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One of the main strengths of connectionist systems� also known as neural networks� is their massive parallelism�
However� most neural networks are simulated on serial computers where the advantage of massive parallelism is lost�
For large and real�world applications� parallel hardware implementations are therefore essential� Since a discretization
or quantization of the neural network parameters is of great bene�t for both analog and digital hardware implementa�
tions� they are the focus of study in this paper� In ���� a successful weight discretization method was developed� which
is �exible and produces networks with few discretization levels and without signi�cant loss of performance� However�
recent studies have shown that the chosen quantization function is not optimal� In this paper� new quantization
functions are introduced and evaluated for improving the performance of this �exible weight discretization method�
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� Introduction
A connectionist system or neural network is a massively parallel network of weighted interconnections which
connect one or more layers of non�linear processing elements 
neurons�� To fully pro�t from the inherent
parallel processing of these networks� the development of parallel hardware implementations is essential�
However� these hardware implementations often dier in various ways from the ideal mathematical descrip�
tion of a neural network model� It is� for example� required to have quantized network parameters� in both
electronic and optical implementations of neural networks� This can be because device operation is quantized
or a coarse quantization of network parameters is bene�cial for reducing VLSI surface area�

Most of the standard algorithms for training neural networks are not suitable for quantized networks
because they are based on gradient descent and require a high accuracy of the network parameters� �
bits are required for on�chip recall and �� bits for on�chip training �Holt����� Several weight discretization
techniques have been developed to reduce the required accuracy further without deterioration of network
performance� One of the earliest and perhaps most successful of these techniques �Fiesler���� is further
investigated and improved in this paper� The basic idea of this method is to �rst train the neural network
with the backpropagation algorithm without quantization of the weights� Secondly� the resulting continuous
weights are discretized by mapping them to the closest discretization level� These discrete weights are
then used in the forward propagation pass through the network� The resulting errors� which are based
on the dierence between the obtained and desired network outputs� are subsequently used to update the
continuous weights during the backward pass until satisfactory performance is obtained� In the original
paper �Fiesler���� a staircase shaped threshold function with a uniform distribution is used to perform the
mapping to equidistant discrete weights�

In this paper� �ve alternative quantization functions are introduced and compared with the original one
in a series of experiments on �ve real�world benchmark problems� The main goal is to improve the original
quantization function as much as possible to obtain networks with both a small number of discrete weight
levels and good generalization performance on unseen test data� Therefore� our attention is not restricted to
quantization functions that are well suited for hardware implementation� However� the experimental results
indicate that the three �hardware�friendly� quantization functions show the best results�
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� Weight Discretization Algorithm
In this section� a brief description of the six weight quantization functions� their inclusion in the weight
discretization algorithm� and a discussion of their suitability for hardware implementation are presented�
The original weight discretization algorithm maps the continuous weights to discrete weight levels� obtained
from a quantization function� before each forward pass through the network� The weights are discretized by
mapping them to the discrete weight levels to which they are closest� In order for the quantization functions
to be �exible� a parameter D is included that indicates the number of weight discretization levels� The
number of levels used in the experiments described in this paper are subsequently �� �� �� �� ��� and ���
These values have been chosen based on the fact that in digital hardware implementations generally �D��
discretization levels are available 
D�� bits plus a sign bit�� The cases of D�� and D�� have been added
to obtain a more precise idea of the eects of having only a small 
or even minimal for D� �� number of
discretization levels�

��� Description of Quantization Functions
Six weight quantization functions have been implemented and tested� First some general notations are
de�ned which are useful in the de�nition of these functions� W� is the maximum positive weight value and
W
�

is the minimum negative weight value of the pre�trained continuous network� The maximum absolute
value of W

�

and W� is denoted by Wmax� The expected value 
mean� of the weights calculated over the
entire pre�trained continuous network is indicated as E
w�� The following quantization functions have been
implemented and tested�

Symmetrical This is the original quantization function from �Fiesler����� The resulting discretization
levels are symmetric around zero and equidistant� with a step size of one between the weight levels�

The intuitive disadvantage of the symmetrical quantization function is that it does not incorporate any
knowledge about the weights of the pre�trained continuous network� This information is used in the new
quantization functions such that the mapping to discrete weights does not completely perturb the results of
continuous pre�training�

Wmax This quantization function divides the interval ��Wmax��Wmax� in equidistant levels� resulting in
weight levels which are symmetric around zero�

Wmax adapt This is a straightforward modi�cation of the previous function� It consists of two dierent
phases and uses bothW

�

andW�� In the �rst phase the interval �W�

��� and ���W�� are divided in equidistant
levels� The second phase consists of attributing the value zero to the level that is closest to zero�

In �Bellido���� it is concluded that the weight distribution in a neural network resembles a Gaussian�like
distribution� This means that there are many weights with small values and only few weights with large
values� The power�of�two series� which is an inaccurate but simple approximation for a Gaussian distribution�
is used in this paper to approximate the weight distribution of the pre�trained network�

Power of two Wmax This quantization function uses the interval ��Wmax��� and ����Wmax� which is
divided using powers�of�two� that is� the weight levels are �� �Wmax��

i for i��� �� ���� b
D� ����c�

Power of two Instead of only using the Wmax value this function divides both intervals� ��Wmax�E
w��
and �E
w��Wmax�� using powers�of�two�

Power of two adapt This is a modi�cation of the previous quantization function which divides both
intervals �W

