
R u t c o rResearchR e p o r t

RUTCOR � Rutgers Centerfor Operations Research �Rutgers University � P.O.Box 5062 � New BrunswickNew Jersey � 08903-5062Telephone: 908-445-3804Telefax: 908-445-5472Email: rrr@rutcor.rutgers.eduhttp://rutcor.rutgers.edu/ rrr

Constructive Training Methodsfor Feedforward NeuralNetworkswith Binary WeightsEddy Mayoraza Fr�ed�eric AviolatbRRR 34-95, August 1995, Revised August 1996
aRUTCOR|Rutgers University's Center for Operations Research, P.O.Box 5062, New Brunswick, NJ 08903-5062, mayoraz@rutcor.rutgers.edubOperations Research, Department of Mathematics, Swiss Federal Insti-tute of Technology, Lausanne, Switzerland, aviolat@dma.ep.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147914686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rutcor Research ReportRRR 34-95, August 1995, Revised August 1996Constructive Training Methodsfor Feedforward Neural Networkswith Binary WeightsEddy Mayoraz and Fr�ed�eric AviolatAbstract.Quantization of the parameters of a Perceptron is a central problem inhardware implementation of neural networks using a numerical technology. A neuralmodel with each weight limited to a small integer range will require little surface ofsilicon. Moreover, according to Occam's razor principle, better generalization abili-ties can be expected from a simpler computational model. The price to pay for thesebene�ts lies in the di�culty to train these kind of networks. This paper proposes es-sentially two new ideas for constructive training algorithms, and demonstrates theire�ciency for the generation of feedforward networks composed of Boolean thresholdgates with discrete weights. A proof of the convergence of these algorithms is given.Some numerical experiments have been carried out and the results are presented interms of the size of the generated networks and of their generalization abilities.Acknowledgements: This work was initiated while the �rst author was at the SwissFederal Institute of Technology, supported by the Swiss National Science Foundation, grant20-5637.88, and it was terminated while he was visiting RUTCOR and DIMACS.The second author is working in the Operations Research Group, Department of Math-ematics at the Swiss Federal Institute of Technology in Lausanne with Prof. de Werra.

RRR 34-95 Page 11 IntroductionArti�cial neural networks (ANN) are proposed today as alternative solutions for a wide variety of problems.However, in most of the real size applications, the networks are simulated on conventional computers andthus, their inherent parallelism is not exploited. The hardware designer of ANN has to face many constraints,in particular the quantization of the weights (when their storage is based on a numerical technology) and thelocality of the connections. In the present study, training of ANN with discrete weights will be investigated.Many papers already discussed the e�ect of the quantization of the parameters in neural networks,but they are dedicated to a particular network and a particular training rule, which has been elaboratedfor models with continuous weights. In fact, most of these studies are devoted to the backpropagationalgorithm [DG88, HHP90, AM91, HB91, HH93]. Since this algorithm is essentially a gradient descent, itrequires a great precision for the parameters, namely 8 to 10 bits per parameter if the training is done`o�-chip', and 16 bits per parameter otherwise. Conversely, in our approach the discretization level of eachparameter is �xed to an arbitrary small value and then, new training methods are designed for this particularmodel.A feedforward Boolean neural network realizes a mapping from an input space I to an output space O.Given an unknown function � : I ! O and a task T = f(ak; bk = �(ak))gpk=1 � I � O supplying partialinformation about �, the goal of the training phase consists in determining a network that computes anextension of T , such that is a good approximation of �. Thus, a feedforward neural network realizes aninterpolation of the points given in the task, and we will say that the model built by the network gets agood generalization property if it is close to the target function �, according to a given metric on the set offunctions fI ! Og. Lower bounds on p = jT j in order to ensure a good generalization have been derivedin [BH89]. Since these bounds grow with the size of the network, a better generalization of a given task Tshould be achieved by a smaller network. Therefore, the aim of all the constructive training methods is tobuild small networks realizing the task.Feedforward neural networks of predetermined architecture su�er from two major drawbacks. On onehand, it is intractable to decide if a given task can be loaded on a given feedforward network [Jud90]. Onthe other hand, there is no way to determine the most adequate size of the network for a speci�c application.When training a feedforward network to solve a particular problem, we are always facing the following trade-o�: if the network is too large, it is easy to �nd a con�guration such that the network realizes the giventask but this solution will over�t the given task and will provide a poor generalization, and in the oppositesituation the loading problem is di�cult to solve.A natural way to circumvent these di�culties is to let the training algorithm modify the topology ofthe network. A variety of training algorithms adapting the size of the network have been proposed. Someof them, called constructive algorithms, essentially increase the size of the network until the job is fullyperformed [MN89, Fre90, GM90, SN90, RCE82], while others start from a large network and try to prune itduring the training phase [SD88, WHR90, Ree93]. Finally, other methods combine both strategies to adaptthe size of the network [dBZN94, Def95].It is not the purpose of this paper to discuss in details the various facets of all these training algorithmsremodeling the size of the network; comparative studies based on a wide selection of these methods can befound in [Fie94, KY95]. However, we will recall in section 4 the main features of some of these algorithms inorder to locate our methods in their context. A formal de�nition of the neural model considered in this studywill be given in section 2. The heuristic technique used to solve the discrete optimization problems arisingin each local training phase is briey described in section 3. Sections 5 and 6 discuss the main constituentsof the new training methods proposed, while the results of the numerical experimentations are presented insection 7.

