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One of the main strengths of connectionist systems, also known as neural networks, is their massive parallelism.
However, most neural networks are simulated on serial computers where the advantage of massive parallelism is lost.
For large and real-world applications, parallel hardware implementations are therefore essential. Since a discretization
or quantization of the neural network parameters is of great benefit for both analog and digital hardware implementa-
tions, they are the focus of study in this paper. In 1987 a successful weight discretization method was developed, which
18 flexible and produces networks with few discretization levels and without significant loss of performance. Howewver,
recent studies have shown that the chosen quantization function is not optimal. In this paper, new quantization
functions are introduced and evaluated for improving the performance of this flexible weight discretization method.
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1 Introduction

A connectionist system or neural network is a massively parallel network of weighted interconnections which
connect one or more layers of non-linear processing elements (neurons). To fully profit from the inherent
parallel processing of these networks, the development of parallel hardware implementations is essential.
However, these hardware implementations often differ in various ways from the ideal mathematical descrip-
tion of a neural network model. It is, for example, required to have quantized network parameters, in both
electronic and optical implementations of neural networks. This can be because device operation 1s quantized
or a coarse quantization of network parameters is beneficial for reducing VLSI surface area.

Most of the standard algorithms for training neural networks are not suitable for quantized networks
because they are based on gradient descent and require a high accuracy of the network parameters: 8
bits are required for on-chip recall and 16 bits for on-chip training [Holt-93]. Several weight discretization
techniques have been developed to reduce the required accuracy further without deterioration of network
performance. One of the earliest and perhaps most successful of these techniques [Fiesler-88] is further
investigated and improved in this paper. The basic idea of this method is to first train the neural network
with the backpropagation algorithm without quantization of the weights. Secondly, the resulting continuous
weights are discretized by mapping them to the closest discretization level. These discrete weights are
then used in the forward propagation pass through the network. The resulting errors, which are based
on the difference between the obtained and desired network outputs, are subsequently used to update the
continuous weights during the backward pass until satisfactory performance is obtained. In the original
paper [Fiesler-88] a staircase shaped threshold function with a uniform distribution is used to perform the
mapping to equidistant discrete weights.

In this paper, five alternative quantization functions are introduced and compared with the original one
in a series of experiments on five real-world benchmark problems. The main goal is to improve the original
quantization function as much as possible to obtain networks with both a small number of discrete weight
levels and good generalization performance on unseen test data. Therefore, our attention is not restricted to
quantization functions that are well suited for hardware implementation. However, the experimental results
indicate that the three “hardware-friendly” quantization functions show the best results.
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2 Weight Discretization Algorithm

In this section, a brief description of the six weight quantization functions, their inclusion in the weight
discretization algorithm, and a discussion of their suitability for hardware implementation are presented.
The original weight discretization algorithm maps the continuous weights to discrete weight levels, obtained
from a quantization function, before each forward pass through the network. The weights are discretized by
mapping them to the discrete weight levels to which they are closest. In order for the quantization functions
to be flexible, a parameter D is included that indicates the number of weight discretization levels. The
number of levels used in the experiments described in this paper are subsequently 2, 3, 5, 7, 15, and 31.
These values have been chosen based on the fact that in digital hardware implementations generally 2P —1
discretization levels are available (D—1 bits plus a sign bit). The cases of D=2 and D=5 have been added
to obtain a more precise idea of the effects of having only a small (or even minimal for D =2) number of
discretization levels.

2.1 Description of Quantization Functions

Six weight quantization functions have been implemented and tested. First some general notations are
defined which are useful in the definition of these functions: W, is the maximum positive weight value and
W_ 1s the minimum negative weight value of the pre-trained continuous network. The maximum absolute
value of W_ and W, is denoted by Winas. The expected value (mean) of the weights calculated over the
entire pre-trained continuous network is indicated as E(w). The following quantization functions have been
implemented and tested:

Symmetrical This is the original quantization function from [Fiesler-88]. The resulting discretization
levels are symmetric around zero and equidistant, with a step size of one between the weight levels.

The intuitive disadvantage of the symmetrical quantization function is that it does not incorporate any
knowledge about the weights of the pre-trained continuous network. This information is used in the new
quantization functions such that the mapping to discrete weights does not completely perturb the results of
continuous pre-training:

Winae This quantization function divides the interval [—W a0, +Winae] in equidistant levels, resulting in
weight levels which are symmetric around zero.

Winaw_adapt This is a straightforward modification of the previous function. It consists of two different
phases and uses both W_ and W,.. In the first phase the interval [IW_.,0] and [0,V ] are divided in equidistant
levels. The second phase consists of attributing the value zero to the level that is closest to zero.

In [Bellido-93] it is concluded that the weight distribution in a neural network resembles a Gaussian-like
distribution. This means that there are many weights with small values and only few weights with large
values. The power-of-two series, which is an inaccurate but simple approximation for a Gaussian distribution,
is used in this paper to approximate the weight distribution of the pre-trained network:

Power_of_two_W,,,, This quantization function uses the interval [—Wmax,O] and [0,4+W,,ae] which is
divided using powers-of-two, that is, the weight levels are 0, £ W4, /2" for i=0,1, ..., [ (D —1)/2].

