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1 Introduction

The backpropagation algorithm is the most popular method for neural networks training and i1t has been
used to solve numerous real life problems. Nevertheless, it still presents some difficulties in dealing with
sufficiently large problems.

The fact that it consists of a relatively simple procedure has played an important role in the success of
the algorithm. In addition, its local computations avoid the use of large storage resources. These features,
however, lead to small performance achievements. The standard backpropagation algorithm shows a very
slow rate of convergence and a high dependency on the value of the learning rate parameter. Furthermore,
the shape of the multi-dimensional error function for the majority of the applications usually presents
irregularities difficult to handle by a gradient descent technique with a fixed step size. Another serious
problem is the existence of regions with local minima. If the search procedure enters such a region, the
minimization will be directed to that minimum and stop when it reaches it, while 1t would be desired
that it continues towards a global minimum, or at least a sufficiently low one. It was discovered, however,
that the appropriate manipulation of the learning rate parameter during the training process can lead to
very good results and, hence, a large number of different methods for its adaptation have been proposed.
The main purpose of this paper consists in an analysis of some of those proposals. They are classified
based on the underlying techniques used for the parameter adaptation and a special concern is applied
to those methods that are parameter-independent, that is, that do not imply the need for the user to
tune parameters whose values exert influence on the performance of the algorithm depending on the
particular problem handled and network architecture used. The results of simulations performed with
those methods are then presented. Among the methods reviewed here, some perform the adaptation of
the momentum term, either by itself or in parallel with learning rate adaptation.

1.1 The Backpropagation Algorithm

Backpropagation (henceforth called BP) is a training procedure for feedforward neural networks that
consists in an iterative optimization of a so called error function representing a measure of the performance
of the network!. This error function F is defined as the mean square sum of differences between the values
of the output units of the network and the desired target values, calculated for the whole pattern set:

t; and a; are the target and actual response values of output neuron j and Ny is the number of output
neurons; L being the number of layers. In order to allow consistent comparisons, some authors use the
mean squared error in such a way that the obtained value of the error will not depend on the size of the
pattern set and number of output neurons of the specific network used and simulation performed. In this
case, the summation of the equation above i1s divided by N -P.

During the training process a set of pattern examples is used, each example consisting of a pair with
the input and corresponding target output. The patterns are presented to the network sequentially, in
an iterative manner; the appropriate weight corrections being performed during the process to adapt
the network to the desired behaviour. This iterating continues until the connection weight values allow
the network to perform the required mapping. Each presentation of the whole pattern set is named an
epoch. Hereafter, the term “iteration” will refer either to a pattern presentation or a to a complete epoch,
depending on the context.

The minimization of the error function is carried out using a gradient-descent technique. The necessary
corrections to the weights of the network for each iteration n are obtained by calculating the partial
derivative of the error function in relation to each weight w;;, which gives a direction of steepest descent.
A gradient vector representing the steepest increasing direction in the weight space is thus obtained.
Due to the fact that a minimization is required, the weight update value Aw;; uses the negative of the

1A brief description of the algorithm is given here. For a more detailed explanation of its derivation and theoretical
basis, see for example [Rumelhart-86.2] or [Haykin-94].



corresponding gradient vector component for that weight. The delta rule determines the amount of weight
update based on this gradient direction along with a step size:

The 1 parameter represents the step size and is called the learning rate. w;; represents the connection
weight from unit ¢ in layer [ to unit j in layer [ + 1.

Fach iteration of the algorithm is composed of a sequence of three steps. i) The forward pass. It
consists in presenting a pattern example to the inputs of the network and make it propagate sequentially
through all the neuron layers until a result is obtained at the output units. The activation value a; of
unit j in layer [ (2 <1 < L) is calculated using a sigmoid activation function f:

N1
Ilet]' = E wijai—l—b’j .

i=1

1

a; = f(netj) = 71 n e—netj
Each ¢ represents one of the units of layer [—1 connected to unit j and 6; represents the bias or wy;. ii)
The generalized delta rule is used to calculate the values of the local gradients. Each weight update is
defined as

Awij(n) =1 bja;

and the equations of the generalized delta rule used to calculate the é values are:

8 = a;(1—a;)(t; — a;) for output neurons,

8 = a;(1—ay) ch\f;l Srwy;  for hidden neurons.

The 6; for the output units can be calculated using directly available values, since the error measure is
based on the difference between the desired (¢;) and actual (a;) values. However, that measure is not
available for the hidden neurons. The solution is to backpropagate the é; values layer by layer through
the network. iii) Finally, the weights are updated.

Two variants exist in presenting the pattern examples. With on-line training?, all of the above three
steps are performed sequentially in each iteration. If, on the contrary, batch training is used, only the
first two steps are performed at each iteration, the third being performed once per epoch, using the sum
of the collected local gradient values for all the iterations in that epoch.

A momentum term was introduced in the BP algorithm by [Rumelhart-86.2). The idea consists in
incorporating in the present weight update some influence of the past iterations. The delta rule becomes

0F(n
Aw;i(n) = _UW'(O:) + aAw;j(n—1) .

« 18 the momentum parameter and determines the amount of influence from the previous iteration on
the present one. The momentum introduces a “damping” effect on the search procedure, thus avoiding
oscillations in irregular areas of the error surface by averaging gradient components with opposite sign and
accelerating the convergence in long flat areas. In some situations it possibly avoids the search procedure
from being stoped in a local minimum, helping it to skip over those regions without performing any
minimization there. Momentum may be considered as an approximation to a second-order method, as it
uses information from the previous iterations®. In summary, it has been shown to improve the convergence
of the BP algorithm, in general. Furthermore, it is possible that it allows a range of different learning
rate values to produce approximately analogous convergence times.

2 Also called stochastic training
3See Section 2.2.1 for more information about this issue.



2 Adaptive Learning Rate and Momentum Methods

There are two fundamental reasons that justify a study of adaptive learning rate schedules. One is that
the amount of weight update can be allowed to adapt to the shape of the error surface at each particular
situation. The value of the learning rate should be sufficiently large to allow a fast learning process,
but small enough to guarantee its effectiveness. If at some moment the search for the minimum is being
carried out in a ravine, it is desirable to have a small learning rate, since otherwise the algorithm will
oscillate between both sides of the ravine, moving slowly towards the real descent direction. This is
justified by the fact that the gradient will point towards the current descent direction, which will be far
different from the direction of the minimum, except for the case where the current search point is on the
bottom of the valley. If, on the contrary, the search is in the middle of a plateau and the minimum is
still a long distance away, then an increase of the step size will allow the search to move faster, since in
this case there exists a sufficiently accurate descent direction. The other reason is that with automatic
adaptation of the learning rate, the trial-and-error search for the best initial values for the parameter can
be avoided. Normally, the adaption procedures are able to quickly adapt from the initial given values to
the appropriate ones.

In addition to learning rate adaptation, certain methods use also an individual learning rate for each
connection weight, the adaptation being processed independently to each one of them, thus allowing
each weight dimension to be autonomously adapted based on its own local information. In this case,
however, the descent direction obtained at each step no longer corresponds to steepest descent, since
an independent direction is found for each weight dimension. This technique is named as local learning
rate adaptation as opposed to global learning rate adaptation, where a single global value is used for all
weights.

Besides learning rate adaptation, momentum adaptation is also used in some methods. The main
reason for this is that the influence of the momentum in the weight update can become too large, in cases
where the gradient value is small.

In the course of this study, a large number of methods for learning rate and/or momentum adaptation
are reviewed and their main characteristics summarized.

2.1 Taxonomy of the optimization techniques

The studied adaptive methods are presented here following a classification based on the different tech-
niques used to adapt the learning rate. The list of techniques presented is not exhaustive.

e Based on numerical optimization procedures using second-order information:

e Conjugate gradient
e Quasi-Newton

e Using a second-order calculation of the step size
e Based on Stochastic Optimization

e Heuristic-based:

e Adaptation based on the angle between gradient direction in consecutive iterations
e Adaptation based on the sign of the local gradient in consecutive iterations

e Adaptation based on the evolution of the error

e Prediction of a set of new values for the learning rate

e Searching for zero-points of the error function instead of zero-points of its derivative
e Adaptation using the derivative of the error function in relation to the learning rate

e Using peak values for the learning rate
e Other:

e Calculation of the optimal fixed values for the parameters before the training



2.2 Description of the methods

2.2.1 Methods based on numerical optimization procedures using second-order informa-
tion.

Numerical optimization techniques are, in general, capable of achieving high rates of convergence. Never-
theless, when applied to the training of feed-forward neural networks, their fast convergence features do
not allways imply fast training, either because of incompatibilities between the nature of the particular
problem handled and the properties of the technique or because the reduction in the number of iterations
will not compensate, in terms of processing time, for the computational complexity of those techniques,
specially in large-scale problems. Nevertheless, they are still worth considering since some approximation
techniques were derived that allow a successful use of second order information in the neural networks
field. These techniques still capture the main principles of the original procedures but reduce considerably
their processing demands.