Page 2 RRR 34-952 Majority functions and majority networksThe neural model considered in the present paper is based on the perceptron of Rosenblatt [Ros58], limitedto Boolean input and output activations. For simplicity in the de�nition of the majority function we willuse the antipodal form f�1;+1g instead of the binary form f0; 1g as a numerical representation for the setof Booleans IB = fFalse;Trueg.A function f : IBn ! IB is a linear threshold Boolean function if and only if there exist w 2 IRn andw0 2 IR such that 8b 2 IBn; f(b) = sgn(w0 +w>b); (1)where sgn is the sign function which returns +1 if and only if its argument is positive. The vector w is calledthe weight vector of f , w0 is the threshold and its sum with the dot product w>b is the potential of f forthe input b.A Boolean perceptron is an n-input-single-output device able to compute any linear threshold Booleanfunction of n arguments. A task T given by f(ak; bk)gpk=1 � IBn � IB is coherent if bk 6= bl impliesak 6= al for every k 6= l, and it is linearly separable if and only if it can be computed by a single Booleanperceptron. Many papers are devoted to the computational power of feedforward networks composed ofBoolean perceptrons. Clearly, multiplying a weight vector and a threshold by a positive constant will notchange a Boolean function f , thus wi; i = 0; : : : ; n can be assumed integers. In order to simplify the hardwarerealization, some of them limit the model to integer weights and threshold, bounded by a polynomial in n,the number of inputs [HMP+87, SB91]. In this study, we will focus our attention on a subclass of linearthreshold Boolean functions with weights limited to the smallest interesting set of values: f�1; 0;+1g. Forlinear threshold functions with arbitrary weights, the convention for the value of sgn(0) is irrelevant sincew0 can always be chosen such that the potential of f is never 0. In what follows, the only purpose of thethreshold w0 will be to set this convention. We will take w0 2 f�12 ;+12g, thus f(b) = sgn(w0) for all borthogonal to w, and w0 is useless when kwk1 is odd.A linear threshold Boolean function de�ned by a weight vector w 2 f�1; 0;+1gn and by a thresholdw0 2 f�12g will be called a majority function. A majority perceptron is a gate of fan-in n, able to computeany majority function from IBn to IB. The main advantage of our choice for the threshold is that the classof functions computable by a majority perceptron is closed under negation and under duality1.A majority network is a feedforward Boolean neural network where each node is a majority perceptronand such that the underlying cycle-free graph is simple, i.e. a pair of units is connected with at most oneedge. Having 0 in the range of the weights is relevant only in the context of training a neural network ofa given architecture. Otherwise, when each connection can be maintained or suppressed independently, thevalue of each weight can be limited to the set f�1;+1g. A preliminary study has pointed out the interest ofthe simple computational model provided by the majority networks [May91, May96]. In the present study,we will concentrate on single output neural networks.Constructive training methods can basically be decomposed into a global strategy that decides whereto introduce a new neuron and which subtask the latter should perform, and a local training techniqueused to achieve the learning of the speci�c partial tasks on each new neuron. The problem of training asingle majority perceptron has been addressed in [May93, MR94]. E�cient algorithms have been proposed,either for the maximization of the stability of the perceptron on the task (de�ned as minpk=1w>akbk), orfor the minimization of the number of mistakes. Given the success of the discrete optimization tools used inthe resolution of these problems, the new algorithms designed for the constructive training problem will allexploit the same heuristic technique known as tabu search and briey presented below.1The dual function fd of a Boolean function f is de�ned as fd(b) = �f(�b).

RRR 34-95 Page 33 Tabu SearchTabu search is an e�cient meta-strategy used to �nd good solutions for any kind of optimization problems.It is a local search procedure, just as simulated annealing or genetic algorithms are. A discrete optimizationproblem is de�ned by a �nite set S of feasible solutions and by a cost function c : S ! IR which has to beminimized. The use of tabu search requires the de�nition of a set of moves M � fS ! Sg, usually assumedclosed under inversion. The couple (S;M) can thus be represented as an undirected graph G = (S;E), with(s; s0) 2 E if and only if 9m 2M; s0 = m(s).Tabu search will proceed by generating a sequence of solutions s0; s1; : : : in S, with sk+1 neighbor of skin G. At step k, the choice of the neighbor is guided by the best value of c among the neighbors of sk. Toavoid cycling, the most recent moves are stored into a queue called the tabu list , and any reverse move ofan element of this list is tabu and will be forbidden the time the corresponding element remains in the list.Nevertheless, it is possible that, sometimes, a move could be used without danger of cycling, despite its tabustatus. For example, when a tabu move leads to a better solution than the best solution encountered so far,the tabu status will be overridden. The present description of tabu search is summarized and simpli�ed andthe reader who needs more information will �nd it in [Glo89, HdW91].As far as the training problem of a majority perceptron is concerned, the set of feasible solutions S isclearly f0;�1gn � f�12g. A move will consist either in a small modi�cation of one weight wi wi � 1assuming that wi remains in the set f0;�1g, or in the inversion of the threshold w0 �w0. The costfunction is the key component of tabu search. It is designed speci�cally for each method and will be detailedin sections 5 and 6.4 Constructive MethodsThere are basically two categories of constructive training algorithms according to the sense of growth ofthe network. The forward methods construct the network by adding new units beyond the existing partof the circuit. Conversely, the backward techniques insert new processing units between the input layerand the layer most recently built. The tiling algorithm [MN89] and its simplest variant called the toweralgorithm [Gal86, Nad89], the decision tree algorithms [GM90, SN90] or the parity machine [ME92, MD89],are typical examples of forward constructive algorithms, while the construction of the network is backwardin the upstart method [Fre90].4.1 Forward methodsIn a forward method, the network is built layer by layer from the input to the output. In the presentdescription, we will focus on the case where connections may occur only between two consecutive layers. Inthis setting, during the construction of layer h+1, only layer hmatters, and all previous layers can be ignored.The role of a new layer, say of m units, is the computation of a mapping � : IBn ! IBm transforming theprevious problem f(ak; bk)g � IBn � IB into a new problem f(�(ak); bk)g � IBm � IB, presumably simpler.The new task is then substituted to the old one and the same process is iterated until a linearly separabletask is obtained. During the elaboration of a mapping �, �(ak) is called the internal representation of ak,and the set of all the al with the same image than ak through � is the class of the internal representation�(ak) and is denoted [ak]. A class is unfaithful if it contains a pair ak;al with bk 6= bl. The faithfulness ofall the classes de�ned by � is a necessary condition for the coherence of the new task f(�(ak); bk)g.Each mapping � is elaborated iteratively (�(1);�(2); : : : ;�(m) = �) by increasing the dimensionality (i.e.by adding a new hidden unit), without modifying the existing part: �(t+1) = (�(t); �t+1) : IBn ! IBt+1. Thisprocess is carried out until all the classes de�ned by the current mapping are faithful. Di�erent algorithmspropose di�erent strategies to achieve this goal. In the tiling algorithm, when the mapping �(t) = (�1; : : : ; �t)leads to some unfaithful classes, one of them, say [ak], is chosen arbitrarily, and the new unit computing�t+1 is trained with the task f(al; bl)g, with al 2 [ak]. Other heuristics have been proposed, such as the

Page 4 RRR 34-95partial task inversion [AG93], where each new unit takes into account every unfaithful class in a particularway.4.2 Backward methodsAmong all backward constructive methods, one distinguishes those which construct a single hidden layer, andfor the needs of this paper, we will concentrate on them [Fre90, AG93]. They construct their unique hiddenlayer in the same way a forward method does for each layer, only the stopping criterion is di�erent. Theiterative process building the mappings �(0); �(1); : : : goes until the new task is linearly separable, instead ofhalting when all the classes of the current mapping are faithful. The initial mapping �(0) : IBn ! IBm0 caneither be considered as the identity (m0 = n, e. g. upstart) when the output unit is connected to the inputs,or the empty mapping (m0 = 0, e. g. shift) when no jumping links connect the inputs with the output.The methods mentioned above (see [Fre90, AG93]) are backward, since formally, the output unit isintroduced �rst, and then the hidden layer is elaborated. At each iteration t, the current set fvkg ofpotentials at the output unit is computed for every input ak. In these algorithms, the binary representationf0; 1g is usually used for the set of Boolean values. Thus, the introduction of a new hidden unit computing�t+1 : IBn ! f0; 1g will modify the values fvkg only for the subset of points ak for which �t+1(ak) = 1,since vk = w0 +w>�(t)(ak) + wt+1�t+1(ak). The construction is complete whenever vk > 0 if and only ifbk = 1. Various existing algorithms of this nature propose di�erent clever heuristics to choose the subset ofpoints which will be modi�ed at each step (e.g. shift algorithm [AG93]).To summarize, forward as well as backward approaches construct sequences of transformations of the prob-lem, in order to simplify it until it is solvable by a single unit. These transformations are based on consider-ations done beyond the non-linear functions sgn in forward methods, while in backward techniques the setof potentials before the non-linearity of the output unit controls the construction of the network.5 Forward Construction of Majority NetworksUsing the existing local learning algorithms for minimizing the number of mistakes in a majority perceptron(see [May93]), classical forward constructive methods such as the tiling algorithm could be applied in analmost straightforward way to the construction of majority networks. However, in this research we intendto go beyond this simple adaptation by improving substantially the constructive technique.In the following, we present a global framework, which will allow us to present several variations ofalgorithms for training of majority networks. As a �rst illustration, a straightforward adaptation of thetiling will be shown.

