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Rutcor Research ReportRRR 44-95, December 1995
Bounds on the Degree of High OrderBinary PerceptronsEddy Mayoraz
Abstract.High order perceptrons are often used in order to reduce the size of neuralnetworks. The complexity of the architecture of a usual multilayer network is thenturned into the complexity of the functions performed by each high order unit andin particular by the degree of their polynomials. The main result of this paperprovides a bound on the degree of the polynomial of a high order perceptron, whenthe binary training data result from the encoding of an arrangement of hyperplanesin the Euclidian space. Such a situation occurs naturally in the case of a feedforwardnetwork with a single hidden layer of �rst order perceptrons and an output layerof high order perceptrons. In this case, the result says that the degree of the highorder perceptrons can be bounded by the minimum between the number of inputsand the number of hidden units.Acknowledgements: This work was initiated while I was a postdoctoral fellow, supportedby RUTCOR and DIMACS|Center for Discrete Mathematics and Theoretical ComputerScience. I am particularly thankful to my colleague, Dr. Motakuri Ramana, for helpfuldiscussions on this matter.



RRR 44-95 Page 11 IntroductionThe usage of a single perceptron is very restricted, since limited to tasks which are linearlyseparable. To extend the computational power of this model we can either introduce hiddenlayers of non-linear functions or increase the possibilities of the perceptron by replacing itslinear combination of the inputs by a polynomial combination. The latter option leads to anew model of unit called high order perceptron.The computational power of a polynomial is such that neural networks with high orderperceptrons can be resumed to networks of a single unit. However, to restrict the com-putational complexity as well as for the sake of the generalization, it is essential to limitthe complexity of the polynomial. This can be done by bounding either the degree of thepolynomial or its number of terms.In the case of binary inputs coded as �1 and +1, there is no use to take a power of avariable, since xk = �x 8k > 0 when x 2 f�1;+1g, and thus the degree of any polynomialover n variables is at most n. Moreover, for any Boolean function f : f�1;+1gn ! f�1;+1g,the spectral representation, well known in harmonic analysis [3], is the unique polynomial ofthe form: f(b) = XK�f1;:::;ngwK Yk2K bk; (1)where the sum is taken over the 2n possible subsets K of f1; : : : ; ng. The number of non-zeroterms of this polynomial being usually exponential, it has to be limited to make this modelsuitable for applications.The computational power of feedforward networks where each unit is a high order per-ceptron with a number of terms polynomial bounded in n, the number of inputs, has beeninvestigated in [1]. In this work we show how some a priori knowledge on a given set of binarydata can be used to bound the degree of the polynomial of a single high order perceptron,while guaranteeing a correct learning of the data.Binary data appears rarely as such in the real world. Quite often they results froma preprocessing of data of a more general nature (e.g. continuous or nominal) expressedthrough logical predicates (e.g. \is older than 50", \is red", \has a rent higher than 0.27times his income"). The main result of this paper states that in such circumstances, thedegree of the polynomial in (1) can be bounded by the size of the space of the original data.A feedforward network with d inputs of continuous activations, one hidden layer of nusual perceptrons a high order perceptron as output, presents a particular situation of thistype. The input space is continuous, let say IRd, and the hidden layer provides a mappingof IRd into f�1;+1gn. Our main theorem will imply that the degree of the output unit canalways be bounded by minfd; ng.2 De�nitions and NotationsA Boolean function is a mapping f : f�1;+1gn ! f�1;+1g. A partial Boolean function isa mapping f : D � f�1;+1gn ! f�1;+1g, and D is called the domain of f . An extension