The use of second-order information provides a better knowledge of the characteristics of the error
function surface and thus optimizes the search procedure. Although the methods described in this
section are all based on second-order techniques they never use explicit information from the second-order
derivatives since they are all based on approximations. Two main categories of methods are distinguished:
the Quasi-Newton and the conjugate gradient ones. These have been reported as the most successfully
applied to the training of feed-forward neural networks, amongst all those using second-order information.
Additionally, a reference 1s given to a technique that uses second-order information in a different manner.

When numerical optimization techniques are applied to the training of multilayer perceptrons, the
weights are considered to be the independent variables of the objective function to be optimized, which
is the above defined error function. Although the weights are distributed over the network, they are
considered here as a single one-dimensional vector of W independent variables.

Conjugate gradient Conjugate gradient (CG) methods find the search direction at each iteration
based on a linear combination between the current gradient direction and the previous one, where steep-
est descent is used as the direction for the first iteration. The original CG algorithm, based on conjugate
directions theory applied to quadratic functions, makes use of the Hessian matrix H of second-order
derivatives, and its inverse, in two basic operations: the calculation of the step size and the linear combi-
nation of the previous and present gradient directions to find the new search direction. The calculation
and inversion of an W x W matrix, W being the total number of weights in the network, are two com-
putationally expensive procedures to be performed at each iteration during the training of feedforward
neural networks. Besides this, it involves the explicit calculation of the second-order derivatives, which
are not directly obtainable by backpropagation. Considering the inconvenience of manipulating the Hes-
sian, an approximation to it was derived? to replace the true matrix in the calculation of the conjugate
direction, while the step size is obtained by a line search. With this, a simplified version of the algorithm
that depends only on the function and gradient values is obtained which is considered to be the stan-
dard conjugate gradient as applied to the training of feed-forward neural networks. As it is only briefly
outlined here, the derivation and formal description of the conjugate direction principles can be found
in [Johansson-92] or [Moller-93]. In this section, the vector containing the summation of the negative
gradients vectors for all the pattern presentations in epoch k (—=V E(wy)) will be denoted as g;.

1. Initialization. The weight vector wg is set. The initial direction dy is obtained by gradient descent
(90). k =0.

2. A line search is performed to find the n; that minimizes F(wy + nrpdy).

3. The weight vector is updated: wpy1 = wi + Npds.

4. A new direction dpy; is computed. If (k+1 mod W)=0 then the algorithm is restarted with
dp+1 = gr+1. Otherwise dpp1 = gr41 + S ds.

5. If the minimum was reached then the search is terminated. Otherwise, a new iteration is performed:
k =k + 1 and jump to step 2.

*See [Johansson-92] for details on its derivation.



The [ parameter is always calculated in order to force the consecutive directions to be conjugate.
Different formulas exist to calculate it, such as the following:

Fletcher-Reeves: Polak-Ribiére: Hestenes-Stiefel:
. g£+1gk+1 . g{+1[gk+1 — g&] . g{+1[gk+1 — g&]

Be = B = By =

A [gr+1 — 9]

When applied to quadratic functions, conjugate gradient methods converge in at most W iterations.
As the function used here 1s not quadratic, the algorithm is restarted in the gradient descent direction
at the current point after each W iterations, otherwise a deterioration in the conjugacy of the directions
occurs.

gt gk gt gr

The line search referred in step 2 is an iterative procedure that executes a one-dimensional search
for the minimum along the search direction determined by conjugate gradient. It is a computationally
expensive procedure caused by the fact that the expression E(wy + nidy) must be calculated at each
search iteration for different values of 5, which involves the presentation of all the training set for each
calculation. The search tolerance parameter, that must be selected by the user, plays a very important
role in the global convergence time of the algorithm, since it influences the number of line search iterations
performed until a near-optimal step size is found. Furthermore, the accuracy of the line search is crucial
for the success of the conjugate gradient algorithm.

The fact that gradient descent methods use the steepest descent direction in all cases leads to the fact
that in subsequent search iterations those directions can be quite different, caused by the locality of the
technique. One important consequence of this is that the direction taken in one iteration can influence
negatively the optimization already achieved with previous iterations. Conjugate gradient directions help
avoiding this zig-zag movement detected on steepest-descent searches.

In Section 1.1 it was mentioned that the momentum technique is in principle similar to conjugate
gradient. In both cases, information from previous iterations is used. In the previously described standard
BP algorithm the momentum parameter o determines the influence from the past iteration direction in
the current one. A similar purpose is assigned to the 7 parameter of CG, that is, to combine the direction
used in the previous iteration with the current descent direction to find a new one. However, the main
difference between the two techniques lies in the fact that, while there is always a well-defined prescription
to find 8 in CG, even if it varies between different algorithm versions, there is no established procedure
to set the value of momentum, and either a user-defined constant value is used or a particular procedure
is applied to adapt it. Based on this, momentum is never used in a CG method, except in the case
where it is considered that that CG method itself consists of a momentum adaptation procedure - see
the description for [Leonard-90].

In practice, conjugate gradient methods are only used in batch mode. One reason for this is their
large computational demands. Another reason relates to the fact that their optimization procedure
should consider the whole training set, otherwise, optimizations done on single or small groups of pattern
presentations could be in conflict to the optimization of the rest of the set. M. Moller has studied this
problem. The results can be found in [Moller-93].

[Leonard-90] Leonard and Kramer emphasize the parallelism between momentum and CG, as
discussed above, and even describe the principle of the latter based on the former. In this method,
the § parameter existent in the above description of the CG algorithm is treated as being the
momentum term. It is calculated using the Fletcher-Reeves formula. The direction is also reset
to gradient descent every W iterations. It is stated that a line search is used to calculate the step
size, although no details are given about the exact procedure. The authors say that a coarse line
search is used, instead of an ezact one and, because of that, a negative (ascending) step may be
taken sometimes. In such a case, the algorithm is restarted using a momentum value of zero. As
mentioned the tolerance parameter for the line search must be set by the user.

[Moller-93]  With the Scaled Conjugate Gradient method, Mgller proposes a technique to regulate
the indefiniteness of the Hessian matrix, based on a model-trust region approach obtained from
the Levenberg-Marquardt algorithm. This technique uses a parameter A to adjust H and assures
that it is positive-definite at each iteration, avoiding the need to perform a line search. Instead, an



approximation of the Hessian is used to calculate the step size, as is done with the standard CG
algorithm. The matrix is approximated by:
VE(wk—i—dek)—E(wk) o

SkIVZE(wk) dk% or s Cr = |dk| .

The value of ¢ is said not to influence the behaviour of the algorithm as long as it is smaller than
10~%, but it should be as small as possible, considering the machine precision. The quality of the
approximation obtained for the Hessian is measured in every iteration, the effective calculation of
the step size depending on that. Thus, if the measured quality is not satisfying, the A parameter
is adjusted and the step size calculation and weight updating procedures are skipped. All the
parameters involved in this method are precisely given the values (or ranges of values) that they
should assume.

Quasi-Newton Modelling the incremental change of the objective function between iterations with a
Taylor series expansion, the Newton method can be derived as follows:

AE(w) = FEw+ Aw)— E(w)

X

gT Aw + %AwTHAw

After setting the differential with respect to Aw to zero, to minimize A E(w), the equation for the weight
update becomes:
Aw=—-H"1g.

The use of the Hessian in this equation provides a direction as well as a step size for the optimization
step. As can be observed, the Newton method is fully based on the use of the Hessian matrix. [Battiti-92]
describes some techniques that deal with analytical approximations of the Hessian. As already discussed,
it 1s not practical to approximate the matrix analytically. Because of this, only Quasi-Newton methods
will be considered here, these being the ones that are commonly applied to train multilayer perceptrons.
The main feature of this class of methods lies in the fact the Hessian is obtained iteratively, based on
information from the function and its derivative accumulated during the iterations. Hence, the second-
order derivative is obtained by any update procedure that verifies the Quasi-Newton condition:

Hk (wk - wk_l) = VE(wk) - VE(wk_l) .

There are several methods to derive Hj respecting this condition. The BFGS update developed by
Broyden, Fletcher, Goldfarb and Shanno in 1970 is one example. A description of it is given below, since
the method proposed in [Battiti-92] is based on it. Another example is the DFD update method, proposed
by Davidon, Fletcher and Powell in 1963 (see [Watrous-87]).