RRR 34-95 Page 55.1 Skeleton of the algorithmInput: T = f(ak; bk)gOutput: Majority network achieving TInsert input layerREPEATStart a new layerREPEAT� Set the parameters of the cost function c(w; w0)Insert a new majority perceptron(w; w0) := (0; 12), where (w; w0) are the weights of the new majority perceptronREPEAT(w; w0) := argminfc(w0; w00) j (w0; w00) = m(w; w0);m 2M;m not tabugUNTIL stopping criterion is TRUEUNTIL all classes are faithfulT := f(ak := �(ak); bk)g, where � is the mapping realized by the newly built layerUNTIL newly built layer has a single unitThe variety of the algorithms discussed in the following sections will always use this skeleton of algorithmand will only di�er in the de�nition of the cost function c(w; w0) at line �, fully speci�ed according to thecontext. As we will see, the essence of the algorithms lies in this cost function c(w; w0), which will lead thelocal search to the best weight con�guration of the new unit, in the current context.An adaptation of the tiling algorithm to majority networks can easily �t in this framework as follows. Atline �, pick an unfaithful class [ak], and de�ne the cost function c0(w; w0) as"k = ��fal 2 [ak] j bl 6= sgn(w0 +w>al)g�� ; (2)the number of mistakes in the class [ak] made by the current unit.With this cost function, the algorithm has no proof of convergence, as the arguments used for Booleanperceptrons does not hold when restricted to majority perceptron. We are now going to show how the costfunction can be improved, and designed in order to guarantee convergence.5.2 Ideal criterion for faithfulnessThe cost function set up at line � and leading the training of each new unit, is not ideal in the existingforward approaches such as the tiling or the partial task inversion algorithms. The main cause is that, inorder to always use the same local algorithm, the local problem assigned to each new unit has to be of theform:Form 1: �nd a linear threshold function minimizing the number of mistakes in a task f(ak;~bk)gk2K(where K � f1; : : : ; pg and ~bk depends on bk), or in other words �nd a linear threshold functionseparating in a best way two sets of points T+ = fak : k 2 K; ~bk = +1g and T� = fak : k 2K; ~bk = �1g.This form is adequate for decision trees algorithms [BOS84, Qui86] or to grow networks with a tree struc-ture [GM90, SN90, dBZN94]. Indeed, one particular subtask is associated to each node of the tree and thepoints out of this subtask have already been discarded by some parent node. This situation is pictured in�gure 1a. A parent node in a decision tree realizes the discrimination H and each of its two sons has toperform a subtask containing only the points lying on one side of H or on the other.The tiling algorithmworks exactly in the same way, since each new unit focuses on one particular subtaskcorresponding to an unfaithful class, and the performances of this new unit over points out of this subtask

Page 6 RRR 34-95
*

*

*

* *

*

*

*

* *

*

*

*

* *

a) b) c)H H H

GFigure 1: Di�erences between decision tree, tiling, and partial task inversion algorithms.are ignored (�gure 1b). However, in the elaboration of a layer potentially fully connected to the previousone, we might want to reduce the number of units by solving several subtasks with the same discriminator.The partial task inversion algorithm aims at this goal, even though the target of each unit is still ofform 1. The subtask associated to each new unit contains several unfaithful classes and the outputs ~bk arede�ned as bk in some classes and are inverted in other classes, according to a heuristic whose motivation canbe illustrated by �gure 1c as follows. After the introduction of a �rst unit implementing discriminatorH, letassume that the two classes (containing the points on both sides of H) are unfaithful, i.e. 2 6= �; 4 6= �.Although we do not know whether � = � or not, the idea of the partial task inversion is to assume thatthey are di�erent, since if � = �, then 2 =4 and consequently, the choice of H was very bad and G wouldhave been much better. So, in the very simple situation of �gure 1, after the introduction of a �rst unitcorresponding to discriminatorH, the task associated to the second unit would contain all the points, the ~bkof one class would be inverted so that if indeed � =4 6= 2 = �, the new problem will consist in separating� and � from 2 and 4, and G will probably be the selected discriminator for that.Obviously, this example is very favorable to the partial task inversion and in practice things are muchmore complex. In order to improve the faithfulness of several classes at a time, we need a goal of a moregeneral form than form 1. Assume that t units have already been introduced in a new layer, and that theyprovide a mapping �(t) with several unfaithful classes [ak1]; : : : ; [aku]. Let T ki+ (resp. T ki�) denote the sets ofpoints of the class [aki] with a target output +1 (resp. �1) for i = 1; : : : ; u. To reach complete faithfulnessas quickly as possible, the ideal criterion for a new unit computing �t+1 would be to separate T ki+ from T ki�for all i. However, this should be done without imposing any relationship between �t+1(T ki+) and �t+1(T kj�)for i 6= j, since the internal representation of the points in T ki+ di�er already from that of the points in T kj� ,for i 6= j. So, the general form of the local problem that has to be solved by each new unit is:Form 2: given a collection of pairs of disjoint sets f(T ki+ ; T ki�)gui=1, �nd a linear threshold functionseparating in a best way each pair independently.In the context of real weights, a goal of form 2 is more di�cult to address than one of form 1, since theobjective function cannot be optimized using a gradient descent technique as for example the well knownperceptron algorithm does ([Ros58, DH73]). On the contrary, when a local search algorithm is used, there isa lot of exibility in the form of the objective function, and we are going to exploit this freedom to optimizeat each step the ideal goal given by the form 2 and formally described as follows.Practically, at line � the list of faithful and unfaithful classes is established along with their cardinalities.Using the de�nition of "k from equation (2) for the number of mistakes in a class [ak] made by the currentunit, the measure of the quality of the separation of an unfaithful class [ak] is given by min("k; j[ak]j � "k).Indeed, if all the elements of the class are misclassi�ed, it also means that the separation is optimal, sincein the seek of faithfulness, the orientation of the separator does not matter. The cost function will be:c1(w; w0) = X[ak]=2Fmin("k; j[ak]j � "k): (3)

