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Abstract

An approach for person identification is described
based on spatio-temporal analysis of the talking face. A
person is represented by a parametric model of the
visible speech articulators and their temporal
characteristics during speech production. The model
consists of shape parameters, representing the lip
contour and intensity parameters representing the grey
level distribution in the mouth vegion. The model is
used to track lips in image sequences where the model
parameters are recovered from the tracking results.
While some of these parameters relate to speech
information, others are intuitively related to different
persons and we show that models based on these
Jeatures enable successful person identification. We
model the shape and intensity parameters as mixtures of
Gaussians and their temporal dependencies by Hidden
Markov Models. Identifying a talking person is
performed by estimating the likelihood of each model
Jor having generated the observed sequence of features
and the model with the highest likelihood is chosen as
the identified person.

1. Introduction

Recognising persons is a task which humans perform
with remarkable accuracy but which still remains a very
challenging problem for computers. Two of the main
approaches for person recognition by machine are face
recognition [1, 2, 3] and speaker recognition [4, 5,
6 ]. Both of these approaches have mainly been treated
independently.

The appearance of a face can change considerably
during speech and due to facial expressions. In
particular, the mouth is subject to fundamental changes
but at the same time it is one of the most distinctive
parts of a face. Face recognition research has largely
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ignored appearance changes of the face and focused on
static images with neutral facial expressions.
Approaches for facial expression analysis have been
proposed in [7, 8, 9, 10, 11]. A face recognition
system which accounts for these changes is likely to be
more robust to talking faces and facial expressions.

Although visual speech information is well known to
provide information, complementary to the acoustic
speech signal which can improve speech perception
[12], speaker recognition has mainly concentrated on
the acoustic signal and ignored the multi-modal nature
of speech.

Person recognition combining face recognition and
speaker recognition have recently been proposed in
[13][14 ]. In this case, face recognition was performed
on static images with neutral expressions and speaker
recognition was based on acoustic analysis of isolated
digits uttered by the subject.

We describe a new approach for person identification
based on spatio-temporal information extracted from
the speaking face. We show that these parameters
provide important speaker dependent information,
which could be incorporated in visual (face
recognition), acoustic (speaker recognition) and audio-
visual person recognition systems to increase their
performance and robustness to impostors.

2. Feature Extraction

Face recognition and facial expression recognition
requires detailed analysis of the whole face but most
facial motion during speech occurs around the mouth
arca. We are interested in facial changes due to speech
and therefore analyse the mouth region of the talking
face. We assume that much distinct information of a
given speaker is contained in the lip contours and
intensity values around the mouth area. During speech
production the lip shape varies smoothly but still
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Figure 1: First six principal modes of shape variation
captured in the training set across all subjects and
over all word sequences.

contains speaker dependent information. We try to
exploit this fact by building a spatio-temporal model for
each speaker which describes the mouth of the speaker
and its temporal changes during speech production. For
recognition, the likelihood of these models for having
generated the observed mouth features is estimated and
the model with the highest likelihood is chosen to be
the recognised person.

We use a shape model to describe the lip contours
and a profile model to describe intensity values around
the lip contours. An approach based on active shape
models [15 ] is used to locate and track the lips over an
image sequence. These are deformable models which
represent an object by a set of labelled points, in our
case the lip contours. The principal modes of
deformation are obtained by performing principal
component analysis on a labelled training set. Any
shape can be approximated by a lincar combination of
the mean shape and the first few principal modes of
deformation.

We use a grey level model for representing the
intensity values around the lip contours. It is used for
image search to describe the fit between the model and
the image. The model describes one dimensional
intensity profiles centred at the model points and
perpendicular to the contour, similar to the one
described in [15]. The difference of our approach is that
we concatenate the profiles of all model points to form
a global profile vector. Principal component analysis is
performed to obtain the main modes of profile
variation. Any profile of the training set can be
approximated by a lincar combination of the mean
profile and the first few modes of profile variation. The
profile model deforms with the contour model and
therefore always represents the same object features.

This method enables robust tracking of the inner and
outer lip contour for different persons and lighting
conditions. The weights for the principal shape modes
and profile modes are used as shape parameters and

Figure 2: Example images from a sequence of the
word “three” with tracking results.

profile parameters, respectively. They are obtained
from the tracking results and serve as features for the
recognition system. We have described the detailed
feature extraction method elsewhere [16 ][17 ].