�

�E
w�� and �E
w��W�� using powers�of�two�

Not all of the described quantization functions are equally well suited for hardware implementation� Only
the quantization functions which result in weight levels that are symmetric around zero and equidistant� are
suitable� These conditions are satis�ed by the Symmetrical � Wmax� and Power of two Wmax quantization
functions� In this case the discrete weights can namely be normalized to the interval ������ by dividing
them by the maximal weight value� The normalized weights can then be encoded as binary numbers� The
scaling of the weights can be compensated for by rescaling the gain 
steepness� of the activation function�
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benchmark network pattern set sizes input output
topologyy train� val� test range range

Auto�mpg ����� ��� �� �� �	
�� �	
��
Sunspot ������ �	 � � �	
�� �	
��
Wine ������ �� �� � �	
�� ���
��
Cancer ����� �	 ��� �� �	
�� ���
��
Diabetes ����� ��� ��� ��� �	
�� ���
��

Table �� Summary of the benchmarks problems characteristics�

The Power of two Wmax quantization function has the added advantage that the normalized discrete weight
values are restricted to powers�of�two� Therefore� simple shift registers can be employed to substitute the
more complex multipliers �Marchesi�����

The other three quantization functionsWmax adapt� Power of two� and Power of two adapt lead to weight
levels that are not symmetric around zero and are therefore not suited for hardware implementation�

� Experiments and Results
To evaluate the performance of the six quantization functions� a series of experiments on �ve real�world
benchmark problems has been performed� Each of the experiments consists of �� dierent runs of the weight
discretization algorithm using one of the quantization functions on each benchmark� The characteristics
of these benchmarks and some of the network parameters are listed in Table �� These benchmarks have
been used to assess the generalization performance on a test set which is not used during training� A
cross�validation technique with a training� validation� and test pattern set was used to decide when to stop
training�

In all the experiments a multilayer perceptron� with only one hidden layer which is fully interlayer
connected to both input and output layer� has been used� The non�linear activation function employed is a
hyperbolic tangent� while for the Auto�mpg and Sunspot benchmark a linear activation function has been
used in the output layer of the network� The desired output values for these two benchmarks are namely
real�valued 
approximation problem�� while the other benchmarks are classi�cation problems with desired
output values of �� and ��� For each run the network was initialized with dierent random weights in the
interval ������������� which has been chosen according to �Thimm����� Furthermore� a learning rate of ���� a
momentum term of ���� and a �at�spot constant of ��� have been used�

Additional information about the dierent benchmarks and the experimental set�up can be found in
�Lundin�����

��� Discussion of Results
To evaluate the experimental results� two dierent performance measurements have been used� For the
approximation problems 
Auto�mpg and Sunspot�� the normalized mean square error on the test set is most
signi�cant� For the classi�cation problems 
Wine� Cancer and Diabetes�� the percentage of misclassi�ed test
patterns has been used� A pattern is considered correctly classi�ed whenever the highest network output
corresponds to the correct class�

First� it was observed that the results depend on the type of benchmark problem used� In fact� the results
can be divided into two classes� one for the classi�cation problems and the other for the approximation
problems� Therefore� the results of these two classes are discussed separately� Due to lack of space� the
results for only two benchmarks problems are listed in tabular form� the Diabetes benchmark 
Table �� being
representative for the classi�cation problems and the Auto�mpg benchmark 
Table �� for the approximation
problems�

A ranking system was used to evaluate the outcome of the experiments� For each benchmark and
discretization level� the test set results of the dierent quantization functions were ranked from one to

y� of neurons in the input�hidden�output layer�
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Table �� Discretization results for the Diabetes

benchmark�
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Table �� Discretization results for the Auto�mpg

benchmark�

six� The ranking scores were then added within each quantization function and class 
approximation or
classi�cation�� This gives an overall performance for all quantization functions in each class�

As is illustrated in table �� the Symmetrical quantization function performs good for classi�cation prob�
lems using only two or three discretization levels� In fact� for the Cancer and Diabetes benchmarks the
same performance is not obtained by any of the other quantization functions until using seven or more
discretization levels� For example� using D � �� the percentage of misclassi�cation for the Symmetrical

quantization function is ����� 
rightmost column of Table ��� The Power of two quantization function is
the �rst to produce a better result with D � �� Of the �ve new quantization functions the Power of two�
Power of two Wmax� and Wmax quantization functions perform best� For these functions� D�� is su�cient
for both power�of�two based quantization functions� while the results forWmax� usingD���� are comparable
with those from the continuous pre�training� Less good performance was noticed for the Wmax adapt and
Power of two adapt quantization functions�

For the approximation problems� the Symmetrical and to a less extent the Power of two quantization
functions give an overall poor performance� Note� that this diers from the results for the classi�cation
problems� The Power of two Wmax�Wmax and Wmax adapt quantization function perform best and results
for D��� are comparable with the ones from continuous pre�training� For example� using �� discretization
levels the Power of two Wmax quantization function gives a mean square error percentage of ���� 
rightmost
column of Table ��� which is almost as good as in the continuous case� The Power of two adapt performs

z�C� denotes the results for the continuous pre�training�
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well on the Auto�mpg problem� but less good on the Sunspot problem�

� Conclusions
The performance of six dierent quantization functions� in training multilayer perceptrons with a small
number of discrete weight levels� has been evaluated�

Two of these quantization functions� Wmax and Power of two Wmax� show generally good results in
a series of experiments including both classi�cation and approximation problems� For these quantization
functions� only �� discrete weight levels are su�cient to obtain nearly the same performance as for a network
with continuous weight values� Both quantization functions are also well suited for hardware implementation�
for example by using only shift registers when Power of two Wmax is implemented�

The results also indicate that for classi�cation problems the Symmetrical quantization function performs
good when using only ternary weights f��� �� �g or even binary weights f��� �g�
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