RRR 34-95 Page 7where F denotes the set of faithful classes. Clearly, c1(w; w0) = 0 means that with the current unit, all theclasses are faithful and thus, the construction of the current layer is complete.5.3 Short or narrow networks ?The cost function given by (3) corresponds to the ideal local goal as far as complete faithfulness is concerned.Nevertheless, in a more global perspective, it is di�cult to discern the best goal that a unit should reach ata given time. When the construction of one layer is achieved, each class [ak] in the internal representationwill produce a single point �(ak) in the task for the next layer. Thus, even if the main goal of each unit isto increase the faithfulness of the current classes, a solution which does not break the faithful classes intosmall pieces will be preferred since it will lead to a smaller task for the next layer.To illustrate this idea, consider the extremely simple example of an exclusive-OR: T = f((�1;�1);�1);((�1;+1);+1); ((+1;�1);+1); ((+1;+1);�1)g: Two hidden units, with w equal to (0; 1) and (1; 0) re-spectively, produce 4 faithful classes and the problem for the next layer is again the same exclusive-OR.Conversely, two hidden units with w = (1; 1) and w0 equal to �12 and +12 respectively, produce only 3faithful classes and lead to the following easy problem for the next layer: f((+1;+1);�1); ((+1;�1);+1);((�1;�1);�1)g.In general, if attention is paid exclusively to the increase of the faithfulness, then each layer will be small,but the task of the next layer might be harder to solve, since it consists of a large number of points in alow dimensional space. On the other hand, more units will be used on one layer when a lot of care is takento avoid splitting the classes into small pieces, but the next task will probably be easier, since it will be ofsmaller size and in a larger dimensional space. This is a trade-o� between deep and narrow networks againstshort and wide ones; or \time against space" in terms of computational resources.Let k denote the minimum number of points in the class [ak] of output +1 or �1 at the new unit:k = min� ��fal 2 [ak] j �(al) = +1g�� ; ��fal 2 [ak] j �(al) = �1g�� � ;with �(al) = sgn(w0 +w>al) denotes the output of the new unit for the input al. If a faithful class [ak] isnot divided, then k = 0. The worst case occurs when a faithful class is divided into two pieces of the samesize, because we want to keep faithful classes as large as possible, in order to have a smaller task for thenext layer. de�ned as the sum of these values over all the faithful classes, =P[ak]2F k, measures theshattering of the faithful classes. This parameter might be aggregated in the cost function which becomes:c2(w; w0) = !1c1(w; w0) + !2; (4)where !i are positive weightings that give relative importance to each of the two elements of the function.More sophisticated objective functions have been investigated and their description can be found in [Avi93],but we will not discuss this approach in more details here.5.4 ConvergenceClassically, the convergence proof for forward constructive methods is decomposed into two steps: the verticalconvergence, which ensures the termination of the construction of each layer; and the horizontal convergencewhich refers to the fact that at one point, the new task f(�(ak); bk)g will be linearly separable.Lemma 5.1 The minimization at each new unit of the cost function c1(w; w0) of equation (3)ensures the vertical convergence.Proof: Observe that for any two distinct points ak;al 2 IBn, it is always possible to �nd amajority function f such that f(ak) 6= f(al). For this, it su�ces to choose wi = aki for some isuch that aki 6= ali and wi = 0 for all i such that aki = ali. Therefore, there is always a way toadjust the new majority unit such that its introduction decreases strictly the quantity �� de�ned

Page 8 RRR 34-95as the number of pairs of points (ak;al) such that �(ak) = �(al) | both points are in thesame class|, and bk = +1; bl = �1. Clearly, �� = 0 if and only if all the classes de�ned by �are faithful. Moreover, any solution that have a non maximal cost function c1(w; w0) (i.e. anysolutions except the worst) will lead to a strictly smaller �� . 4The cost function c2(w; w0) presented in (4) however, may not have this property, particularly when !2=!1is big. Therefore, it is safe to place a barrier on the worst possible value of c1(w; w0) when c2(w; w0) is used.We are going to place another barrier on an event that will very unlikely occur, but which would compromisethe horizontal convergence. So, the complete cost function becomes:c2(w; w0) = 8>>>>>>>><>>>>>>>>: +1 ������ if the new unit divides no class that wasunfaithful at line �, before introducingthe new unit+1 ������ if, with the new unit, no faithful classof size at least 2 and no unfaithful classof size at least 3 remain!1c1(w; w0) + !2 otherwise (5)Proposition 5.2 The minimization at each new unit of the cost function c2(w; w0) de�ned in (5)ensures the global convergence.Proof: The �rst barrier in c2(w; w0)w ensures that a solution dividing no unfaithful class willnever be chosen, so the argument used in the proof of lemma 5.1 works and the vertical con-vergence is guaranteed. When all the classes are faithful, the new task built on the mapping �will be smaller only if at least one class contains more than one point, but that is precisely whatthe second barrier aims at. If at each layer, the new class is strictly smaller, the process willobviously terminate. To complete the proof, we have to show that there is always a solution ofvalue < +1.Call P the property stating that there is either an unfaithful class of size at least 3, or a faithfulclass of size at least 2, or both. Before the introduction of the �rst unit in a layer, there is onlyone class and it is unfaithful (if the problem is not trivial). If this class has only two elements,the problem is easy, since two points can always be separated by one majority perceptron. So,we will assume that P is initially veri�ed and we will show that in any case, there is a majorityperceptron dividing at least one unfaithful class, while keeping the property P .If the construction of the layer is not complete, there is at least one unfaithful class, so let a1and a2 be two points of the same class but with b1 6= b2. Since P holds, there exists two distinctpoints a3 and a4 in a same class with b3 = b4. Note however, that one of the �rst two pointsmay be identical to one of the last two. It remains to show that there is a majority perceptronseparating a1 from a2 while keeping a3 and a4 together.Let I and J be the two non-empty sets of indices de�ned asI = fi j a1i 6= a2i g; J = fi j a3i 6= a4i g:Case 1: I 6� J . This case can be solved by setting all weights to 0, except one of index in InJ .Case 2: I�0 J . Take i 2 I and j 2 JnI, set wi = +1 and wk = 0; 8k 6= j. If a3i = a3j , wj = �1,otherwise wj = +1, so that the potentials of a3 and a4 are both 0. Since j =2 I, a1j = a2j ,and the potential of a1 and a2 are 0 and �2. An adequate choice of threshold will separatethese two points.Case 3: I = J and 9i; j 2 I such that a1i � a2i = a3i � a4i and a1j � a2j = a4j � a3j . This case is solvedby setting to 0 all the weights except wi and wj, which will take the same value if a1i = a1j ,and opposite ones otherwise.