For the Newton method to be applied, the Hessian has to be both positive definite and symmetric,
otherwise numerical instability problems may arise. Furthermore, convergence is only guaranteed if a
good initial estimate of the minimum in the convex region where it is located already exists. In this case,
considering the non-quadratic error function, the method converges quadratically. Taking into account
that a considerable effort must be done by the search procedure before it arrives at the region where
the minimum is located, and that the Newton method is accurate only locally in that region, it must be
combined with some global search procedure. Similar to the methods derived from conjugate gradient,
the derivations of the Newton method, which do not use direct second-order derivatives calculation, find
the step size by means of a line search. With this feature the Quasi-Newton methods become global.

[Battiti-89] [Battiti-92]  Battiti first presented his method in 1989 under the name of conjugate
gradient with inexact linear searches based on a procedure proposed by D. F. Shanno (1978) with
the same name. By that time, the method was described based on the principles of conjugate
gradient. More recently, in [Battiti-92], the same method is derived from the Quasi-Newton BFGS
update used to approximate the Hessian matrix and it is given the definitive name of 055 method
(One-Step Secant). This shows that although conjugate gradient and the Newton method originally



used second-order information differently, the modifications operated to adapt each of them to the
training of multilayer perceptrons allows methods derived from either of them to have similar
features. In this case, the same method was presented derived from both techniques. In any of the
cases, this is a second-order method and it is described here following the BFGS derivation.

The BFGS update is considered to be one of the must successful procedures to iteratively approx-
imate H. At each iteration, the already existent matrix approximation is updated using the new
information obtained from the objective function and its derivative. The identity matrix is normally
used as Hg, which means that gradient descent direction is used in the first iteration. Considering
Y = gr — gr—1 and pp = wp — wg_1 the equation of the BFGS update is:

T T
Yy Hksks Hk

Hypp1 = Hp + Tk -— k
Yi Sk s, Hysp

This formula guarantees the positive definiteness of the Hessian.

Although it consists of a simplification, the above formula 1s still considerably complex, demanding
much computational effort and storage space if a large number of weights are considered. The
solution proposed for this problem was to invert the equation and obtain an equation for the inverse
of H with the identity matrix I being used instead of the approximated H obtained in the previous
iteration. With this, no information is transferred between iterations and the method 1s called one-
step memory-less Broyden-Fletcher-Goldfarb-Shanno. Using the described transformations, the new
search direction is obtained by:

dy = —gr + Arpr + Bryr , where

T T T T
Ak:—<1—|—<y§yk)) (pggk)_i_(yggk) ,andBk:<p§gk).
Pr Yk Pr Yk Pr Yk Py Yk

The search direction is reset to gradient descent every W iterations. The line search procedure

proposed in [Battiti-89] to calculate the step size is based on quadratic interpolation and is said to
be optimized.

[Becker-89] Becker and le Cun propose a method based on previous work by le Cun. It consists
of approximating the Hessian by its diagonal. The use of a diagonal matrix allows them to perform
matrix manipulations that would otherwise be too computationally expensive. They use a procedure
that calculates the second-order derivatives of the error function:

_*E_0°E

7T 52
dwi,  da;

H f(net;)?.

a’E
6(1?
using a recursive procedure similar to backpropagation. The obtained Hessian, being diagonal, is

The second-order derivatives of the error in relation to the activations ( ) is obtained explicitly

easy to invert and can thus be used in a weight update rule similar to the original Newton step:

oE
Aw=—ng 762(:0”
AR

dw?,
ij

The aim of using the absolute value of the Hessian term is to reverse the sign of the step for directions
with negative diagonal terms. The addition of y to the Hessian guarantees its positive-definiteness.
No line search is performed, instead, a fixed learning rate is used with a different value for each
layer, calculated relatively to the fan-in of each unit of the corresponding layer. Momentum is used.
The authors conclude that the behaviour of their method is considerably sensitive to the values
of y and . They performed a study involving a set of simulations to analyze the quality of the



Hessian’s diagonal approximation. Considering the error surface regions where the behaviour of a
training method is more critical, such as ravines (valleys), the diagonal becomes more similar to
the real matrix as those ravines become parallel to one of the weight axes. This is due to the fact
that the diagonal does not produce any rotation effect on the descent direction, as occurs with the
full matrix of the original Newton method. As the effect of the diagonal consists simply of scaling
the step size, if operating in a ravine nearly parallel to one of the weight axes, the behaviour will
be based in approximately the same curvature information obtained with a full Hessian.

[Fahlman-89] The Quickprop method of Fahlman is included in this section because it uses a
second-order rationale close to that of the Newton method, although it is mainly heuristic. Quick-
prop 1s composed of a set of heuristics. The main principle is to perform independent optimization
for each weight, minimizing an approximation of its curve by a parabola whose arms turn upwards.
At each step, the parabola is minimized using the inclination of the corresponding weight dimension
of the error surface in the current and previous step. With this, the update rule is

B VE(wy)
- VE(wp-1) — VE(wy)

Awlj(n) Awij(n — 1) .

There is no learning rate in this equation. However, the step size should still be controled when the
parabola determines a too large or infinite step, which is done with a “maximum growth factor” pu
that determines Aw;;(n) < p Aw;j(n—1). A value of 4 = 1.75 is suggested. In the first step,
and for the cases where the previous weight update is 0, the method uses the standard delta rule,
which means using simple gradient descent along with learning rate. Later, the author thought of
combining both update rules which results in always adding the delta rule update to the quadratic
rule mentioned above, except when the sign of the steepness in the current step is opposite to the
previous one. In this case, the quadratic rule is used alone. A further improvement consists of
adding a weight decay term to each weight to prevent it to grow exceedingly and cause overflow.
Finally, the flat-spot elimination technique is proposed. The flat-spot problem occurs when the
output a; of the sigmoid activation function of some neuron j approaches 0.0 or 1.0. In this case,
the function derivative a;(1—a;) becomes too close to zero leading to a small value in the §; term of
the generalized delta rule mentioned in Section 1.1 and producing a too small weight update. The
technique consists in always adding a constant of 0.1 to the derivative of a;, yielding a;(1—a;)+0.1.
Quickprop is still under development.

Using a second-order calculation of the step size As already mentioned, line search is a procedure
used to find the optimal * that minimizes the function A defined as:

h(ﬂk) = E(wk + dek)

Given this, the error at the present iteration is expressed as an univariate function of the learning rate
value. The learning rate adaptation performed by this technique is based on the optimization of h(n;),
which can be accomplished using traditional one-dimensional numerical optimization techniques that
make use of the first and second-order derivatives of the function.

[Yu-95] Based on some experiments, Yu, Chen, and Cheng assume that the function h(n;) can be
approximated by a parabola in the region where 5} is located. Then, a set of recursive formulas
is suggested to calculate the first and second-order derivatives of h(n;) as well as a set of different
techniques to find n} using these derivatives, including Linear Expansion, Acceptable Line Search,
Polynomial Approzimation, and the Newton Method. Computer simulations were done to evaluate
the performance of each of them, the Newton method being suggested as the most appropriate one.
The step size is then obtained in one single iteration if the Newton step is applied:

()
RO}

It is mentioned that when A”(0) > 0, the Newton method is not applicable. In this case, either
the Acceptable Line Search technique or the Polynomial Approximation are used, without details




given on how to make the selection. A momentum adaptation technique was developed to be used
in parallel with the learning rate adaptation. This technique is inspired by the principles of the
conjugate gradient method but includes information from the learning rate value. The formula is

_ M4 5%

ap .
Me—1

bl

where 7} corresponds to the value for the learning rate obtained in that same iteration. The value
of By is calculated by the following expression, where F(wy) is represented by Ej for simplicity:

— T .
VB =tV B i b e W on | VEIV By | < 0.2 ||V E|| ||V B

Br =

0 otherwise.

W is the largest possible period for restarting the direction search, but no explicit value is given
for r, which is a positive integer. A rescue procedure is applied when, during the training, the
value of the error between iterations increases beyond a small positive threshold. This is aimed at
avoiding the search procedure to jump into undesirable regions of the error surface. In this case the
learning rate is recalculated using the Acceptable Line Search technique or a fixed value is used.

2.2.2 Methods based on Stochastic Optimization

While the deterministic training procedures perform local minimizations of the objective function based
on the currently available information about that function, the training of feedforward neural networks
based on stochastic approximation is considered as a statistical process. It regards the training patterns
as random samples from an unknown distribution, the main task being the search for a solution w*
that minimizes the objective function by accumulating information about the distribution given by the
successive presentation of the exemplars, which are chosen randomly from the training set in an on-
line supervised manner. Thus, each pattern presentation represents an observation of the probabilistic
relationship between the set of input patterns and the set of all their corresponding target outputs.
The stochastic procedures have a similar behaviour as the deterministic ones on average. Their random
nature, however, introduces some noise in the training that can entail positive effects; like the ability to
escape from local minima.