Power_of_two Instead of only using the Wy, 4, value this function divides both intervals, [~ Wi qp, F(w)]
and [E(w), Wy, using powers-of-two.

Power_of_two_adapt This is a modification of the previous quantization function which divides both
intervals [W_,F(w)] and [E(w),W,] using powers-of-two.

Not all of the described quantization functions are equally well suited for hardware implementation. Only
the quantization functions which result in weight levels that are symmetric around zero and equidistant, are
suitable. These conditions are satisfied by the Symmetrical, Wy,ar, and Power_of_two W, 4, quantization
functions. In this case the discrete weights can namely be normalized to the interval [-1,1] by dividing
them by the maximal weight value. The normalized weights can then be encoded as binary numbers. The
scaling of the weights can be compensated for by rescaling the gain (steepness) of the activation function.



benchmark network pattern set sizes input | output
topology! | train. | val. | test | range | range
Autompg 731 196 | 98 | 98 | [0,1] | [0,1]
Sunspot 12-2-1 105 | 52 | 52 | [0,1] | [0.1]
Wine 13-6-3 89 | 44 | 45 | [0,1] | [L1]
Cancer 9-6-2 350 | 174 | 175 | [0,1] | [1,1]
Diabetes 8-6-2 384 | 192 | 192 | [0,1] | [1,1]

Table 1: Summary of the benchmarks problems characteristics.

The Power_of-two_ Wy, 4, quantization function has the added advantage that the normalized discrete weight
values are restricted to powers-of-two. Therefore, simple shift registers can be employed to substitute the
more complex multipliers [Marchesi-93].

The other three quantization functions Wiaz_adaps, Power_of-two, and Power_cftwo_adapt lead to weight
levels that are not symmetric around zero and are therefore not suited for hardware implementation.

3 Experiments and Results

To evaluate the performance of the six quantization functions, a series of experiments on five real-world
benchmark problems has been performed. Each of the experiments consists of 10 different runs of the weight
discretization algorithm using one of the quantization functions on each benchmark. The characteristics
of these benchmarks and some of the network parameters are listed in Table 1. These benchmarks have
been used to assess the generalization performance on a test set which is not used during training. A
cross-validation technique with a training, validation, and test pattern set was used to decide when to stop
training.

In all the experiments a multilayer perceptron, with only one hidden layer which is fully interlayer
connected to both input and output layer, has been used. The non-linear activation function employed is a
hyperbolic tangent, while for the Auto-mpg and Sunspot benchmark a linear activation function has been
used in the output layer of the network. The desired output values for these two benchmarks are namely
real-valued (approximation problem), while the other benchmarks are classification problems with desired
output values of —1 and +1. For each run the network was initialized with different random weights in the
interval [-0.77,0.77], which has been chosen according to [Thimm-96]. Furthermore, a learning rate of 0.5, a
momentum term of 0.9, and a flat-spot constant of 0.1 have been used.

Additional information about the different benchmarks and the experimental set-up can be found in

[Lundin-96].

3.1 Discussion of Results

To evaluate the experimental results, two different performance measurements have been used. For the
approximation problems (Auto-mpg and Sunspot), the normalized mean square error on the test set is most
significant. For the classification problems (Wine, Cancer and Diabetes), the percentage of misclassified test
patterns has been used. A pattern is considered correctly classified whenever the highest network output
corresponds to the correct class.

First, it was observed that the results depend on the type of benchmark problem used. In fact, the results
can be divided into two classes: one for the classification problems and the other for the approximation
problems. Therefore, the results of these two classes are discussed separately. Due to lack of space, the
results for only two benchmarks problems are listed in tabular form: the Diabetes benchmark (Table 2) being
representative for the classification problems and the Auto-mpg benchmark (Table 3) for the approximation
problems.

A ranking system was used to evaluate the outcome of the experiments. For each benchmark and
discretization level, the test set results of the different quantization functions were ranked from one to

t4# of neurons in the input-hidden-output layer.



Discretization D # of % of misclassification Discretization D # of square error %
function epochs (mean) function epochs mean)
(mean) [ train. val. test (mean) [ train. val. test
ct 107.5 19.97 25.89 23.49 171.5 0.36 0.31 0.24
Symmetrical 216.0 24.66 30.78 25.26 Symmetrical 5.0 8.08 8.61 7.04
172.5 24.51 30.16 25.10 5.0 8.08 8.61 7.04
57.5 25.91 29.79 27.14 8.5 6.55 6.98 5.66
49.0 25.89 29.22 27.45 10.0 5.30 5.65 4.55
54.5 23.28 28.39 26.25 12.0 2.06 2.07 1.71
82.0 23.20 27.66 25.99 9.0 0.46 0.36 0.39
Wazx 56.5 28.07 29.43 30.16 Wiazx 9.0 1.69 1.49 1.64