RRR 34-95 Page 9Case 4: I = J and 8i 2 I; a1i � a2i = a3i � a4i or a1i � a2i = a4i � a3i . We can assume that a1i � a2i =a3i � a4i ; 8i 2 I, by exchanging a3 and a4 if needed. This is equivalent to a1i = a3i anda2i = a4i ; 8i 2 I. Then there is j =2 I such that a1j 6= a3j , otherwise we have a1 = a3 anda2 = a4 which contradicts b1 6= b2 and b3 = b4. By vanishing all the weights but wj and wifor one i 2 I and by choosing wj = a1j , the potentials for a1 and a2 will be 0 and +2, whilethese for a3 and a4 will be 0 and �2. A threshold of �12 will solve the problem. 4This proof of convergence is very rough since it leads to generous upper bounds such as O(p2) units per layerand O(p) layers, where p denotes the size of the task. It was not in the scope of this research to improvethese bounds, and the numerical results will clearly show that they are largely over-estimated.6 Back-Forth Constructive MethodPrinciples of backward methods are di�cult to use with a bipolar representation f�1;+1g for the set ofBoolean values since the value of every potential vk is moving up or down when a new unit is inserted.However, in this section we will see how the ideas of backward methods can be used to improve forwardconstructions.6.1 Back-Forth is backwardAs discussed in section 5, by adding a unit in a layer, we want to get internal representations as faithfulas possible and we would like the next task to be not too di�cult. Another way to reach these objectivesis to consider, during the training of a new unit, the set of potentials at the �rst unit which will be placedon the next layer, as it is done in backward methods. Even if this idea can be extended to general linearthreshold functions, ternary weights are particularly convenient for this purpose. Actually, when a unit uL1is �rst introduced on a new layer L, if it does not manage to completely achieve the task, a supplementarylayer will be necessary. So, the �rst unit uL+11 in next layer L+ 1 can already be introduced and connectedto the unit in layer L with a weight of value +1 without loss of generality.
input unit processing unit

+1

+1

+1

+1

u1
L+1

uL
t +1

 Figure 2: Introduction of a new unit uLt+1 updated by the back-forth training method. The new unit isconnected to the �rst unit uL+11 of next layer with a weight of value +1. The rest of the network (in gray)is unchanged during the training of the the new unit.

Page 10 RRR 34-95Let vkt denote the potentials at unit uL+11 after the introduction of t units in layer L realizing a mapping�(t) = (�1; : : : ; �t): vkt = Pts=1 �s(ak)vk0 = 0: (6)Thus the potentials vkt are calculated by temporarily setting all the weights between the current layer L andthe �rst unit uL+11 of the next layer to +1.To �t within the skeleton algorithm presented in section 5.1, we can consider that unit uL+11 of the nextlayer is not really introduced during the elaboration of layer L, and only the set of potentials fv1t ; : : : ; vpt g iscalculated at line � according to equation (6).The set of potentials at the �rst unit in layer L + 1 is now used to guide the update of the new unituLt+1 (�gure 2). The problem is similar to the training of a single unit, except that the update of theweights of a unit in a layer depends on the potentials at a unit in the next layer. Following the objectivefunction used in the well known \perceptron algorithm" for minimizing the number of mistakes in a task(see [Ros58, DH73]), our local search procedure will minimize the cost function c3(w; w0) de�ned in (7) whenapplied to the (t+ 1)th unit in layer Lc3(w; w0) = � Xk wrongvkt+1bk = � Xk wrong(vkt + sgn(w0 +w>ak))bk: (7)where \wrong" refers to the output state of the �rst unit of layer L+ 1 after the introduction of t+ 1 unitsin layer L. In order to distinguish between \strongly" and \weakly" misclassi�ed points, we are introducinga cost function of a more general form:c4(w; w0) = pXk=1P �(vkt + sgn(w0 +w>ak))bk� ; (8)where P is a penalty function from ZZ to IR. Note that this form allows also to consider correctly classi�edpoints in the objective function. However, in this research we only experimented penalty functions of theform: P (x) = � (1� x)d if x � 00 if x > 0 : (9)If d = 0, the cost function simply counts the number of mistakes and will be referred to as the constantpenalty cost function. The cost function of equation (7) is obtained from equation (8) by using a linearpenalty , i.e. by setting d = 1 in (9). Experiments have also been carried out with a quadratic penalty(d = 2).6.2 back-forth is forwardIn [May96] it has been shown that any Boolean function can be computed by a majority network of depth 2.So, in principle a single hidden layer is always su�cient. However, there is no certainty that after addingsu�ciently many units on a hidden layer, each of which having been designed to minimize a cost functionof the form (8) and then kept up while further units are added, there will �nally be zero errors in the �rstunit of the next layer. Therefore, this back-forth algorithm will still construct networks of several layers.As before, the stopping criterion for the construction of one layer is the faithfulness of all the classes.Finally, to ensure the vertical and the horizontal convergence, the two barriers introduced in the cost functionc2(w; w0) in (5) are maintained, and the convergence proof is the same as in the previous section.6.3 Local or not local ?A very important feature in the constructive algorithms mentioned in this work is the locality of the training.A global strategy guides the construction by deciding when and where a new unit is added and what task

RRR 34-95 Page 11it has to solve; but this task is solved locally on the new unit and once this is done, the parameters of thatunit will never be reconsidered. If locality has the advantage of simplicity, it certainly restricts the training,and very likely, some global training algorithms will lead to smaller majority networks with probably highergeneralization abilities.Due once again to the exibility of the optimization technique used, any of the algorithms presented inthis paper can be used to update several units at a time. In the following section, beside the algorithmspresented above, we also experimented one version of the back-forth method where two units are trained atthe same time. The training of the �rst unit is done as before. At each further step, we determine whichof the units in the current layer is the least helpful, and this unit is trained again with a newly insertedunit. The unit to be trained again is simply chosen as the one whose removal worsens the least the value ofc4(w; w0). Even if this is only a \small violation" of the locality rule, in some cases it improves signi�cantlythe generalization results.7 Numerical ExperimentsMany numerical experiments were carried out to test the performances of the algorithms presented in thiswork. In all our experiments, the tabu list length has been �xed to min(5; n � 1). Moreover, the trainingof each new unit stops whenever the condition for the vertical convergence is ful�lled (all the classes arefaithful) or when at least 500 iterations have been done and there was no improvement during the last 50iterations.The �rst series of tests concerns the ability of our methods to construct majority networks capable ofimplementing exactly a given Boolean function. The second series of experiments will regard the general-ization performances of the networks built with our algorithms. Results will be compared to those obtainedwith the classical constructive algorithms, such as the tiling algorithm, the partial task inversion algorithmand the shift algorithm [AG93].7.1 Synthesis of Boolean functionsLet f be a Boolean function IBn ! IB. We consider tasks of the form T = f(ak; f(ak)) j ak 2 IBng,containing all the examples of the known function f . The purpose of this �rst series of tests on completetasks is to evaluate the size of constructed networks computing exactly the given function f .Several quantities are of interest for measuring the size of a network. These are the number of layers, thenumber of neurons, and the number of connections. In the framework of majority networks, we will considera connection as non-existent if its weight is zero.The �rst experiment was made on RANDOM functions. The output is chosen randomly to be +1 or�1, with the same probability, for each input vector. The required size of the networks able to realizesuch tasks is a measure of the ability of the di�erent algorithms to memorize information in a compactway. Figure 3 shows the average sizes of the obtained networks, over 10 runs, with input size ranging from2 to 8. Performances of our di�erent algorithms are compared to each other and, in the last �gure, wecompare our best two algorithms to the tiling, the partial task inversion and the shift which build networksof linear threshold Boolean units. In all �gures, \Tiling (Majority)" refers to the simple adaptation of thetiling algorithm to majority networks, using local cost function c0(w; w0). \Basic" refers to the algorithmof section 5, with local cost function c2(w; w0) and with weightings in equation (4) chosen as !1 = 100and !2 = 1. These weightings make a hierarchy of the components of c2(w; w0): we compare two solutionsaccording to c1(w; w0), and is used only to break ties. \Back-forth" refers to the methods of section 6,with local cost function c4(w; w0) and with d of equation 9 speci�ed in brackets.The size of the networks grows exponentially with the input size, which is what could be expected sincethere is no structure in a random function. We observe that the simple adaptation of the tiling algorithmto majority networks builds deeper networks, whereas the several back-forth approaches give networks withfewer layers. It appears clearly that the \quadratic penalty" function (d = 2) is superior to the \linear