The following are the conditions imposed on the learning rate for convergence, in the mean square
sense, to a minimum:

m m
lim Ny = 0O lim N2 < oo

To ensure these, the learning rate i1s generally taken as a function of time, following a decreasing sequence.
The most commonly used function in stochastic approximation in accordance with this has been n,, = 1/n,
where n is the iteration number. However, it has been discussed that this schedule is far from achieving
the optimal rate of convergence, and alternative schedules are proposed in the methods presented below.
Namely, one solution to improve the rate of convergence, using an annealing schedule for the learning
rate, is to keep its value high until the region of the minimum is found and only then apply the decreasing
schedule to allow convergence, leading to two different stages during the search where distinct regimes
are adopted for the learning rate.

[Darken-92] Darken and Moody propose the “Search Then Converge” (STC) schedule:

c n
M =Tlo —1 Ther
n — t2
I+ 55+ 7=
The parameter 7 corresponds to the point in time (iteration) when to switch from the search phase
to the convergence phase. The learning rate remains fairly constant and equal to 5y until time

7 is reached, thereafter being decreased as ¢/n. The ¢ parameter is of major importance to the
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convergence behaviour of this schedule. Defining ¢* = 1/2X; where A is the smallest eigenvalue of
the Hessian matrix of the objective function obtained in the location of the optimum, two very
different convergence behaviours are detected when ¢ < ¢* and when ¢ > ¢*, the later condition
being crucial for the success of the convergence. As A is unknown, the authors propose an on-line
procedure to evaluate if ¢ is either less or greater than ¢*, based on what they call “drift” | defined as
an excessive correlation in the change vectors of that parameter. Two different ways to quantify the
drift are proposed. The authors expect to obtain an entirely automatic method using the principles
explained here. However, the work they developed in this field is not yet concluded. In fact, no
explicit quantified relation between the drift and the precise value that ¢ should assume is given.

[Leen-94]  Leen and Orr study the case where momentum is used in parallel with the learning rate
schedule 7, = ng/n. They refer the fact that when momentum is used, the learning at late times is
determined by a factor

_ 7
neff:l—oz’

called the effective learning rate. After studying the asymptotic behaviour of the error function
in the presence of the stochastic methods with momentum, they found that similar to the method
described above, two very different convergence behaviours were observed depending on whether
Ness 18 less or greater than a critical value equivalent to the ¢* parameter described in the method
above. As mentioned, n.;; must be greater than the critical value to allow optimal asymptotic
convergence. The solution found to overcome the fact that no knowledge exists about the eigenvalue
A was to develop a momentum adaptation technique that assures optimal convergence independently
of the value of 1y. The formula for the adaptive momentum matrix is:

a=I—czz’, ¢ =min(no, 1/(27x)).

I is the W x W identity matrix and x the vector containing the input values of the network. The
optimization effort developed here concerns mainly the convergence phase of the learning. The
author’s research work in this field 1s not yet finished, since the method includes no prescriptions
to decide when to switch from the constant parameter phase to the adaptive one.

2.2.3 Heuristic methods

Adaptation based on the angle between gradient directions in consecutive iterations. Con-
sidering the previous weight update Aw,_ and the present gradient descent VE(wn) vector directions,
the value of the angle # between them in successive iterations can give information about the properties
of the error surface. If those two vectors have similar directions, indicating stability of the search proce-
dure, the value of the learning rate can be increased. On the contrary, a noticeable difference between
those directions, detected by a change in the angle value between iterations, suggests the presence of an
irregular region of the error surface, a situation where the value of the learning rate should be reduced.
The angle information is obtained through the calculation of its cosine, using the formula:

B —Vﬁ(wn).Aw;_l
IV E(wn)|| | Awn 1|

SUp

It should be noted that the angle between —Vﬁ(wn) and Aw;_l is equal to the angle between Aa}n
and Aw,_1 only when momentum is not used, otherwise, the effect of & in the learning rule, combined

with the direction of the previous gradient vector —VE(wn_l) originate a weight update Aw_;l_l that
follows a direction different from the gradient one.

Chan-87 Chan and Fallside use the angle-driven approach. The value of the learning rate for the
g g
present iteration is obtained by combining its value in the previous iteration with the present value
of cos @, giving

1
Nn = NMn—1 (1 + §COS gn) .
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In parallel, they propose the adaptation of the momentum coefficient, based on the fact that it should
be proportional to the value of the learning rate a,, = A, ,. The adaptation is, in fact, performed
through the proportionality factor with A, = Ao(||[VE(wn)||/||Awn-1]|), having Ag = ag/no and
0 < Ag < 1. These initial values of learning rate and momentum should be selected by the user.
The authors state that the algorithm is relatively insensible to these initial values, and support
it by some simulation results. They use batch update - but with a large number of patterns, the
training set is carefully divided into subsets (respecting an uniform distribution) and the weights
are updated after the presentation of each subset. Global values are used for learning rate and
momentum.

[Haffner-89] Haffner did some experiments while modifying in different aspects of the BP algo-
rithm. The proposed improvements concerning the step size include an adaptation technique based

on cos !, where

T = Th—1 eucoan.

An empirically obtained value of 0.1 is suggested for u. Further proposals include the use of local

learning rate and the limitation of the norm of the vector nVE(w,,) to avoid weight modifications
that are too large. This is done by resizing the learning rate with

/ 7

= 3

and using 7’ in the weight update rule. w = 1.0 was empirically found to work well for different
problems. Additionally, a momentum adaptation schedule determines an independent momentum
term «;; for each weight, setting a;; = 1/(1+d |, ¢y wAw |) with a proposed value of d = 1.0.

[Hsin-95]  This is an on-line learning rate adaptation method where each iteration makes use of
information from the previous ones. The learning rate at each iteration is obtained by a weighted
average over the values of cos 8 from the current and last L iterations. A formulais given to calculate
the relative weights for the average. L is an arbitrary parameter that is changed for each problem.
A momentum term is not considered and the learning rate parameter is global.

Adaptation based on the sign of the local gradient in consecutive iterations. After perform-
ing a detailed analysis of the reasons for the slow rate of convergence of the BP algorithm, R. Jacobs
[Jacobs-88] proposed a set of four heuristics aimed at improving its convergence. They influenced the
work of several other researchers that incorporated them in their proposed techniques for BP optimiza-
tion. In a concise description, the heuristics state that each weight should have its own learning rate
that should be allowed to vary over time. Furthermore, the learning rate should be increased when the
corresponding local gradient holds the same sign for several iterations, and decreased when consecutive
changes in the sign are detected. The principles used for varying the learning rate values are based on
the fact that the behaviour of the sign of the local gradient throughout consecutive iterations can give
information about the curvature of the error surface in the corresponding weight dimension.

[Jacobs-88]  In order to implement the proposed heuristics, Jacobs developed, with the cooperation
of R. Sutton, the delta-bar-delta (D-B-D) learning rule, that consists in varying the learning rate
based on a comparison between the sign of the current local gradient and that of an exponential
average of the same gradient in the present and several past iterations. In addition, the learning rate
is incremented by a constant but decremented by a proportion, which results in a faster decrease
than increase rate. As proposed in the heuristics, independent learning rates and batch updating
are used in the simulations described. A momentum factor is not used. Instead, it 1s presented in
the paper as one of the possibilities to implement the heuristics. This technique has four tunable
parameters without precisely defined values: initial learning rate value, the constants for learning
rate increasing and decreasing, and the base for the exponential average. [Haykin-94], in Sec.
6.15, proposes the introduction of the gradient reuse technique [Hush-88] into the Delta-Bar-Delta
learning rule in order to reduce its computational effort. In this case too, batch updating is used.
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[Minai-90] Minai and Williams based their work on the Delta-Bar-Delta rule, developing the
Extended-Delta-Bar-Delta (E-D-B-D) which consists mainly of four modifications of the D-B-D
learning rule. The features added or modified by E-D-B-D are:

L. instead of increasing the learning rate by adding a constant to it, an exponentially decreasing
function of | §(¢) | is used to increase it, 6(¢) being the exponential average of the local gradient
values 6 in present and past iterations;

2. a momentum term is used, being adapted exactly the same way as the learning rate;
upper limits are imposed for the value of these two parameters;

4. a special kind of backtracking procedure is used that memorizes the point where the lower
error was found during the search and returns to that point whenever the actual error value
exceeds it by a certain amount, called the tolerance. In such cases, the learning rate and
momentum values are decreased.

