.0-7.0 0.0-1.0 1 31.8+12
Servo 4.0-5.0 0.0-0.2 2 15.83
Glass 2.0 0.0-0.2 1 8.1+4
Glass 0.5 0.0-0.01 2 5.3+4
range [0.5, 7.0] max: [0.01, 0.5]
Hyperbolic tangent activation function
British vowels | 0.005 0.0 - 0.0001 2 55.0k10
Wine 2.5 0.0-0.2 2 36.4436
Monk 1 0.05-0.07 0.0-0.01 2 3441
Monk 2 0.05 0.0-0.01 2 50.4+11
Monk 3 0.05 0.0 - 0.005 2 14.89
Finish vowels | 1.5- 2.0 0.0-0.2 2 54.3+14
Digits 0.1 0.0-0.01 2 13.3+7
range [0.005, 2.5] | max: [0.0001, 0.2]

AThe error of 0.06 could not be reached, 0.075 is used instead
BThe error of 0.07 could not be reached, 0.13 is used instead

Table 3: Best settings for learing rate and weight variance for high order perceptrons with a gain of
1 if fast learing is important.
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Linear activation function

Learing rate | Weight variance Q W error
CES 0.5-0.7 0.0-0.1 2 21 0.0731
CES 0.6 0.0-0.5 3 6 | 0.070k2
Auto-mpg? | 0.1¢ 0.0-0.1 1 8 0.066+1
Auto-mpg 0.15 0.0 - 0.005 2 36 | 0.0b7+1
Solar 0.1 0.0-0.1 1 13 | 0.073+:
Solar 0.004 - 0.005 | 0.0 - 0.0001 2 79 | 0.072+0
ServoP 0.2 >3.0 1 13 0.126£1
Servo 0.12-0.15 0.0-0.1 2 79 | 0.112+1
Glass 0.15 0.0-1.0 1 16 | 0.027+:1
Glass 0.04 0.0 - 0.001 2 121 | 0.035+1
range [0.004, 0.7] max: [0.0001, 1.0]
Logistic activation function
CES 1.0-2.0 0.0-0.5 2 2 | 0.082+1
CES 1.0 0.0-0.1 3 6 | 0.086+1
Auto-mpg? | 0.2 - 2.0 0.0-0.01 1 8 0.063+1
Auto-mpg 0.3-0.4 0.0-0.2 2 36 0.0571
Solar® 3.0 - 20.0¢ 0.0-5.0 1 13 | 0.084+:
Solar 0.3-1.0¢ 0.0-0.1 2 79 | 0.06%1
Servo 1.0¢ 0.0-2.0 1 13 0.080+0
Servo 0.1-7.0 0.0-0.1 2 79 | 0.01181
Glass 3.5¢ 0.0-2.0 1 16 | 0.026+1
Glass 0.9 0.0-0.01 2 121 | 0.034+1
range [0.1, 20.0] max: [0.01, 5.0]
Hyperbolic tangent activation function
Br. vowels | 0.005-0.01 | 0.0-0.01 2 726 47.8:2%
Wine 2.5¢ 0.0-0.7 2 276 12.145%
Monk 1 0.1¢ 0.0 - 0.05 2 154 10.%5%
Monk 2 0.05¢ 0.0 - 0.05 2 154 17.245%
Monk 3 0.07¢ 0.0-0.01 2 154 16.2+3%
Fi. vowels | 2.0¢ 0.0-0.2 2 1,155 20.9£7%
Digits 0.01-0.02¢ | 0.0-0.01 2 | 20,810 4.61%
range [0.005, 2.5] max: [0.01, 0.7]

A A max. error of 0.06 could not be reached, 0.075 is used instead

B A max. error of 0.07 could not be reached, 0.13 is used instead

©Better gener. is observable for learn. rates causing sometimes non-convergence.

The error is given as mean square diff., resp. as percent misclassification (%).

Table 4: Best settings for learning rate and weight variance for high order perceptrons with a gain of
1 if good generalization is important.