Page 2 RRR 44-95of a partial Boolean function f is any Boolean function that coincides with f on its domain.The spectral representation of a Boolean function f is the polynomial of the form (1).For any subset X of the Euclidian space IRd, Xc denotes the complement IRdnX, whileX and Xo denote respectively the closure of X and the border of X (n.b. Xo = X \ Xc), according to the usual topology of the Euclidian space. In IRd, a closed half-space ofparemetersw 2 IRd and w0 2 IR is the set fx 2 IRd j x>w � w0g. If H is a closed half-spaceof IRd of parameters w and w0, Ho clearly denotes the hyperplane fx 2 IRd j x>w = w0g.A �nite subset of closed half-spaces in IRd is called an arrangement of IRd. A cell of anarrangement H = fH1; : : : ;Hng of IRd is a non-empty intersection of n half-spaces amongH1;Hc1; : : : ;Hn;Hcn. The set of cells of an arrangement H is denoted CH.An arrangement H = fH1; : : : ;Hng of IRd is in general position if\k2KHok = ; 8K � f1; : : : ; ng; jKj > d ; (2)and \k2K Hok 6= ; 8K � f1; : : : ; ng; jKj � d : (3)Condition (2) states that there are never more than d hyperplanes through the same point,while condition (3) implies, among others, that there are no parallel hyperplanes. Thenumber of cells of an arrangement of n half-spaces in general position in IRd is given by thewell-known formula Ndn = minfd;ngXi=0  ni ! ; (4)which can be easily proved by induction and which is attributed to Ludwig Schl�ai, a Swissmathematician of the 19th century.To any arrangementH = fH1; : : : ;Hng, we can associate an injective mapping �H : CH !f�1;+1gn: the Boolean vector b = �H(C) is such that bk = 1 if C � Hk and bk = �1 ifC � Hck. Let us denote DH the subset �H(CH) of f�1;+1gn. To each bipartition of the cellsof an arrangement H corresponds a partial Boolean function de�ned from DH � f�1;+1gnto f�1;+1g.3 Main resultsThe main result presented in theorem 3.1 has been proposed independently by L. Gurvits [2]in a slightly more general setting based on the VC-Dimension of classes of discriminators.However, the algebraic approach used here to prove this result leads us to a stronger state-ment expressed in theorem 3.2, which is completely new, to the best of our knowledge.Theorem 3.1 For an arrangementH of n half-spaces in IRd, any partial Booleanfunction f : DH � f�1;+1gn ! f�1;+1g can be exactly represented by apolynomial of degree � minfd; ng.Proof: Since the spectral representation (1) of a Boolean function is of degree at most n,we only have to show that a function de�ned on DH has an extension whose spectral repre-sentation is bounded by d.



RRR 44-95 Page 3Let us �rst prove this result when the additional assumption of general position is made onthe arrangementH. An easy argument will then imply the result for arbitrary arrangements.Let Pdn denote the set of all subsets of f1; : : : ; ng of cardinality at most d. Note thatjPdn j = Ndn. Let Adn be the Ndn � Ndn-matrix, with rows indexed by the Boolean vectors ofDH, with columns indexed by the elements of Pdn and with �1 coe�cients de�ned as follows:ab;K = Yk2K bk; 8b 2 DH; 8K 2 Pdn :To a partial Boolean function f : DH ! f�1;+1g, let us associate the Boolean vectorf 2 f�1;+1gDH indexed by the elements of DH and such that fb = f(b). Similarly, letus specify a spectral representation of the form (1) and of degree d by a vector w 2 IRPdnindexed by Pdn . A necessary and su�cient condition for a partial Boolean function f : DH !f�1;+1g to have an extension with a spectral representation of degree at most d is that thesystem Adnw = f (5)has a solution in IRPdn .This system has a solution if matrix A is non-singular. This will be established byinduction on the number n of half-spaces in H.Ad0 as well as A0n are equal to the 1 � 1 matrix (+1) which is non-singular.To establish an inductive relation between Adn and Adn�1, consider the partition of CHinto C1 ] C2 ] C3: C1 = fC 2 CH j C \Hon = ;g;C2 = fC 2 CH j C \Hon 6= ;g;C3 = fC 2 CH j C \Hon 6= ; and C � Hcng:abcdefgb c d gf
H1 H2 H3- - + + + +- + +- - - - + - + + -+ - +a CHC2C3C1f1g f1,2g f3g f1,3g f2,3g; f2g+ + - - + + -+ - - + + - -+ - + - + - ++ + + + + + ++ - - + - ++ - + - - + -+ + + + - - -+e A23 =Figure 1: Simple illustration of the notations and the construction used.Each cell C of the arrangement H = fH1;H2;H3g in IR2 is denoted by a letter from a to g andby �H(C), where + and � stand for +1 and �1. The corresponding matrix A23 is presentedon the right with its block structure.This partition of CH induces a partition of DH as D1]D2]D3, where Di = �H(Ci); i = 1; 2; 3.If �k : f�1;+1gn ! f�1;+1gn denotes the application that inverses the kth bit of a Boolean