Page 12 RRR 34-95
2 3 4 5 6 7 8

n0

2

4

6

8

10

layers

Basic

Back-forth (d=1)

Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)

2 3 4 5 6 7 8
n0

20

40

60

80

100

120

units

Basic

Back-forth (d=1)

Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)

2 3 4 5 6 7 8
n0

200

400

600

800

1000

1200

connections

Basic
Back-forth (d=1)

Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)

2 3 4 5 6 7 8
n0

20

40

60

80

units

Back-forth (d=2)

Back-forth (2 units)

Tiling

PTI

ShiftFigure 3: Construction of RANDOM functions. Average size of networks built on complete tasks versus theinput size n.penalty" function (d = 1). It could also be expected that optimizing two neurons together still improvesthe results. Comparing our best algorithms with those for continuous weighted units, we observe that theirperformances are fair and even better than the tiling algorithm. In [GM90], some similar experiments havebeen carried out using decision tree algorithms to construct networks with continuous weights. For completerandom tasks of size n = 6, the authors report an average number of 20:5�3:9 units over 100 runs, which liesbetween the tiling method (16:9�3:6) and the simple back-forth with d = 2 (22:9�1:4). The smallest knownfeedforward network for such tasks uses 7:28� 0:82 (18:3� 1:2 for n = 8) hidden units, with exponentiallygrowing weights [MGR90]. Other numerical experiments on stochastic tasks comparing di�erent constructiveapproaches, including tiling and upstart, can be found in [KBA+92].To test the majority implementations of classical Boolean functions, experiments were made on thePARITY function, de�ned as f(x) = �ixi. The output value is +1 if and only if the number of �1 inx is even. The other function we implemented with our constructive algorithms is the COMPARISONfunction. Consider an input vector x 2 IBn (n even) written as x = (x1;x2) with x1;x2 2 IBn=2. ThenCOMPARISON can be de�ned as f(x) = +1 if and only if Pn=2i=1(x1i + 1)i�2 � Pn=2i=1(x2i + 1)i�2, that isif the number with binary representation x1 is smaller than the number with binary representation x2. Itis worth noting that COMPARISON is a linearly separable function that requires integer weights growingexponentially in n. It has been shown however that a depth 2 and polynomial size majority network cancompute COMPARISON [AB91].Figures 4 and 5 show the average size of the networks produced by 10 runs versus the input size n forcomplete tasks.For small input sizes, the algorithms constructed majority networks of size close to the smallest knownmajority networks able to compute the PARITY function exactly [May91], except the abnormality of themethod optimizing 2 neurons, for n = 3. This is due to the fact that, in this particular case, reoptimizing aneuron does more harm than good; instead of realizing the function in 2 layers, the algorithm reduces the

RRR 34-95 Page 13
2 3 4 5 6 7 8

n0

2

4

6

8

10

layers

Basic

Back-forth (d=1)

Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)

2 3 4 5 6 7 8
n0

5

10

15

20

25

units

Basic
Back-forth (d=1)

Back-forth (d=2)

Back-forth (2 units)
Tiling (Majority)

2 3 4 5 6 7 8
n0

50

100

150

200

250

connections

Basic

Back-forth (d=1)

Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)Figure 4: Construction of PARITY functions. Average size of networks built on complete tasks versus theinput size n.task (in 2 layers) to the PARITY with input size 2, and then it needs 2 more layers. As before both simpleralgorithms (\Basic" and \Tiling (Majority)") generally build larger networks.The networks obtained for the COMPARISON function are very small, for all three algorithms, due tothe simplicity of the function. It is interesting to see that such a computational kind of function can bee�ciently implemented by majority networks.Figure 6 shows the percentage of non-zero connections in the networks built by the back-forth algorithmwith d = 2 for RANDOM and COMPARISON. It appears that those networks are sparse, and more as theinput size grows.The network built by the \Basic" method for the 4-PARITY function is illustrated in �gure 7. It has6 hidden units while the smallest known network has only 4, but it can be considered as more robust inthe following sense. With the smallest known majority network, for 8 among the 16 possible input vectors,the potential of the output unit is zero (the output relies only on w0), while with the network illustrated in�gure 7, this is the case for only 3 input vectors.On the right-hand-side of �gure 7, a network constructed by the \Basic" method for the COMPARISONfunction of 2 3-bits numbers is presented. From top-down, the input units are x11; x12; x13; x21; x22; x23, thehighest subscript denoting the heaviest bit. It is interesting to note the structure in this construction andwith little thinking, it is easy to understand how this network works.7.2 GeneralizationWe now present numerical experiments done to test the generalization ability of the constructed networks.As described in section 1, we consider a task T = f(ak; bk = �(ak))gpk=1 � IBn � IB supplying partialinformation on an unknown function �. The network will try to extract the most information, so as to beable to approximate � as well as possible.

Page 14 RRR 34-95
2 4 6 8

n0

1

2

3

4

5

layers

Basic

Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)

2 4 6 8
n0

2

4

6

8

10

12

14

16
units

Basic

Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)

2 4 6 8
n0

10

20

30

40

50

60

connections

Basic
Back-forth (d=2)

Back-forth (2 units)

Tiling (Majority)Figure 5: Construction of COMPARISON functions. Average size of networks built on complete tasksversus the input size n.
2 3 4 5 6 7 8

n

RANDOM

0.2

0.4

0.6

0.8

1
% connections

2 4 6 8
n

COMPARISON

0.2

0.4

0.6

0.8

1
% connections

Figure 6: Density of connections for RANDOM and COMPARISON. Average percentage of connections innetworks built on complete tasks by algorithm back-forth with d = 2 versus the input size n.Our experiments were made with the 2-CLUMPS function. A clump is a sequence of consecutive +1 in avector, considered cyclically. This function will output +1 when the input vector contains 2 or more clumps.It can be formally de�ned as f(x) = +1 if and only if ���fi j xi = +1 = �x(i mod n)+1g��� � 2. Networkswere built for an input size n = 25 and trained on sets of p random points, with p ranging from 100 to 800.Their performances were evaluated over test sets of the same size. Figure 8 shows the average size of theobtained networks and the average percentage of incorrect classi�cations, over 25 trainings. Performancesof the tiling, the partial task inversion and the shift algorithms are also plotted.The second function we used to test generalization is the 3-SIMILARITY function (proposed in [AG93]).