Batch updating is used, as well as independent learning rate and momentum coefficients for each
weight. The E-D-B-D technique adds seven more user-defined parameters to D-B-D, resulting in a
total of eleven.

[Almeida-90] [Silva-90]  Silva and Almeida propose a simplified implementation of the principles
described in this section. The learning rate is increased multiplying it by a constant u slightly
greater than 1 (= 1.2) and decreased multiplying it by the reciprocal of u (1/1.2). Independent
learning rates values are used. Momentum also takes part in the method, but it i1s held constant.
A backtracking procedure is performed in the cases where an increase of the error function is
detected, making the search return to the point where it was in the previous iteration. In this case,
the normal adaptation of the learning rate values is still performed; however, if the error increases in
three consecutive iterations, all the independent parameters are reduced by half. Upper and lower
bounds are defined for the step size, in order to prevent overflow and underflow. Batch updating
of the weights and learning rate 1s used.

[Riedmiller-93] This is not an adaptive learning rate method. Referring to the learning rate
adaptation techniques in general, Riedmiller and Braun state that, as the weight update value
is composed both of the adapted learning rate and the value of the derivative, the effect of the
former can in some cases be disturbed by the unforeseeable values of the latter, making the recently
performed learning rate adaptation useless. They therefore propose a method, called RPROP using
a technique that, although based on the sign of the local gradient in consecutive iterations, differs
considerably from all the other adaptation techniques and even from the standard BP algorithm
itself, since the weight update 1s done directly, without using the derivative nor the learning rate.
That means that at each iteration, a certain quantity A;; called update value is added to each
weight. The value of A;; is adapted by the gradient sign technique, as it would be done with a
learning rate parameter:

dw;i;(n—1) dw,;(n)

Agj(n) =1 05+ Ay(n— 1) it LER=DL OB o

Ajj(n—1) otherwise.

Furthermore, if the current local gradient is positive, the update-value is subtracted to the weight,
being added to it if the gradient is negative. With a gradient of zero, the weight remains unchanged.
A;;(0) = 0.1 is the proposed initialization, although it is stated that this value is not influent in
the general behaviour of the algorithm. Further details of the method include the reversal of the
previous weight update in the case where the derivative changes sign and the existence of upper
and lower bounds for the update-value, precisely defined by the authors. No parameters are defined
by the user, each weight has its own independent update-value, and batch updating is used.
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Adaptation based on the evolution of the error. Considering the simple principle that the search
for a minimum should be accelerated when following a descending movement in the error surface and
slowed down when ascending, the learning rate adaptation can be done simply by observing the evolution
of the value of the error at each iteration. In particular, the learning rate can be increased if the current
error is smaller than in the previous iteration and decreased otherwise.

[Vogl-88] The team composed of Vogl, Mangis, Rigler, Zink, and Alkon proposed the principle
described above plus some additional features. In the case of an error decrease, the learning rate
is increased proportionally to a constant ¢ which is greater than 1. An error increase 1s considered
only when the current error exceeds the previous one by 1%—5%, in which case the weight update
is rejected, the momentum coefficient (which is part of the technique) is set to zero, the learning
rate is multiplied by a constant § smaller than 1, and the step is repeated. The act of setting
the momentum to zero when an error increase is detected is justified by the fact that otherwise its
memory effect would possibly cause the search procedure to still go up despite the rejection of the
weight update. Batch learning and a global learning rate are used. There is no specific reference
to the values that ¢ and 8 should assume, except the ones shown to be used in one of the tests
performed to measure the performance of the method, as compared to standard BP. No reference
is given to the initial values of learning rate and momentum, nor about the sensitiveness of the
method to those.

[Hush-88]  Although the essence of this method is not centered on learning rate adaptation, it is
still performed. Instead of calculating the gradient values at each iteration, the same values are used
in several iterations, being recalculated only when they produce no reduction in the error function
anymore. This is expected to reduce the number of gradient calculations that will become smaller
than the number of iterations, thus saving computational effort and time. The learning rate is then
adapted based on the number of times that the gradient is consecutively reused. If the reuse rate
is high, the learning rate is increased, being assumed that the search is stable. If the reuse rate is
low the learning rate is decreased. Hush and Salas concentrate mainly in the gradient reuse part,
the learning rate adaptation procedure being poorly defined. The high and low values of the reuse
rate must be stated in advance, so that when any of them is reached, the corresponding learning
rate adaptation is performed. However, these values are not clearly defined, nor how the learning
rate should be adapted in each case. The learning rate parameter i1s global, there is no reference to
momentum, and the weights are updated in batch mode.

Prediction of new values for the learning rate. Some adaptation techniques increase or decrease
the learning rate at each iteration based on information obtained from the behaviour of the search pro-
cedure and the current state of the network. A different approach consists of anticipating the adaptation
by suggesting different new values for the learning rate, measuring the error on the new point found by
the weight update produced by each, and choosing the one that gives the best results.

[Salomon-90] [Salomon-92] The technique proposed by Salomon, later with the cooperation of
van Hemmen, consists in finding two new values for the learning rate. Each of these two values
is found by multiplying the current value by 1.3 and by 0.77 (=~ 1/1.3). A momentum term is
used and the adaptation of the learning rate is alternated with the adaptation of momentum in
consecutive iterations. The technique used is exactly the same for both parameters. An upper limit
is defined for each to avoid numerical problems. Global parameters and batch updating are used.
Furthermore, the authors propose the use of a gradient normalization procedure. At the end of
each epoch, the gradient vector that consists of the summation of the individual gradients from the
presentation of all patterns i1s divided by its own norm before being used to update the weights.
The upper limits for learning rate and momentum are defined by the authors, leaving no tunable
parameters.

Searching for zero-points of the error function instead of zero-points of its derivative. The
principle of this technique is to find the tangential hyper-plane in the current point of the error surface
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at each iteration and consider it as a local approximation to the error surface itself. Next, the step size
is chosen in a way that a step is taken towards the point where that hyper-plane tangent intersects the
error function’s zero-plane, being expected that it corresponds to a point relatively close to the zero of
the actual error surface. The same procedure is repeated with the point found at each iteration being
used as starting point for the next one until a point sufficiently close to zero is found.

[Schmidhuber-89] The geometric principles supporting the technique proposed by Schmidhuber
will then set the learning rate at each iteration as
n= 2
IV E|?
in case the gradient is non-zero. F), is the error caused by the presentation of pattern p in the
current epoch. If the gradient is zero, the learning rate is also set to zero. Considering the nature of
the technique, there are situations where an undesirably too big step may be taken. To avoid this,
an upper bound is set to the learning rate, defined by the author as having the value of 20. Another
feature of the technique is the addition of a very small negative constant to the error function, in
order to guarantee that the minimum is achieved in problems where the error surface does not have
a zero point. There 1s no suggested value for this constant nor any clear principle to decide whether
to use it or not, depending on the particular problem and network used. The learning rate is global,
on-line training is used, and momentum is not considered.

Using peak values for the learning rate The use of small learning rate values is needed to allow
true convergence but they lead to slow convergence rates. On the other hand, using high values often
cause oscillations and some times even unpredictable behaviour of the search. This technique is aimed at
trying to use peak values for the learning rate without causing oscillations by selecting the appropriate
occasions where those values should be applied.

[Cater-87] The method proposed by Cater works with on-line training and involves two techniques:

1. Consider, at epoch k, the pattern p that originates the highest aberration max | ¢;, — a;, |
amongst all the pattern set and all the output units j of the network; during epoch k + 1, the
learning rate used for the presentation of that same pattern will be:

Mprs1 = 20541 + | tj, — aj, |a

N, being the global learning rate at epoch k. This is used to compensate for the cases where
the target error is high and yet the delta rule corrections for the corresponding pattern are
small.

2. To avoid training oscillations and local minima, each time that the error increases by at least
1% in comparison to the previous iteration, the global learning rate is decreased by 50%.

The method uses a fixed momentum term. Both the initial learning rate and momentum values
must be selected before training. The author proposes 1y = 10 and g < 0.001. The proposed initial
learning rate value seems too high, but it is stated that, with the second technique described above,
when the search reaches a state of some oscillation, the increases of the error lead to a decrease
in the value of 5. In particular, it was observed that, after several thousand epochs, that value
suffered a decay of some orders of magnitude, going below 107°.