Page 4 RRR 44-95vector, Di can be caracterized as follows:D1 = fb 2 DH j �n(b) =2 DHg;D2 = fb 2 DH j �n(b) 2 DH and bn = +1g;D3 = fb 2 DH j �n(b) 2 DH and bn = �1g:By reordering its rows and columns, Adn can be expressed by the block structure0B@ B EC FD G 1CA ;where the sets of rows of B and E, C and F and D and G are indexed by D1, D2 and D3respectively; and the sets of columns of B, C and D and E, F and G are indexed by Pdn�1and Pdn nPdn�1 respectively.Observe that on the one hand, there is a one-to-one mapping between C1 [ C2 and CH0,where H0 = fH1; : : : ;Hn�1g. Consequently, BC ! = Adn�1:On the other hand, any cell in C2 has one face in Hn and thus there is also a one-to-onemapping between C2 and the set of cells of the arrangement fH1 \ Hn; : : : ;Hn�1 \ Hng inthe (d � 1)-dimensional subspace Hn. After removing n from each element of Pdn nPdn�1 weget Pd�1n�1 , and thus F = Ad�1n�1.By de�nition of D2 and D3, D3 = �n(D2) and thus, by reordering rows in D and G ifnecessary, we have� C = D, since n =2 K 8K indexing the columns of C and D;� F = �G, since n 2 K 8K indexing the columns of F and G.The determinant of a matrix does not change by reordering rows and columns or by replacinga row by a linear combination of this row with others. Thusdet(Adn) = det0B@ B EC FC �F 1CA = det0B@ B EC F0 2F 1CA= det BC ! det(2F ) = det(Adn�1) det(2Ad�1n�1) :This recursive relation together with the initial statement on the non-singularity of A0n andAd0 implies the non-singularity of Adn for any d; n � 0.To generalize the proof to arbitrary arrangements (not necessarily in general position),it su�ces to observe that an arrangement H can always be slightly modi�ed to provide an



RRR 44-95 Page 5arrangement H0 in general position and such that there is a one-to-one mapping between CHand a subset of CH0 . Thus a system of the form (5) based on H will be a subsystem of theone based on H0 and if the latter has a solution, so will the former. 4Theorem 3.2 For an arrangementH of n half-spaces in IRd, any partial Booleanfunction f : DH � f�1;+1gn ! f�1;+1g can be exactly represented by apolynomial containing a term Qk2K bk only for the K � f1; : : : ; ng such thatjKj � d and \k2KHok 6= ;.Proof: Following the same line than in the previous proof, we can show that det(AH) =det(AH0) det(AH00), where AfX1;:::;Xsg is a matrix de�ned in a similar way than Adn, with onerow per cell in the arrangement fX1; : : : ;Xsg and one column per non empty intersection\k2KXok ; and where H denotes an arbitrary arrangement fH1; : : : ;Hng in IRd; H0 is thearrangement fH1; : : : ;Hn�1g in IRd and H00 is the arrangement fH1 \ Hn; : : : ;Hn�1 \ Hngin the (d� 1)-dimensional space Hn. 44 Simple usage of the resultsThe two theorems presented in this paper provide ways to bound the complexity of thepolynomial of a high order perceptron, when the data that as to be learned is Boolean andresults from an arrangement of hyperplanes in a low dimensional Euclidian space.To illustrate the interest of these theorems, let us consider a board of go which is a gridof 19 rows and 19 columns. A compact binary encoding of each position requires at leastdlog(192)e = 9 bits. Any arbitrary subset of the 192 = 361 positions can be modeled by aBoolean function and harmonic analysis tells us that this function has a spectral representa-tion of the form (1) with 29 = 512 terms. On the contrary, a more natural encoding of eachposition on 36 bits is provided by the introduction of 36 separating lines in the plane (18horizontal and 18 vertical). Any arbitrary subset of the positions of the board is now mod-eled as a partial Boolean function of 36 arguments, and the spectral representation wouldlead to a polynomial with 236, which is a lot if we ignore that many of them will have a zerocoe�cient for any subset of positions.Theorems 3.1 and 3.2 precisely inform us about terms of the spectral representation thatwill always have a zero coe�cient. The 361 Boolean vectors come from an arrangementembedded in IR2 and by theorem 3.1 there exists such a polynomial of degree 2, i.e. with atmost N236 = 1+36+630 = 667 terms. Because most of these lines are parallel, by theorem 3.2we know that there is a polynomial of degree 2 with at most 1+36+182 = 361 terms. Thus,the second encoding is more practical since it has an easy geometrical interpretation, and itleads to a smaller polynomial.It is interesting to note that this gain in the number of terms, from 512 to 361, is onlydue to the fact that 192 is not a power of 2. For a board with n = 2k positions (e.g. achess board), the \geometrical" encoding of the board with the help of theorem 3.2, and



Page 6 RRR 44-95the \compact" encoding would lead to two polynomials based on completely di�erent sets ofvariables, but with the same number n of terms, non-zero in the spectral representation ofany subset of the positions. Moreover, this analogy can be generalized to rectangular gridsof arbitrary dimensions.References[1] Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, AC0 functionsand spectral norms. SIAM J. Comput., 21(1):33{42, 1992.[2] Leonid Gurvits. Some combinatorial and topological properties of perceptron networks.Oral communication at a DIMACS Workshop on Mathematical Theory of Neural Net-works, July 1994.[3] R. J. Lechner. Harmonic analysis of switching functions. In A. Mukhopadhyay, editor,Recent Development in Switching Theory. Academic Press, New York, 1971.