RRR 34-95 Page 15
PARITY COMPARISON

input unit

processing unit with negative threshold

processing unit with positive threshold
connection of positive weight

connection of negative weightFigure 7: Two examples of networks constructed by the \Basic" method for 4-PARITY and6-COMPARISON.
100 200 300 400 500 600 700 800

p0

100

200

300

400

500

600
units

Back-forth (d=2)

Back-forth (2 units)

Tiling

PTI

Shift

100 200 300 400 500 600 700 800
p

25

30

35

40

45

% error

Back-forth (d=2)
Back-forth (2 units)

Tiling

PTI
ShiftFigure 8: Generalization of 2-CLUMPS. Average size and percentage of errors made by networks trainedon p randomly chosen examples in IB25.The input vector is partitioned into two pieces, and the output of the function will be +1 when at most 3corresponding components of the two pieces di�er. It can be formally de�ned as f(x) = +1 if and only if��fi j xi 6= xn2+ig�� � 3.The third function is the COMPARISON function, de�ned in section 7.1. For both of these functions,an input size n = 20 was chosen and training was performed on sets of p random points, with p rangingfrom 100 to 800. Generalization was evaluated over test sets of the same size. Figures 9 and 10 show theaverage percentage of incorrect classi�cations, over 25 trainings, as well as the average number of units inthe constructed networks.Generalization of the 2-CLUMPS function is very good, very much like the shift algorithm and much betterthan the tiling algorithm. Of course, our networks are bigger, because a majority unit contains less infor-mation than a real-weighted linear threshold Boolean function. Results of the 3-SIMILARITY function are

Page 16 RRR 34-95
100 200 300 400 500 600 700 800

p0

200

400

600

800

1000

1200

1400

units

Basic

Back-forth (d=2)

Back-forth (2 units)

100 200 300 400 500 600 700 800
p

20

25

30

35

40

45

% error

Basic

Back-forth (d=2)

Back-forth (2 units)Figure 9: Generalization of 3-SIMILARITY. Average size and percentage of errors made by networkstrained on p randomly chosen examples in IB20.
100 200 300 400 500 600 700 800

p0

20

40

60

80

100
units

Basic

Back-forth (d=2)

Back-forth (2 units)

100 200 300 400 500 600 700 800
p0

2.5

5

7.5

10

12.5

15

17.5

20
% error

Basic

Back-forth (d=2)

Back-forth (2 units)Figure 10: Generalization of COMPARISON. Average size and percentage of errors made by networkstrained on p randomly chosen examples in IB20.fair, particularly for the algorithm optimizing 2 units at the same time, which produces small networks witha good generalization rate.Finally, our networks were able to learn very well the COMPARISON function, with all three algorithms.The error rate is smaller than 5%, even with p = 400 examples. This corresponds only to 0.04% of the totalnumber of input vectors in IB20. It can also be observed that the sizes of the networks were rather small.Surprisingly, in this case generalization is achieved by the simplest algorithm described in section 5.These generalization tests were also tried with the simple adaptation of the tiling algorithm to majoritynetworks. This algorithm generally built huge networks, and sometimes it did not even converge. Indeed,this algorithm does not have any convergence guarantee, unlike the others that we designed.8 ConclusionsTraining feedforward neural networks is a di�cult problem and it becomes even harder when the weights arelimited to integer values. However, the consideration of restricted weights is highly relevant when targettingVLSI implementation. Constructive training techniques are gaining interest since they avoid the problem

RRR 34-95 Page 17of dimensioning the network. We propose two new heuristics for the construction of feedforward networks.The �rst one is of a forward construction type (such as the tiling algorithm) but the novelty is the criterionoptimized at each step, which is designed to build layers as narrow as possible. The second idea takesadvantages of both forward and backward approaches. Simple convergence proofs are given for these twomethods. Though these are general ideas which can be used to train feedforward networks with real weights,we apply them for the construction of majority networks, i.e. feedforward Boolean networks with ternaryweights in f�1; 0;+1g. Numerical experiments are presented and it is encouraging to see that, even ifmajority networks provide a quite restricted computational model, it holds the comparison with classicalnetworks.A trade-o� between local and global learning algorithms is conceivable where a constructive algorithminserts or updates more than one unit at the same time. The number of units introduced simultaneouslyshould not be too high since their update would become too complex, but it appeared to be easy to train twounits concurrently. Furthermore, this extension gives very good results on all our experimented problems.The good generalization performances reached for COMPARISON demonstrate that a model with onlyBoolean parameters is also able to realize Boolean functions intrinsically based on integers coded usinga binary representation. Moreover, for exhaustive PARITY and COMPARISON tasks, the best knownconstructions for small n's have always been found by our constructive training algorithm. This allows us toimagine that such an algorithm could be a useful tool in the search for new constructions of other importantBoolean functions.We have proven in [May96] that any Boolean function f can be computed by a majority network witha single hidden layer. However, we have not been able to �nd in the present work a constructive algorithmwith convergence guarantees and restricted to one hidden layer. For example, we have unsuccessfully lookedfor a global energy function which measures the performance of a single hidden layer network and which willstrictly decrease at each introduction of an appropriate unit on the hidden layer.The experiments show that the presented theoretical upper bounds on the size of the networks constructedby our algorithms are very loose. Even for the trickiest investigated problems (3-SIMILARITY, 2-CLUMPS),our best method constructs networks of approximately 250 units for tasks of 20 inputs and 800 examples.This thus makes our approach reasonable for \on-chip" realization.The originality and the e�ciency of back-forth is due to the fact that the parameters of a unit in layerL are updated according to their e�ect on a unit in layer L + 1. It should be mentioned that our usage ofthis idea presented in the current work (see also [May93, AM94]) is not unique. In [TMPG95], the authorsproposed a constructive feedforward algorithm producing a network of a single hidden layer. The networkis inspired by the parity machine. In order to have a linearly separable task between the hidden layer andthe output layer, hidden units are added periodically and their tasks are de�ned according to the errors onthe output unit.References[AB91] Noga Alon and Jehoshua Bruck. Explicit constructions of depth-2 majority circuits for compari-son and addition. Technical Report RJ 8300 (75661), IBM Research Division, Almaden ResearchCenter, 650 Harry Road, San Jose, CA 95120-6099, August 1991.[AG93] Edoardo Amaldi and Bertrand Guenin. Constructive methods for designing compact feedforwardnetworks of threshold units. Technical report, Swiss Federal Institute of Technology, Departmentof Mathematics, 1993.[AM91] K. Asanovic and N. Morgan. Experimental determination of precision requirements for back-propagation training of arti�cial neural networks. In Proceedings of 2nd International Conferenceon Microelectronics for Neural Networks, pages 9{15, Munich, 1991.