2.2.4 Other methods

Calculation of the optimal fixed values for the parameters before the training Here, a
somewhat different technique to select the learning rate is presented, which consists in using an heuristic
to find a good fixed value for it before the training. Although this avoids the trial-and-error selection for
the initial optimal value for 7, it does not allow it to change and adapt to the different regions of the
error surface. This suggests that a sufficiently reliable such technique could possibly be combined with
adaptive learning rate techniques that still demand the user choice of the parameter’s initial value.
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[Eaton-92] Eaton and Olivier state that the range of n’s that will produce rapid training depends
on the number and types of input patterns. In addition, they observed that the length of the error
gradient increases with the size of the training set. These conclusions were taken after a study of
the behaviour of the batch BP algorithm using three-layered networks and lead them to propose
a formula that calculates the fixed learning rate value based on the characteristics of the training
set, assuming that we can divide it into subsets with similar patterns:

B 15
VNI NI+ NG

n

Ny, 1s the number of patterns of the subset m, with a total of m subsets. The value of 1.5 in
the numerator was chosen empirically and a momentum term of 0.9 should be used in parallel.
Although this is a straightforward procedure in some cases, situations exist where the partitioning
of the set becomes difficult. When the similarity of patterns and the existence of distinct types
are difficult to detect, a technique may be applied, which consists in observing the outputs of the
network to decide on the selection of the different types, although the value of  obtained will then
be suboptimal. Details are not given about this technique. The method may not be considered
sufficiently general, since nothing is said about the procedure that should be followed with a real
valued function mapping problem, for example. A global learning rate value 1s used.

3 Chosen Methods

A considerable number of methods for learning rate and/or momentum adaptation have been presented.
From those, some of them were selected to be implemented and tested, based on a well defined criterion.
As an attempt to create a general definition of a good training method, some features that should be
verified are here enumerated. Namely, from [Chan-87]:

Robustness - the ability to adapt to different kinds of problems.
Efficacy - the presentation of good performance results.
Insensitiveness - independence of user set initial parameter values.

Computational efficiency - avoidance of large computational and storage demands.

To these four, the following can be added:

Generalization ability - the ability to obtain a set of network weights that allows it to perform
the desired mapping, being capable of correctly classifying examples that were not used during the
training.

3.1 The need for parameterless methods

Due to the diversity of possible applications, it is still difficult to create a method that is able to perform
well in all situations. One possible solution is to introduce appropriate parameters in the method that
can be tuned according to the particular task to be performed. While this is a resource adopted by some
methods, its usage creates a clear contradiction, since one of the advantages of an adaptation method
is to avoid initial parameter tuning. This paper is therefore focused on finding a method that is simple
to operate by the user - meaning that it involves no initial parameter specification and is well defined.
The methods selection emphasis is thus on the insensitiveness criteria; all the other points being then
considered in their final evaluation. Neither of the tested methods presents tunable parameters or, in the
case that 1t does, their suitable values are clearly specified as being fixed and sufficiently general to work
for all applications.



16

3.2 The selection of parameterless methods

A total of five methods were implemented, tested, and compared: SCG (Mgller), Chan-Fallside, Silva-
Almeida, RPROP (Riedmiller), and Salomon-van Hemmen. They were all implemented as suggested
without any modifications, with the exception of the method from Chan-Fallside. Implementation details
including additional information not provided in the descriptions above are:

SCG It was implemented exactly as described.

Chan-Fallside Some modifications were made to this method. Upper and lower limits were imposed for
learning rate (between 10~% and 10) and momentum (between 10~% and 0.95). The backtracking
procedure had to be removed because of the chaotic results it produced — the training virtualy
always entered a state of no evolution at the point where the backtracking occurred, the learning
rate always going down. With these two modifications it performed well. Gradient normalization
was used. Furthermore, the subdivision of the training set into subsets was not tried.

Silva-Almeida The authors recommend the use of higher and lower values for the learning rate, respec-
tively a few orders of magnitude below and above the largest and the smallest representable number
of the particular machine used. The learning rate values were allowed to vary between 10~® and 100.
As suggested for the backtracking procedure, the error is allowed to increase in three consecutive
iterations, after which the learning rate values are all reduced by 50%. The weights are still rejected
in every error increase. The only additional implementation change consisted in normalizing the
gradient before updating the weights, as suggested in the method of Salomon-van Hemmen.

RPROP No modifications were made in this method. The upper limit for the update value is 50 and
the lower is 1075,

Salomon-van Hemmen No modifications were made. The upper limit for the learning rate is 2.0 and
for momentum is 0.95.

These five methods were compared using both versions of the BP algorithm: on-line and batch.

4 Simulations

This section contains all the information about the simulations performed to test the chosen methods,
including the description of the benchmark problems used to test them, the relevant details relating to
their implementation, and the presentation of the obtained results, followed by their discussion.

4.1 Benchmarks used

For testing the chosen methods, a set of benchmarks including six real-world problems plus the Exclusive-
OR (XOR) problem was used. The numbers inside the brackets indicate the input and output layer sizes.

Auto-MPG (7,1) This concerns city-style fuel consumption of cars in miles per gallon, to be pre-
dicted based in 3 multi-valued discrete and 4 continuous attributes relating to their technical prop-
erties. All input and output values are scaled to the interval [0,1]. Incomplete patterns have been
removed.

Digit (64,10) The data consists of handwritten digits of the NIST Special Database 3. Each pixel
is represented by an eight bit value. Each digit was scaled to fit into an image of 8x8 points. The
patterns are equally distributed over the ten digits. The input values are scaled to the interval [0,1]
and the boolean output values are encoded as 0 and 1.

Exclusive-OR (2,1) This is the well known non-linear problem that has been widely used in the
literature to evaluate the performance of the training. The inputs and the output are encoded as 0
and 1.
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Promoters (228,1) This problem relates to E. Coli promoter gene sequences (DNA) with associated
imperfect domain theory. Given a set of 57 sequential DNA nucleotide positions of four types, the
task is to predict if it is member/non-member of a class of sequences with biological promoter
activity. The inputs are coded as a 1-of-4 binary representation, resulting in 228 binary inputs.
The binary inputs and output are encoded as 0 and 1. This problem 1is linearly separable, which
justifies the use of no hidden layer.

Sonar (60,2) The task is to discriminate between sonar signals bounced off a metal cylinder and
those bounced off a roughly cylindrical rock. Each pattern is a set of 60 numbers in the range [0,1].
Each number represents the energy within a particular frequency band, integrated over a certain
period of time. The boolean output values are encoded as 0 and 1

Vowels (20,5) This is a subset of 300 patterns of the vowel data set, obtainable via ftp from
cochlea.hut.fu (130.233.168.48) with the LVQ-package (Ivq_pak). An input pattern consists
of 20 unscaled cepstral coefficients obtained from continuous Finnish speech. The task is to deter-
mine whether the pronounced phoneme is a vowel and, in the case it is, which of the five possible
ones. The input values are scaled to the interval [0,1] and the boolean output values are encoded
as 0 and 1.

Wine (13,3) Is the result of a chemical analysis of wines grown in a region of Italy derived from
three different cultivars. The analysis determined the quantity of each of 13 constituents found in
each of the three types of wines. A wine has to be classified using these values, which are scaled to
the interval [0,1]. The output patterns use boolean values, encoded as 0 and 1.

4.2 Implementation details

Networks with zero or one hidden layer only are used, zero for Promoters and one for all others (see table
1). They are fully interlayer connected, meaning that each neuron of a layer is connected with all the
neurons of the adjacent layers, including biases.

The activation function used in all cases was the sigmoid presented in section 1.1, with exception of
the Auto-MPG benchmark. In this case, a linear activation function (y=x) was used in the output layer
of the network. This is justified by the fact that the output values are continuous in this case.

In the simulations performed here it was decided to repeat each set of experiments with a set of three
different initial learning rate values with a maximum distance between them of one order of magnitude.
The values are 0.5, 0.1, and 0.05. On one hand, this set allows the evaluation of differences in the
behaviour of the methods with somewhat different initial conditions (the method’s robustness). One the
other hand, considering these as middle-range values, there is no interest in experimenting with others,
since these are the ones that will probably be used with methods that do not require parameter tuning.
Following the same principles, two different initial momentum values are used: 0.9 and 0.5. The only
exception to this is the method of Silva-Almeida. As the authors advise the use of small initial learning
rate values, they are here an order of magnitude below those used for the other methods, that is 0.05,
0.01, and 0.005. The two versions of the standard BP algorithm, on-line and batch, were tried with
the same initial values as the other methods. For RPROP and SCG, as they are both exempt of initial
LR and momentum values, no more than one set of runs is necessary for each. For the Chan-Fallside
method, the fact that the Ay parameter is limited between 0 and 1 causes it to be exactly the same for
both momentum values used in these experiments (0.5 and 0.9), the results being the same in both cases.

For each combination of initial values for LR, and momentum 10 simulations were performed with
different initial weights, except for the Exclusive-OR benchmark, where 20 were performed. The weights
were always initialized with random numbers between -0.40 and 0.40.

