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The backpropagation algorithm is widely used for training multilayer neural networks� In this
publication the gain of its activation function�s� is investigated� In speci�c� it is proven that
changing the gain of the activation function is equivalent to changing the learning rate and the
weights� This simpli�es the backpropagation learning rule by eliminating one of its parameters�
The theorem can be extended to hold for some well�known variations on the backpropagation
algorithm� such as using a momentum term� �at spot elimination� or adaptive gain� Furthermore�
it is successfully applied to compensate for the non�standard gain of optical sigmoids for optical
neural networks�

� Introduction

When using the backpropagation algorithm� to train a multilayer neural network� one is free to choose
parameters like the initial weight distribution� learning rate� activation function� network topology� and
gain of the activation function�

A common choice for the activation function � of a neuron in a multilayer neural network is the
logistic or sigmoid function�

��x� �
�

� � e��x
� ���

which has a range ��� ��� Alternative choices for � are a hyperbolic tangent� � tanh��x�� yielding output

values in the range ���� ��� and a Gaussian function �e���x�
�

with range ��� �	� The parameter � is called
the gain� and �� the steepness �slope� of the activation function�� The e
ect of changing the gain of an
activation function is illustrated in �gure �� the gain scales the activation function in the direction of the
horizontal axis�

This publication proves that a relationship between gain� learning rate� and weights in backpropaga�
tion neural networks exists followed by the implications of this relationship for variations of the back�
propagation algorithm� Finally� a direct application of the relationship to the implementation of neural
networks with optical activation functions with a non�standard gain is presented�

Several other authors hypothesized about the existence of a relationship between the gain of the
activation function and the weights �Codrington and Tenorio ���� Wessels and Barnard ������� or
between the gain and the learning rate �Kruschke and Movellan ���� Mundie and Massengill ����
Zurada ���� Brown et al� ���� Brown and Harris ������ In speci�c� J� Zurada writes� ���� leads to
the conclusion that using activation functions with large �gain� � may yield results similar as in the case
of large learning constant �� It thus seems advisable to keep � at a standard value of �� and to control
learning speed using solely the learning constant � �����

�See for example �Rumelhart et al� ����� �
�Note that gain and steepness are identical for activation functions with � � � �Saxena and Fiesler ������ The term

temperature is sometimes used as a synonym for the reciprocal of gain�
�L� Wessels et al� use a weight initialization method which scales the initial weight range according to the gain of the

activation function�

�
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Figure �� A logistic and a Gaussian function of gain one �solid lines� and their four times steeper
counterparts �dotted lines��

Network M Network N

Activation function ��x� � ���x� ��x�

Gain � �� � �

Learning rate � �� � ���

Weights w �w � �w

Table �� The relationship between activation function� gain� weights� and learning rate�

� The Relationship Between the Gain of the Activation Function� the Learning Rate� and
the Weights

The theorem below gives a precise relationship between gain� initial weights� and learning rate for two
backpropagation neural networks with the same topology and where corresponding neurons have activa�
tion functions �i and ��i �indices are omitted where corresponding functions or variables have the same
index��

��x� � ����x�� ���

This means that corresponding neurons in the two networks have the same activation function� except
that the �rst has gain � and the second gain �� A proof of theorem � and a detailed description of the
backpropagation algorithm can be found in the appendix�

Theorem � Two neural networks M and N of identical topology whose activation function �� gain ��
learning rate �� and weights w are related to each other as given in table �� are equivalent under the
on�line backpropagation algorithm that is� when presented the same pattern set in the same order� their
outputs are identical�

An increase of the gain with a factor � can therefore be compensated for by dividing the initial weights
by � and the learning rate by ���

� Extensions and Applications of Theorem �

Many variations of the standard backpropagation algorithm are in use� A list of common variations and
their interdependence with theorem � is presented here� The corresponding proofs are omitted� as they
are analogous to the proof of theorem ��
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Figure �� An optical activation function �solid line� and its approximation by a shifted sigmoid �dotted
line��

Momentum �Rumelhart et al� ������ Theorem � holds when both networks have identical momentum
terms�

Batch or o��line learning� Theorem � holds without modi�cation of the network parameters when
o
�line learning is used�

Flat spot elimination �Fahlman ������ Theorem � holds if the constant �c ���� in S� Fahlman�s paper�
added to the derivative in network N equals c���

Weight discretization with multiple thresholding of the real�valued weights �Fiesler et al� ����� re�
quires an adaptation of the threshold values for the weight discretization� If d and �d are the
discretization functions applied on the weights� theorem � holds if �x � �d�x� � �d��x��

Adaptive gain �Plaut et al� ���� Bachmann ���� Kruschke and Movellan ������ A change �� of
the gain can be expressed as a change of the learning rates from ��� to �� � ������ and of the
weights from �w to �� ����w� without changing the gain of the activation functions�

The use of steeper activation functions for decreasing the convergence
time �Izui and Pentland ���� Cho et al� ����� is equivalent to using a higher learning rate and a
bigger weight range according to theorem ��

Approaching hard limiting thresholds by increasing the gain of the activation functions �Corwin et
al� ���� Yu et al� ����� is similar to multipling the weights with a constant greater than one� In
the �nal stage of the training process the activation functions can be replaced by a threshold if this
does not cause a degradation in performance�

A major problem in using optical activation functions is their non�standard gain �Saxena and Fiesler
������ In �gure �� an optical activation function and its approximation by a shifted sigmoid� with a
gain of approximately ����� are depicted� Note that the domain of the optical activation function is
restricted to positive values due to constraints imposed by the optical implementation� Using this optical
activation function in a backpropagation algorithm with a normal learning rate� say ���� and a normal
initial weight interval� say ������ ���	� leads to very slow convergence� Theorem � explains why� this
choice of parameters corresponds to having an activation function of gain one and a small learning rate
of ������� � ��� � �������� Theorem � gives a way to overcome this problem� choose a learning rate of
��� � ��� � ����� and an initial weight interval of ����� � ����� �� � ���	� The neural network using these
adopted parameters performed well�

	 Conclusions

The gain of the activation function and the learning rate in backpropagation neural networks are ex�
changeable� More precisely� there exists a well�de�ned relation ship between the gain� the learning rate�



and the initial weights� This relation ship is presented as a theorem that is accompanied by a detailed�
yet easy to understand� proof�

The theorem also holds for several variations of the backpropagation algorithm� like the use of mo�
mentum terms� adaptive gain algorithms� and Fiesler�s weight discretization method�

A direct application area of the theorem is analog neural network hardware implementations� where
the possible activation functions are limited by the available components� One can compensate for their
non�standard gain by modifying the learning rate and initial weight according to the theorem to optimize
the performance of the neural network�

Appendix

Before proving theorem � a generalization of the on�line backpropagation learning rule �Rumelhart et al�
����� is described� in which every neuron has its own �local� learning rate and activation function� The
standard case of a unique learning rate and activation function corresponds to all local learning rates and
activation functions being equal for the whole network�

The following notation and nomenclature is used �Fiesler ������ a �multilayer� neural network can
have an arbitrary number of layers denoted by L� The number of neurons in layer � �����L� is denoted
by N� and the neurons in layer � are numbered from � up to N�� Layer � is the input layer and layer L is
the output layer of the network� Adjacent layers are fully interlayer connected� The weight from neuron
i to neuron j in the next layer � is denoted by w��i�j� The activation value of this neuron is indicated as
a��j �j 	 ��� and tj denotes the target pattern value for output neuron j� To simplify the notation the
convention is used that a����� � � and the bias �or o
set� is w����j� The backpropagation algorithm is
described by the following �ve steps�

�
 Initialization Weights and biases are initialized with random values��

�
 Pattern presentation An input pattern� which is used to initialize the activation values of the
neurons in the input layer� and its corresponding target pattern are presented�

�
 Forward propagation During this phase� the activation values of the input neurons are propagated
layer wise through the network� The new activation value of neuron j in layer � ��� ��L� is

a��j �

��
�

� if j � �

���j�net��j� otherwise�
���

where the input of a neuron j� not in the input layer� is de�ned as

net��j �

N���X
i��

w��i�ja����i� ���

where ���j is a di
erentiable activation function� for example the logistic function ����

	
 Backward propagation For each neuron an error signal 
 is calculated� starting at the output layer
and then propagating it back through the network�


L�j � ��L�j�netL�j� �tj�aL�j� for the output layer L


��j � ����j�net��j�
P

k 
����kw����j�k for layers � ��� L���
���

After the calculation of all error signals� the weights and biases are updated�

w��i�j �� w��i�j � ���j
��ja����i� ���

where ���j denotes the learning rate of neuron j in layer ��

�See �Thimm and Fiesler ����� for an in	depth study of weight initialization�



�
 Convergence test If no convergence go to Pattern presentation�

The notation introduced in the formulation of the backpropagation algorithm permits the proper
formulation of the

Proof of Theorem � To simplify the notation� the vector of incoming weights of neuron j is denoted
by w��j and the vector of activation values of layer � by a�� Now� using this notation� ��� can be rewritten
as�

net��j � w��j � a���� ���

where � � � is the inner product operator� The variables of network N �the network with activation
functions with gain one� are overlined for example� net��j � w��j � a����

The proof of theorem � is separated into two parts� Lemma � deals with the forward propagation�
the networks have the same output for the same input pattern� Lemma � deals with the backward
propagation� the conditions for lemma � still hold after a training step�

Lemma � Two networks M and N � satisfying the preconditions given in theorem �� have the same
activation values for corresponding neurons� that is a� � a� �for all ��� if a��a� �is forward propagated��

Proof By induction on the number of layers� starting at the input layer�

Induction base� The activation values of the input layer neurons of network M and N are identical�
since the input patterns are identical �a��a���

Induction step� For neuron j� not in the input layer�

a��j � a��j using ���� trivially ful�lled for j���

� ���j�net��j� � ���j�net��j� using ���� ���j�x�����j����jx�

� ���j����j net��j� � ���j�net��j�

� ���j net��j � net��j using ���

� ���j�w��j � a���� � w��j � a��� on account of w��j � ���jw��j

� ���j�w��j � a���� � ����jw��j� � a����

which is true on account of the induction hypothesis that the activation values in the lower layers are
identical� Note that in the course of the proof it has also been shown that ���j net��j � net��j� �

In the proof of Lemma � the property w��j � ���jw��j is used� Since the backward propagation changes
the weights� it has to be shown that this property is an invariant of the backward propagation step�

Lemma � Consider networks M and N � with a��j � a��j and net��j � ���jnet��j �for all � and j�� then

�j� � � w��j � ���jw��j ���

is invariant under the backward propagation step �if the same input and target patterns are propagated
through the networks��

Proof Let �w��j denote the weight change ���j
��ja���� One observes that ��� holds if and only if
�w��j � ���j�w��j �for all j and ��� Manipulating this expression�

�w��j � ���j�w��j de�nition of �w��j

� ���j
��ja��� � ���j���j
��ja��� since ���j�����j���j and a��a�

� ����j���j
��j � ���j���j
��j �

hence� it needs to be shown that ���j
��j � 
��j � which is done by an induction on the number of layers�
starting at the output layer�



Induction base� For the activation values of the output layer the equation �L�j
L�j � 
L�j holds�

�L�j
L�j � 
L�j using ���

� �L�j �
�

L�j�netL�j� �tj�aL�j�

� ��L�j�netL�j� �tj�aL�j� since aL�j�aL�j

� �L�j �
�

L�j�netL�j� � ��L�j�netL�j� using netL�j��L�jnetL�j

� �L�j �
�

L�j��L�jnetL�j� � ��L�j�netL�j��

which follows from applying the chain rule to ���j�net��j� � ���j����jnet��j��

Induction step� For a neuron j not in the output layer ���L��

���j
��j � 
��j using ���

� ���j �
�

��j�net��j�
P

k 
����kw����j�k

� ����j�net��j�
P

k 
����kw����j�k using net��j����jnet��j

� ���j �
�

��j����jnet��j�
P

k 
����kw����j�k

� ����j�net��j�
P

k 
����kw����j�k using ���j�net��j�����j����jnet��j�

�
P

k 
����kw����j�k �
P

k 
����kw����j�k using ���� w����j�k������kw����j�k

�
P

k 
����k�����kw����j�k �
P

k 
����kw����j�k�

which holds on account of the induction hypothesis �����j
����j � 
����j ��

An induction over the number of pattern presentations� using these lemmas� concludes the proof of
theorem �� �

Addendum

For completeness the authors would like to include the reference to a letter in Neural Networks �Jia et
al� ������ that was brought to their attention after the submission of this paper to Neural Computation�
in which a similar theorem is presented� albeit without proof or applications� The theorem includes
momentum and is related to �Izui and Pentland ����� and �Sperduti and Starita ����� by the authors�
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