Page 18 RRR 34-95[AM94] Fr�ed�eric Aviolat and Eddy Mayoraz. A constructive training algorithm for feedforward neuralnetworks with ternary weights. In F. Blayo and M. Verleysen, editors, Proceedings of ESANN'94,pages 123{128. D facto, 1994.[Avi93] Fr�ed�eric Aviolat. Les r�eseaux de neurones arti�ciels multicouches �a poids binaires: �etude de com-plexit�e et algorithmes constructifs. Master's thesis, �Ecole Polytechnique F�ed�erale de Lausanne,D�epartement de Math�ematiques, March 1993.[BH89] Eric B. Baum and David Haussler. What size net gives valid generalization ? Neural Computa-tion, 1(1):151{160, 1989.[BOS84] L. Breiman, J. Olshen, and C. Stone. Classi�cation and Regression Trees. Wadsworth Interna-tional Group, 1984.[dBZN94] F. d'Alch�e Buc, D. Zwierski, and J.-P. Nadal. Trio learning: a new strategy for building hybridneural trees. Int. Journ. of Neural Systems, 5:259{274, 1994.[Def95] Guillaume De�uant. An algorithm for building regularized piecewise linear discrimination sur-faces: The perceptron membrane. Neural Computation, 7(2):380{398, March 1995.[DG88] R. M. Debenham and S. C. J. Garth. Investigation into the e�ect of numerical resolution on theperformance of back-propagation. In Neural Networks from Models to Applications, Proceedingsof n'Euro 88, pages 752{755, Paris, 1988.[DH73] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. John Wiley & Sons, NewYork, 1973.[Fie94] Emile Fiesler. Comparative bibliography of ontogenic neural networks. In Maria Marinaro andPietro G. Morasso, editors, Proceedings of the International Conference on Arti�cial NeuralNetworks (ICANN 94), volume 1, pages 793{796, London, U.K., 1994. Springer-Verlag.[Fre90] Marcus Frean. The upstart algorithm: A method for constructing and training feedforwardneural networks. Neural Computation, 2(2):198{209, 1990.[Gal86] Stephen I. Gallant. Three constructive algorithms for network learning. In Proceedings of the 8thAnnual Conference of Cognitive Science Society, pages 652{660, Amherst, MA, August 1986.[Glo89] Fred Glover. Tabu Search part I. ORSA J. Computing, 1(3):190{206, 1989.[GM90] M. Golea and M. Marchand. A growth algorithm for neural network decision trees. EurophysicsLetters, 12(3):205{210, 1990.[HB91] J. L. Holt and T. E. Baker. Back-propagation simulations using limited precision calculations.In Proceedings of IJCNN'91, pages II: 121{126, Seattle, 1991.[HdW91] Alain Hertz and Dominique de Werra. The tabu search metaheuristic: How we used it. Annalsof Math. and Arti�cial Intelligence, 1:111{121, 1991.[HH93] Jordan L. Holt and Jenq-Neng Hwang. Finite precision error analysis of neural network hardwareimplementations. IEEE Trans. on Computers, 42(3):281{290, March 1993.[HHP90] P. W. Hollis, J. S. Harper, and J. J. Paulos. The e�ects of precision constraints in a back-propagation learning network. Neural Computation, 2:363{373, 1990.

RRR 34-95 Page 19[HMP+87] A. Hajnal, W. Maass, P. Pudl�ak, M. Szegedy, and G. Tur�an. Threshold circuits of boundeddepth. In Proceedings of 28th IEEE FOCS Symposium, pages 99{110, 1987.[Jud90] J. S. Judd. Neural Network Design and the Complexity of Learning. MIT Press, Cambridge MA,1990.[KBA+92] S. A. J. Keibek, G. T. Barkema, H. M. A. Andree, M. H F. Savenije, and A. Taal. A fastpartitioning algorithm and a comparison of binary feedforward neural networks. EurophysicsLetters, 18(6):555{559, 1992.[KY95] Tin-Yau Kwok and Dit-Yan Yeung. Constructive feedforward neural networks for regressionproblems: A survey. HKUST-CS95 43, Department of Computer Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 1995.[May91] Eddy Mayoraz. On the power of networks of majority functions. In A. Prieto, editor, LectureNotes in Computer Science 540, pages 78{85. IWANN'91, Springer-Verlag, 1991.[May93] Eddy Mayoraz. Feedforward Boolean Networks with Discrete Weights: Computational Power andTraining. PhD thesis, Swiss Federal Institute of Technology, Department of Mathematics, 1993.[May96] Eddy Mayoraz. On the power of democratic networks. SIAM J. on Discr. Math., 9(2):258{268,1996.[MD89] G. J. Mitchison and R. M. Durbin. Bounds on the learning capacity of some multi-layer neworks.Biological Cybernetics, 60:345{356, 1989.[ME92] D. Martinez and D. Est�eve. The o�set algorithm: building and learning method for multilayerneural networks. Europhysics Letters, 18(2):95{100, 1992.[MGR90] M. Marchand, M. Golea, and P. Ruj�an. A convergence theorem for sequential learning in two-layer perceptrons. Europhysics Letters, 11(6):487{492, 1990.[MN89] M. M�ezard and J.-P. Nadal. Learning in feedforward layered networks: the tiling algorithm. J.Phys. A: Math. Gen., 22:2191{2203, 1989.[MR94] Eddy Mayoraz and Vincent Robert. Maximizing the robustness of a linear threshold classi�erwith discrete weights. Network: Computation in Neural Systems, 5(2):299{315, May 1994.[Nad89] J.-P. Nadal. Study of a growth algorithm for a feedforward network. International J. of NeuralSystems, 1(1):55{59, 1989.[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.[RCE82] D. L. Reilly, L. N. Cooper, and C. Elbaum. A neural model for category learning. BiologicalCybernetics, 45:35{41, 1982.[Ree93] R. Reed. Pruning algorithms|Asurvey. IEEE Trans. on Neural Networks, 4(5):740{747, Septem-ber 1993.[Ros58] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organizationin the brain. Psychological Review, 63:386{408, 1958.[SB91] Kai-Yeung Siu and Jehoshua Bruck. On the power of threshold circuits with small weights. SIAMJ. Disc. Math., 4(3):423{435, 1991.

Page 20 RRR 34-95[SD88] J. Sietsma and R. J. Dow. Neural net pruning|Why and how. In IEEE International Conferenceon Neural Networks, pages 325{333. IEEE, New York, 1988.[SN90] J. A. Sirat and J.-P. Nadal. Neural trees: a new tool for classi�cation. Network, 1:423{438, 1990.[TMPG95] J.M. Torres Moreno, Pierre Peretto, and Mirta B. Gordon. An evolutive architecture coupled withoptimal perceptron learning for classi�cation. In F. Blayo and M. Verleysen, editors, Proceedingsof ESANN'95, pages 365{370, Brussels, Belgium, 1995. D facto.[WHR90] Andreas S. Weigend, Bernardo A. Huberman, and David E. Rumelhart. Predicting future: aconnectionist approach. International J. of Neural Systems, 1(3):193{209, 1990.