It was observed that the training methods in general had difficulties in learning a network with 2
hidden units for the Exclusive-OR, problem. This benchmark was then run in two different versions: one
with a 2-4-1 topology and the other with a (more difficult) 2-2-1 one. Results for both are presented in
the corresponding section.

The criterion for convergence used was based on the mazimal aberration, which gives the maximal
difference between the target and the actual output for all patterns in the traing set and all network
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outputs. Convergence was accepted when that value was below a threshold e. A different convergence
criterion was used for the benchmark problems using generalization, as described in section 4.3.

The maximum number of epochs allowed varied for each benchmark. That number was always
considerably bigger than the largest number of epochs spent by any of the methods to successfully reach
convergence. This means that the reported non-convergences always refer to cases where the training
clearly stagnated without satisfying the convergence criterion.

The squared error percentage, as mentioned in section 1.1, was used in all cases. With this, the error
values presented in the results are normalized and hence independent of the benchmark.

4.3 Generalization

Following the generalization ability criterion mentioned in section 3, a procedure was used in these
simulations to check the quality of the network. This was applied to three benchmarks only, whose
number of available patterns per number of output classes allowed a proper evaluation of the generalization
properties: Auto-MPG, Digit, and Wine.

To verify the generalization, the complete available pattern set was sub-divided, respecting an equal
distribution of the different classes, in three sets: a training set with 50% of the total patterns and a
validation set and a test set, each of these with 25% of the patterns.

The network was trained using only the training set and after every five epochs the validation set
was presented to check the generalization error. In this case, the convergence criterion was different and
based on the validation set error. Consider the training progress at epoch k as

Prog(k) = 1000 - ( 2izima B 70 —1) :

5. ming ¢ p—a,. .k

where E(k) is the training error at epoch k. Prog(k) gives a measure of the evolution of the training
over the last five epochs. Furthemore, consider the generalization loss at epoch k as

GL(k) =100 - (%—1) :

ming<g Fyq

FEya(k) being the validation error at epoch k. GL(k) corresponds to the percentage of validation error
growth comparing to its best value so far. These two parameters were measured every five epochs,
after presenting the validation set. Then, training was stoped when one of two different situations
occured: Prog(k)fell below 0.1 or G L(k) went beyond a threshold of 5.0 in five consecutive measurements.
This means that training was considered concluded either when the training error stagnated or when a
reduction on that error lead to a deterioration in the generalization properties of the network. After
the training stoped, the test set was presented using the network configuration that provided the lowest
validation error. The results presented for the benchmarks using generalization are all based on the values
measured with that configuration.

The presented simulation results relating to the percentage of misclassified patterns in each of the
pattern sets were obtained with two different procedures: for the Auto-MPG benchmark, a misclassified
pattern corresponds to one whose maximal aberration does not exceed e, and for Digit and Wine, a
pattern is considered correctly classified whenever the network output corresponding to the correct one
is higher in value than all the other outputs. This procedure is called winner-takes-all and can only be
used in problems whose output is implemented as a 1-of- Ny representation.

4.4 Benchmark problems overview summary

In table 1, the input and output representation obeys the following notation: “b” stands for boolean,
“¢” stands for continuous, and “mvd” stands for multi-valued discrete. The “Ftclasses” column represents
the number of different output types or classes of patterns. “w.t.a” in the column of the ¢ values means
that the winner-takes-all method was used to evaluate pattern misclassification, no € being used.
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benchmark network | gener. pattern set sizes representation F#classes €
topology used train. | valid. | test inputs | outputs

Auto-MPG 7-3-1 yes 196 98 98 4mvd+3c 1c — 0.1
Digit 64-30-10 yes 500 250 250 64mvd 10b 10 w.t.a.
Exclusive-OR 2-4-1 no 4 - - 2b 1b 2 0.1
Exclusive-OR(2) 2-2-1 no 4 - - 2b 1b 2 0.1
Promoters 228-1 no 106 - - 228b 1b 2 0.1
Sonar 60-8-2 no 104 - - 60c 2b 2 0.1
Vowels 20-20-5 no 300 - - 20c 5b 25 0.1
Wine 13-6-3 yes 89 44 45 13c 3b 3 w.t.a

Table 1: Summary of the benchmark problems characteristics.

4.5 Results

The tables with the results from all the experiments done are presented in appendix A, starting with
the ones that do not use generalization. Each row in the tables corresponds to a set of simulations with
different initial weights. For the benchmarks not using generalization, the “%Conv” column indicates
the percentage of simulations in the set where convergence was not reached. The numbers in italics are
almed at emphasizing results for sets of simulations with less than 100% convergence, since the statistics
for the number of epochs is based on the successful simulations only.

4.6 The number of epochs

In this subsection, the performance results concerning the number of epochs and the convergence abilities
of each of the methods is discussed, based on the tables presented in appendix A.

Starting with some general comments, it can be stated that the results for different methods vary
depending on the benchmark problem. In particular, one very important remark must be made: The
Exclusive-OR, benchmark, thoroughly used in the literature to compare different methods, should not
be taken as a serious and definitive instrument of comparison. In fact, the results presented for this
benchmark differ considerably from those of the other benchmarks, with the bigger discrepancies between
the fixed and the adaptive methods, specially between on-line BP and all the other methods.

Referring to some of the different benchmarks, unsatisfying results were obtained for Auto-MPG,
since neither of the tested methods was able to reach true convergence. Nevertheless, the attained
generalization performance was nearly the same for all the methods. A similar generalization performance
for all methods was also obtained with Wine. This makes the comparisons between the methods easy for
these two problems, the only difference between them being the number of epochs spent to reach those
values. The analysis of the results for Digit, however, are more difficult, since different methods achieved
different generalization performances. The fact that the Promoters problem is linearly separable leads to
very good results for all the methods. Hence, this benchmark problem does not allow useful comparisons
between different methods; the only remark concerning the fact that on-line BP had convergence problems
for initial values of 0.5 and 0.9 for learning rate and momentum, respectively.

About each of the tested methods, the first comment relates to the performance of both versions of
standard BP, which is visibly dependent on the values of learning rate and momentum. In particular,
and as expected, the number of epochs spent increases with decreasing initial values of both parameters.
Batch BP is in almost all cases faster than on-line BP, the latter having failed to converge more times.
In some benchmark problems, on-line BP shows serious convergence problems when values of 0.5 and 0.9
for learning rate and momentum, respectively, are used.

The SCG method showed very good results for XOR, was the best by far on Sonar, one of the best
on Wine, but it was the worst adaptive method on Auto-MPG. Furthermore, it was never capable of
reaching convergence for Vowels. The percentage of convergence for XOR(2) was 85%, which is good.

Considering the number of epochs, the Chan-Fallside method was almost always worse than batch
BP and the worst among the adaptive methods. The percentage of convergence for Vowels never went

beyond 40%, was 60%-80% for Sonar, and 90%-95% for XOR(2), this latter being a good result.
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The method of Silva-Almeida was the best on Auto-MPG, among the best on Wine and both XOR
problems, was able to obtain good results for Sonar and very good for Vowels, in terms of number of
iterations, but showed serious convergence problems. It was the only method that failed once for XOR,
and the one that failed more often on XOR(2). It converged only a few times on Sonar and had a
considerable number of non-convergences on Vowels.

RPROP showed average performance on both XOR and Sonar. The results for Vowels and Auto-MPG
were good, and it was among the best on Wine. As far as convergence is concerned, the results were 55%
on XOR(2), 40% on Sonar and 70% on Vowels, which may not be considered satisfactory.

Finally, the Salomon-van Hemmen method gave good results for XOR and Auto-MPG, the best on
Wine, but without good results for Sonar and Vowels. This method was; however, the one that showed
the best percentage of convergence overall.

The Digit benchmark problem was the one with the largest size. Its analysis is done independently
from the other problems because the results obtained present some particularities. Both on-line and
batch BP failed to converge with a learning rate of 0.5 and momentum of 0.9, while the SCG method
was never able to converge. Chan-Fallside also had serious non-convergence problems. RPROP was the
method with best performance, but without very good generalization results. Silva-Almeida had good
performance on the number of epochs, but some convergence problems. The generalization is also not
optimal. The number of epochs spent by Salomon-van Hemmen is higher than the best methods, but the
generalization results are good.

Finally, the insensitiveness of the behaviour of the methods to initial parameter values is discussed.
The results show that the three adaptive methods that demand the choice of initial learning rate and
momentum values (Chan-Fallside, Silva-Almeida, and Salomon-van Hemmen) can be considered insensi-
tive to those, being able to show similar performances with different initial values. A few exceptions can
be mentioned, including the method of Silva-Almeida with Auto-MPG, showing some differences on the
performance for the two different initial momentum values, and the Salomon-van Hemmen method on
Exclusive-OR, its performance decaying with increasing values of initial learning rate and momentum.