35.5 1.18 1.10 1.21
48.5 0.58 0.45 0.45
8.0 0.43 0.39 0.33
77.5 0.44 0.34 0.32
108.5 0.38 0.31 0.27
9.0 2.22 2.26 2.27
29.5 0.99 0.90 0.96

57.5 26.43 32.08 | 29.64
64.5 22.94 28.02 25.26
67.5 22.81 27.29 27.03
98.0 20.00 26.30 24.84
136.5 20.76 26.41 24.90
5.0 33.59 36.46 | 35.94 Woax_adapt
37.5 31.69 35.62 | 34.74
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935 25.62 | 29.69 | 29.06 61.0 063 | 048 | 0.54
94.5 22.99 | 27.92 | 25.83 53.0 0.49 | 0.42 | 0.39
98.0 2062 | 2589 | 25.26 63.5 042 | 032 | 031
174.0 | 21.17 | 2682 | 25.05 038 | 030 | 027
Power—oftwo 56.5 28.07 | 29.43 | 30.16 Power—oftwo 9.0 T69 | 1.49 | 1.64
Woaw 575 26.43 | 32.08 | 29.64 Wmaz 35.5 118 | 110 | 1.21
64.5 22.94 | 28.02 | 25.26 48.5 058 | 0.45 | 0.45
54.5 21.90 | 27.76 | 26.35 36.0 050 | 0.38 | 0.40
137.0 | 2052 | 25.68 | 24.22 335 040 | 033 | 0.27
82.0 2133 | 26.56 | 26.04 37.0 039 | 033 | 027
Power—oftwo 56.5 28.07 | 29.43 | 30.16 Power_oftwo 9.0 169 | 1.49 | 1.64
59.0 33.26 | 3531 | 34.53 19.5 1.14 | 1.03 | 1.07
62.0 24.48 | 27.81 | 26.98 305 072 | 0.57 | 0.63
79.5 2086 | 26.15 | 24.01 45.0 051 | 0.38 | 0.39
735 21.20 | 27.24 | 25.21 27.0 0.44 | 035 | 0.32
75.0 2182 | 26.00 | 24.74 325 046 | 0.35 | 0.35
Power_of_two 86.5 27.01 29.01 28.80 Power_of_two 21.0 1.62 1.46 1.52
_adapt 80.0 30.49 | 33.07 | 32.60 _adapt 44.0 1.01 | 0.85 | 0.94
61.0 24.01 | 27.97 | 27.45 35.5 062 | 0.47 | 0.49
81.5 20.96 | 26.30 | 24.48 40.0 051 | 0.40 | 0.39
15 | 100.0 | 21.22 | 26.46 | 25.68 29.0 0.43 | 036 | 031
31 | 1045 | 2151 | 2677 | 2552 235 043 | 0.36 | 0.33
Table 2: Discretization results for the Diabetes Table 3: Discretization results for the Auto-mpg
benchmark. benchmark.

six. The ranking scores were then added within each quantization function and class (approximation or
classification). This gives an overall performance for all quantization functions in each class.

As s illustrated in table 2, the Symmetrical quantization function performs good for classification prob-
lems using only two or three discretization levels. In fact, for the Cancer and Diabetes benchmarks the
same performance is not obtained by any of the other quantization functions until using seven or more
discretization levels. For example, using D = 3, the percentage of misclassification for the Symmetrical
quantization function is 25.10 (rightmost column of Table 2). The Power_of-two quantization function is
the first to produce a better result with D =7. Of the five new quantization functions the Power_of_two,
Power_of two W, ae, and Wi, quantization functions perform best. For these functions, D=7 is sufficient
for both power-of-two based quantization functions, while the results for W, 4., using =15, are comparable
with those from the continuous pre-training. Less good performance was noticed for the Wy,4z_qdap: and
Power_of two_adapt quantization functions.

For the approximation problems, the Symmetrical and to a less extent the Power_of-two quantization
functions give an overall poor performance. Note, that this differs from the results for the classification
problems. The Power_of two Wz ,\Wmnar and Winae_adap: quantization function perform best and results
for D=15 are comparable with the ones from continuous pre-training. For example, using 15 discretization
levels the Power_of two W, 4, quantization function gives a mean square error percentage of 0.27 (rightmost
column of Table 3), which is almost as good as in the continuous case. The Power_of-two_adapt performs

$C7 denotes the results for the continuous pre-training.



well on the Auto-mpg problem, but less good on the Sunspot problem.

4 Conclusions
The performance of six different quantization functions, in training multilayer perceptrons with a small
number of discrete weight levels, has been evaluated.

Two of these quantization functions, W,,., and Power_of two W, 4., show generally good results in
a series of experiments including both classification and approximation problems. For these quantization
functions, only 15 discrete weight levels are sufficient to obtain nearly the same performance as for a network
with continuous weight values. Both quantization functions are also well suited for hardware implementation,
for example by using only shift registers when Power_of-two_ W, 4, 18 implemented.

The results also indicate that for classification problems the Symmetrical quantization function performs
good when using only ternary weights {—1,0,1} or even binary weights {—1,1}.
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