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Abstract� The iterated di�erence of polyhedra V � P�n�P�n�� � � Pk� � � �� has been proposed
independently in ���� and ��� as a su�cient condition for V to be exactly computable by a two	
layered neural network
 An algorithm checking whether V � IR

d is an iterated di�erence of
polyhedra is proposed in ����
 However� this algorithm is not practically usable because it has
a high computational complexity and it was only conjectured to stop with a negative answer
when applied to a region which is not an iterated di�erence of polyhedra
 This paper sheds some
light on the nature of iterated di�erence of polyhedra
 The outcomes are � �i� an algorithm which
always stops after a small number of iterations� �ii� su�cient conditions for this algorithm to be
polynomial and �iii� the proof that an iterated di�erence of polyhedra can be exactly computed
by a two	layered neural network using only essential hyperplanes
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� Introduction

Several papers have been lately devoted to the problem of characterizing the regions of the Euclidian
space IRd that can be computed by a depth�
 multilayer perceptron �MLP�� i�e� an MLP with d real
inputs� one hidden layer of linear threshold processing units and a single output with a linear threshold
processing unit ��� 
� ��� 	� � ��� Di�erent variations of the problem are considered � the function of
the MLP and the characteristic function of the region are required to match either �i� exactly �����
i�e� for any x � IRd� or �ii� almost everywhere �	� ��� i�e� everywhere but on a set of measure �� or
even �iii� up to � ��� i�e� for any x at distance more than � with the border of V �

In what follows we will denote by LP� the set of regions V which are computable by depth�
 MLPs
and if nothing is speci�ed� exact computation will be intended�

Simultaneously to the characterization of these regions V in LP�� another important issue is the
complexity of the MLP computing V � LP�� which is essentially expressed by its number of hidden
units� This question did not get as much as attention as the characterization� although it is crucial for a
practical usage of any other results� It turns out that even very simple regions V � LP� seem to require
a tremendous amount of hidden units� If we denote by Hh�

h
the closed halfspace fx j x�h � h�g and

if � � � is a positive integer� consider the region

V � � H�
����� �H�

������ �H��
������ � � � H�

������ �H�
������� �H��

����� � ���

which is known to be in LP� ��� 	�� To the best of our knowledge� any solution known for the com�
putation of V with a depth�
 MLP requires a number of hidden units growing linearly with �� i�e�
exponentially with the size of the instance V which is in O�log����� This simple example gives us
some faith in the following conjecture �

Conjecture � There exists a region V � IR� in LP� such that any depth�
 MLP com�
puting V almost everywhere has a number of hidden units exponential in the size of a
compact encoding of V �

Let us assume that a region V � the instance of the problem � is speci�ed by a �nite list of closed
halfspaces� called basis of V � and an expression of V as a union of intersections of some of these
halfspaces or their complements �e�g� equation �����

A region V can have� in general� di�erent minimal bases �in the sense of inclusion�� A halfspace is
called essential to V if it belongs to any basis of V � If V � IRd is a union of intersections of �nitely
many halfspaces and each of these intersections is fully dimensioned �i�e� containing one open ball of
dimension d�� it can be easily veri�ed that V has a unique minimal basis� denoted HV � which is the
set of essential halfspaces� Thus in what follows� if no particular basis is speci�ed for a region V � full
dimension of any component of V is implicitly assumed� and the basis of reference is HV �

The complexity problem raised in Conjecture � incites us to focus on a subclass of LP�� denoted
LP�� de�ned as the set of regions V computable by a depth�
 MLP where the hidden units are
computing only essential halfspaces� Two major issues should be addressed �
Q� �nd a geometrical characterization of LP��

Q
 given a basis H and a region V de�ned as a union of intersections of some halfspaces and
complements of halfspaces in H� what is the complexity of deciding whether V � LP��

In ��� we identi�ed Q
 as co�NP�Complete� In the present work� we study the class of iterated dif�
ferences of polyhedra� proposed simultaneously in ���� �� as a subclass of LP�� In the rest of this
paper� we �rst recall what has been done in this �eld� present an e�cient algorithm for recognizing
the iterated di�erence of polyhedra and discuss its consequences�

� Iterated di�erence of polyhedra
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De�nition ��� polyhedron �resp� pseudo�polyhedron� is an intersection of �nitely many
closed �resp� open or closed� halfspaces� A region V � IRd is an iterated di�erence of

polyhedra �resp� pseudo�polyhedra� if it can be expressed as V � P�n�P�n�� � �Pk� � � ���
where each Pi� i � �� � � � � k� is a polyhedron �resp� pseudo�polyhedron�� The class of iterated

di�erences of polyhedra �resp� pseudo�polyhedra� is denoted D �resp� eD��
Proposition � D � eD � LP��

Proof� The �rst inclusion is obvious� The proof of the second inclusion is based on the
fact that PnV � LP� for any pseudo�polyhedron P and any V � LP� �see ���� ���� �

In ����� the authors propose the following algorithm for the recognition of D �

input V � IRd�
initialization V� � V � l � ��
main loop while Vl �� � and � l � � or else Pl �� Pl��� loop

l � l� ��
Pl � op�Vl����
Vl � PlnVl���

end loop

output P�n�P�n�� � � Pl��n�PlnVl�� � � �� � V

Algo�op� � Recognition of iterated di�erences of polyhedra�

The operator �op� stands for the closure of the convex hull� denoted conv� The authors proved that
V � D i� Algo�conv� stops with Vl � �� However� they only conjectured that Algo�conv� could not
cycle� or in other words� that if V �� D� it would stop with Pl � Pl�� �� ��

At a �rst glance� one might believe that choosing �op� simply as the convex hull would lead to
an algorithm Algo�conv� for the recognition of eD� but as mentioned by the authors� the convex hull
of the di�erence between two pseudo�polyhedra is not necessarily a pseudo�polyhedron �see Figure 

in ������ Moreover� with Algo�conv� in mind we cannot conclude that D � LP�� since the computation
of the convex hull will add non essential halfspaces� Finally� the main weakness of Algo�conv� is its
complexity� given that

� there is no proof that it always stops�

� even if V � D� there is no bound on the number of iterations�

� the computation of the convex hull is exponential in d�

Starting from this basis� the only contribution of this paper is the suggestion of a more appropriate
operator �op� which will solve very simply each of the problems mentioned above�

� The hull operator

De�nition ��� iven a collection E of regions of IRd� the operator hullE is de�ned as follows
�

	X � IRd� hullE�X� �
�

E�E� E�X

E �

In order to illsutrate the relation between �hull� and �conv�� let C denote the set of all closed half�
spaces� eC the set of all halfspaces �closed and open�� and X int the interior of a set X �according to the
usual topology of IRd�� In ��� we have established that for any X � IRd�

convint�X� � hullintC �X� � conv�X� � hull
eC
�X� � conv�X� � hullC�X��

Consequently� Algo�hullC� is identical to Algo�conv�� Moreover� hull
eC
does not su�er from the same

drawback as �conv� towards pseudo�polyhedra in the sense that hull
eC
�PinPj� is a pseudo�polyhedron

for any pseudo�polyhedra Pi and Pj� Therefore� the whole work in ���� can be restated using hull
eC

instead of conv and Proposition 	 will follow�
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P� P� P�

Algo�hull
eH
�

V

Algo�hull
eC
�

Figure �� Comparison of Algo�hull
eC
� and Algo�hull

eH
��

Each halfplane is indicated by a line �border� and an arrow �pointing toward the halfplane�� The halfplanes
shown in Figure V constitute the basis of V � Dashed lines denote open faces of gray regions� Algo�hull

eC
�

adds two halfplanes to solve the problem� while Algo�hull
eH
� uses only the basis�

Proposition � Algo�hull
eC
� recognizes exactly eD�

However� by exploiting the hull operator a bit further� we will get a much simpler algorithm for the
recognition of eD�

� Main result

Let V be an arbitrary region of IRd and H a basis of V � Let eH be de�ned as fH j H � H or IRdnH �
Hg�

Theorem � Algo�hull
eH
� recognizes exactly eD�

The proof of this theorem is too long to be presented here and can be found in ���� Instead� we will
try to give an idea of why this is true and we will enumerate the consequences of this result�

For a simple region V � IR�� Figure � illustrates the two di�erent sequences of pseudo�polyhedra
produced by Algo�hull

eC
� and by Algo�hull

eH
�� where H is just HV �

Corollary � Any region V � IRd that can be expressed as an arbitrary iterated di�erence
of pseudo�polyhedra can also be expressed as an iterated di�erence of pseudo�polyhedra
P�n�P�n�� � �Pl� � � �� where each Pi� i � �� � � � � l is an intersection of halfspaces and�or com�
plement of halfspaces� all taken from a basis of V �xed a priori�

Proof� For the desired basis H of V � simply run Algo�hull
eH
� on the input V to get the

Pis� �

Proposition 
 can be improved as follows �

Corollary � D � eD � LP� � LP��

Proof� Let V by a 
�dimensional square with two opposite edges closed� the other two
edges open� and without its corners� V is a pseudo�polyhedron but it is not in D since
Algo�conv� when run on V stops with V� � V� �� �� Thus D is a proper subset of eD� The
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last inclusion is obvious and the region V given in ��� with � � 
 shows that it is a proper
inclusion�

The inclusion eD � LP� follows from the fact that if H is a basis of V and if P is a pseudo�
polyhedron whose basis is a subset of H� then V � LP� implies PnV � LP�� The proof of
the latter result follows easily when the geometrical problem is transposed into a Boolean
problem �see ����� Finally� the Swiss �ag provides a region which is in LP�n eD� �

Proposition � Algo�hull
eH
� stops after at most j eHj steps�

Proof� At iteration l of Algo�hull
eH
�� let eHl denote the set of halfspaces H � eH such that

H is either essential to Pl or its supporting hyperplane intersects P int

l � The proposition

follows from the observation that eH � eH� 
 � � � 
 eHl and that all these inclusions are
proper� �

Finally� let us consider the complexity of Algo�hull
eH
�� For V given as a union of s pseudo�polyhedra�

the computation of hull
eH
�V � requires that for each halfspace H � eH and each of the s components of

V � we check whether this component P is contained in H or in IRdnH� This is done by testing whether
P � �IRdnH� or P � H is empty� It requires to check the non feasibility of a system of inequalities�
which can be done by linear programming in a time polynomial in the number of inequalities �at most

j eHj� and the number d of variables� Thus the overall computation of hull
eH
�V � is polynomial in d� s

and j eHj�
Even though we replaced the costly convex hull operator by hull

eH
working in polynomial time�

and we have a linear bound on the number of steps of the algorithm� the recognition of eD is a NP�
Complete problem ���� The complexity is in the computation of the di�erence of two sets �PlnVl���� If
V is given as a union of pseudo�polyhedra �this expression corresponds to a Disjunctive Normal Form�
in Boolean terminology�� to get PnV we need to complement V � which is hard in general �dualization of
an arbitrary DNF�� If both V and IRdnV are available as unions of intersections of pseudo�polyhedra�
Algo�hull

eH
� can be slightly modi�ed so that it avoids any calculation of complements�

Proposition 	 If expressions as unions of pseudo�polyhedra are available for both V and
IRdnV � the recognition of eD can be solved in polynomial time�
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