The first few modes of shape variation are shown in
Figure 1. The modes account for variation between
speakers and variation due to speech production. Figure
2 shows example images of a tracking sequence for a
person saying the word “three”.

3. Modelling Talking Faces

We follow the approach where the face, or in this work
part of the face, is represented in 2D, with no explicit
3D information. This approach is also motivated by
psychophysical experiments, which suggest that humans
may represent faces in a caricature like manner by
considering shape information of individual parts and
their spatial relationship [18]. We use the model
parameters and their temporal dependencies during
speech production for representing a particular talking
person.

The shape and intensity parameters are extracted at
each time frame to form a frame dependent feature
vector. They are invariant to scale, translation, and
rotation. The shape parameters are also invariant to
illumination. Although scale might contain important
speaker dependent information, we did not use it as
feature since it was not possible to estimate absolute
scale values from the database we used.

The shape and intensity parameters contain both,
speech relevant information and speaker dependent
information (intensity parameters also  contain
illumination information). We have previously shown
that these features provide important information for
visual speech recognition (lipreading) [19 ]. Here, for
speaker identification, the training method has to learn
which features contain speaker dependent information
rather than speech dependent information.

3.1 Representation

A visual observation O of a speaker is represented by a
sequence of feature vectors

O0=o0,,0,,...0; (1)



where o, is the feature vector extracted at time £. We
assume that the feature vectors of a person follow
continuous probability distributions which we model by
mixtures of Gaussians. We further assume that temporal
changes during speech are piece-wise stationary and
follow a first-order Markov process. Thus each Hidden
Markov Model (HMM) state represents several
consecutive feature vectors. These assumptions are not
strictly true, but are also often made in the acoustic
domain. They can be improved by increasing the
number of states which decreases the number of times
an observation frame remains at a particular state.
Similar modelling techniques have been used for
acoustic speaker modelling [6].

A HMM representing a particular person is defined
by the parameter set

A=(A,B,m). @)

A ={ay} is the matrix of state transition probabilitics
from state 7 to state j, B the matrix of observation
probabilitics b{0) for statc ; and TU the vector with
probabilitics T of entering the model at state i. The
observation probabilities are modelled as mixtures of
Gaussian distributions:

B(0)=> " N(OHum i) 3)

where c;, is the mixture weight for state /7 and mixture
m and N(o,,Z) a multivariate Gaussian with mean [
and covariance matrix 2. A model of a talking person in
shown in Figure 3.

3.2 Training

Speaker recognition tests can be classified into text
dependent (TD) and text independent (TI) tasks. For
text dependent tasks the test utterance is known while
for text independent tasks it is not known. We
performed experiments for both TI and TD mode,
where TI mode here is restricted by the size of the
vocabulary. For the TD mode, we built one HMM per
word class and speaker while for TI mode, only one
HMM was built per speaker, representing all word
classes. In TD mode, the spoken word is known and
only HMMs of that word class are used for
identification. In TI mode, the spoken word is not
known, thus text independent HMMs representing all
word classes are used for identification.

We trained HMMs which only allow self-loops and
sequential transitions between the current and the next
state. The initial state probabilities are set to zero for all
states but the first. The remaining parameters are
estimated from the extracted model parameters of the
training set. Each HMM is initialised by linear
segmentation of the training vectors onto the HMM
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Figure 3: Spatio-temporal model of a talking face for
a 3 state HMM with observation probabilities b(o)
and transition probabilities a.
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states followed by iterative segmental k-means
clustering and Viterbi alignment. The models are
further re-estimated using the Baum-Welch procedure,
which maximises the likelihood of model A for having
generated the observed sequence Q. This is a common
training procedure used in acoustic speech modelling
[20].

3.3 Identification

Speaker identification is performed using the Viterbi
algorithm which calculates the most likely state
sequence for each HMM of having generated the
observed sequence. Classification is performed by
estimating the maximum a posteriori probability

(MAP)
argmax P(A; |O) )
|

where A; represents the model of the identified person i
and O the observation sequence. The a posteriori
probability can be obtained using Bayes rule

P(OA)P(A)
p(0)

where P(A; represents the prior probability of subject i
and P(OJA,) the probability distribution of the feature
sequence O for model A; The terms P¢A;), which are
assumed to be equal for all subjects, and p(Q) are
constant for all speakers and can therefore be ignored in
the MAP calculation. P(OJ\, is simply the product of
the transition probabilitics ¢ and the output probabilities
b(y) of the most likely state sequence.

P(\,|0) = 3)

4. Experiments

Experiments were performed using the Tulips 1
database [21]. It consists of 96 grey-level image
sequences of 12 speakers (9 male, 3 female) each
saying the first four digits in English twice. We used the
first utterance of ecach word and each speaker as the



training set for the HMMs and the second instances as
the test set. All images were Gaussian filtered and
scaled to compensate for global illumination
differences.

Speaker recognition performance is often evaluated
as a function of training duration and test duration and
typically performance increases if either of those
periods is increased. Typical periods used in speaker
recognition are 10-30 seconds for training and 3-10
seconds for testing. In our experiments, average training
duration was 0.3 seconds for TD tests and 1.3 seconds
for TI tests. Average test duration was 0.3 seconds for
both tasks. Both periods were therefore considerably
shorter than typical periods used in the acoustic domain.
Particularly for TD mode, the small size of the
database, providing only one example of each word for
a given speaker, caused difficulties in estimating the
HMM parameters. We tried to alleviate these problems
by applying different training and parameter tying
methods [22 ].

We performed experiments for different feature
vectors and different HMM architectures. Best results
were obtained with HMMs of 4 states and 3 mixture
components. The performance generally increased by
using more mixture components, but the database only
permitted to train about 3 or 4 components. The feature
vector either contained shape parameters or intensity
parameters or both. 10 parameters were used for
describing the shape and 20 parameters for describing
the profile.

4.1 Text Dependent Test (TD)

For TD recognition we built a separate HMM for each
subject and each word class, resulting in a total of 48
models. Due to the small size of the database we used a
sequential training procedure, where re-estimation is
based on the models trained in the previous step:

I. Estimating variances for one global model using
all training data.

II. Re-estimating means, mixture weights and
transition probabilities for subject independent
word models.

III. Re-estimating the mean and mixture weights for
subject dependent word models.

All HMMs have therefore the same variances and the
transition probabilities of any word class are tied for all
subjects. Only the means and mixture weights are
estimated individually for each class and each subject.

Identification is based on speaker dependent models
of the spoken word. The likelihood for each speaker is
estimated and the speaker with the highest likelihood is
chosen as the identified person. Results for TD tests are

Shape | Intensity | Shape + Intensity
™D | 729% | 89.6% 91.7 %
TI | 833% | 958% 97.9 %

Table 1: Accuracy for text dependent (TD) and
text independent (TI) person identification
tests using shape and intensity parameters.

summarised in Table 1. Best performance was achieved
by using both, shape and intensity parameters.

4.2 Text Independent Test (TI)

For text independent person recognition we built one
HMM for each subject, representing all utterances. The
motivation behind this approach is to construct one
model which represents different word classes by
different mixture components. Parameter estimation
was not as critical as in text dependent mode and was
performed as follows:

I. Estimating variances, means and mixture

weights for one global model.

II. Re-estimating mean, mixture weights and
transition probabilities for a fext independent
speaker model.

Only the variances are therefore tied for all models.
Table 1 shows the results for text independent person
identification. Best performance was also obtained by
using both, shape and intensity parameters. Although
the performance for TI mode is generally worse than for
TD mode in the acoustic domain, our system performed
better for TI mode. But this is likely to be due to the
very small training set for TD mode and the constrained
training procedure needed to train the models. For both
tasks, performance was higher for intensity parameters
than for shape parameters. This could however be due
to the first few intensity modes which probably account
for different illumination and therefore bias recognition
results. The use of a larger database with different
lighting conditions could be used to reduce this effect.

5. Conclusions

We have described a new approach for person
identification based on spatial and temporal analysis of
the talking face. An important property of the extracted
facial parameters is their very low dimension and their
invariance to scale, translation and rotation. Although
we achieved high performance by using these features,
they only provide partial information of a talking face.
Other speech related information might be contained in
the texture of the lips and the shape of the teeth.



Because of the novelty of the approach we were only
able to perform experiments on a small database.
Considering the small training and test duration, results
are very encouraging and demonstrate that lip
information is an important cue for person identification
which might be used to enhance the accuracy and
robustness of current acoustic or visual person
verification systems.
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