4.7 The complexity

There is no established standard for comparisons between the performance of different training methods.
Various ways of showing the performance of a method have been used. While the number of epochs is
a safe criterion, 1t is insufficient, since it hides differences in the processing demands per epoch of each
method. If this would be available, along with the number of epochs spent, a considerably accurate
estimation of the actual processing effort of the training could be obtained. The approach chosen here
consists in counting the number of arithmetical operations per epoch spent by each method on each
benchmark.

The equations of table 2 are based on certain assumptions, meaning that some of them should be
modified when different conditions apply. Namely, it is considered that a sigmoid activation function
is used, along with fully interlayer connected networks. The latter condition is very important and
determines the equations of operations 1, 2, and 3. The number of arithmetical operations (complexity)
is obtained considering the three different operations: addition, multiplication, and exponentiation each
counting as one. Although it i1s true that their complexities are different and correspond to different
amounts of basic processor operations, to take this into account would be a difficult task and would
further increase the complexity of this presentation, but, if required, it can be done based on the results
presented here. Backtracking procedures and the verification of the upper and lower bounds of the
parameters were not considered in the calculation of the complexity.

In table 5, the number inside brackets for the SCG method mean that the corresponding operations
are conditional, as determined by the method’s algorithm and will not, presumably, be performed every
epoch. It is considered, however, that the number of epochs in which they are not performed is small, as
compared to the total number. Thus, the complexity obtained for this method considers the case where
a normal (complete) epoch takes place.

The final complexity results are presented in table 6. The complexity of the on-line version of the
standard BP with momentum is 30%—70% bigger than that of the batch version, depending on the
benchmark problem. This is due to the weight update with momentum that is done at each epoch
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| # | Operation description | Equations Complexity per epoch
T e (4x (N=Np))x P
Opl | propagate all patterns j €locicr
Ni_ - W4+W —-(N—-Np))xP
net; = leol (wij X a;) ( ( 1)
wij(p—1) = x4 X ai + axAwij(p—1) vyeWw | (5xW)xP
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Table 2: Operation equations and complexity per epoch
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Table 5: Operations used by each method per
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[ Benchmark [ W [ N [Ny [Ny ] N [ P ]
Auto-MPG 28 11 7 3 1 196
Digit 2260 104 64 30 10 500
Exclusive-OR 17 7 2 4 1 4
Exclusive-OR(2) 9 5 2 2 1 4
Promoters 229 229 228 1 1 (=Ny) 106
Sonar 506 70 60 8 2 104
Vowels 525 45 20 20 5 300
Wine 105 22 13 6 3 89

Table 3: Characteristics of each benchmark

| Benchmark Opl Op2 | Op3 | Op4 | Opb | Op6 | Op7 | Op8 | Op9 | Oplo
Auto-MPG 13,328 30,576 14,056 84 28 56 55 55 28 56
Digit 2,320,000 | 6,000,000 | 2,605,480 | 6,780 2,260 | 4,520 | 4,519 | 4,519 | 2,260 4,520
Exclusive-OR 196 420 182 51 17 34 33 33 17 34
Exclusive-OR(2) 108 228 102 27 9 18 17 17 9 18
Promoters 48,866 121,794 48,514 687 229 458 457 457 229 458
Sonar 108,368 268,944 110,060 | 1,518 506 1,012 1,011 1,011 506 1,012
Vowels 337,500 865,500 391,950 | 1,575 525 1,050 1,049 1,049 525 1,050
Wine 21,093 52,065 23,820 315 105 210 209 209 105 210

Table 4: Complexity of each operation when used with each benchmark per epoch

presentation with the on-line version. The SCG method is by far the most costly amongst all, including
both versions of standard BP. This confirms the status of the conjugate gradient methods as being
computationally too demanding. The Chan-Fallside, Silva-Almeida, and RPROP methods have all nearly
the same complexity, comparable to that of batch BP. The method of Salomon-van Hemmen is also
considerably complex, exceeding all the methods except SCG. However, the algorithm used by this
method strongly encourages the use of a parallel implementation that would allow it to perform two
simultaneous epochs. Its complexity would then be reduced to that of batch BP.

5 Conclusions

The objective of this work was to evaluate the present situation concerning the incorporation of learning
rate and momentum adaptation on the backpropagation algorithm. A large number of methods were
reviewed, from which a set of five was chosen to be implemented and tested, together with both the
on-line and batch versions of the standard backpropagation algorithm. The criterion for the choice of the
methods to be implemented took mainly into account the fact that they were well-defined and had no
tunable parameters. Simulations were performed using a set of six real-world benchmark problems plus
the boolean Exclusive-OR, problem.

The first conclusion that can be drawn from the results is that there is no clear best method among
those that perform automatic parameter adaptation. Nevertheless, comparing the fixed parameter meth-
ods with the adaptive ones, it can be seen that considerable improvements have been made. Although
each of the adaptive methods behaved different for different problems, some general conclusions can be
drawn for each of them.

The Scaled Conjugate Gradient method from Mgller was able to achieve very good performances on
some benchmarks, but clearly failed on the bigger ones, showing a poor scaling ability. This 1s accentuated
by the fact that its computational complexity is too high, all resulting in a general inability to handle
large scale problems.

The Chan-Fallside method was the most unsatisfying of all. It offers almost no advantages over
the fixed parameter methods, in terms of number of iterations, although the raise in the complexity is
insignificant. Additionally to being clearly the least performing of all the adaptive methods, it was also
not able to converge in several situations.

The method of Silva-Almeida gave very good results for some benchmarks, concerning the number of
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[ Method [ Auto-MPG | Digit [ X-or | X-or(2) | Promoters [ Sonar [ Vowels [ Wine |
On-Line BP 43%10° 8,320%x10° 616 336 170x10% | 377x10° | 1,203x10° 73x10°
Batch BP 27x10° 4,936%x10° 462 254 98x10° | 220x10° 732x10° 45%10°
SCG 68x10° | 12225x10° | 1,354 738 249%x10° | 557x10° | 1,808x10° | 113x10°
Chan-Fallside 27x10° | 4,950x10° 561 305 99x10% | 223x10° 735x10° | 46x10°
Silva-Almeida 27x10% | 4,941x10° 496 272 98x10% | 221x10° 733x10° | 45x10°
RPROP 27x10° 4,932%x10° 429 237 98x10° | 219x10° 731x10° 45%10°
Salomon-van Hemmen 54x10° 9,590x10° 956 524 197x10% | 440x10° | 1,410x10° 88%10°

Table 6: Computational complexity of each method when used with each benchmark per epoch

iterations, but, most important, it has serious convergence problems, being unable to successfully train
the networks for several different problems. The complexity increase is low in comparison to the fixed
parameter methods.

The method of Riedmiller and Braun (RPROP) showed average performance, in general. Of all the
methods, it is the one with the lowest computational complexity, although not very different from the
fixed parameter ones. In terms of number of iterations, it showed moderate results, although with some
convergence problems.

Finally, for the method of Salomon-van Hemmen, the performance varied per benchmark, being very
good for some, but disappointing for others. The two main features of this method are its computational
complexity and convergence abilities. It is clearly more complex than all the others, except SCG, but
it was able to achieve convergence in almost all situations. In fact, despite of its complexity, this can
be considered as the most robust method of all. As already discussed in section 4.7, it can easily be
implemented in a two-processor architecture, which would allow it to become a good all-purpose method
with satisfying results.

Although a side issue of this paper, it can be concluded that, based on the experiments described
here, the batch version of the standard BP is better than the on-line version, concerning the number of
iterations spent to converge, the percentage of convergence, and the computational complexity. This is not
intended at discussing the advantages and disadvantages of batch and on-line training. In fact, it cannot
be concluded from here that the results obtained for both versions of the standard BP algorithm generalize
to adaptive algorithms. One thing that can be taken as certain is the difference in the complexity of both
versions, when momentum is used, batch training being computationally less demanding.

In general terms, the performance of the tested adaptive methods is better than that of the stan-
dard BP algorithm. However, the reduction is not remarkably high, specially considering the real-world
benchmark problems used. It was even noted that in some cases the non-adaptive methods yielded bet-
ter results for some particular values of the learning rate and momentum parameters. Nevertheless, an
improvement in the performance is verified and, an important result, they avoid the usual parameter
tuning by trial-and-error.
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A Tables with the results

‘ Method ‘ 70 ‘ ag ‘ %Conv | Number of Epochs |
[ Min | Max | Mean | o |
On-Line BP 0.5 0.9 100.0 161 434 262.2 56.2
0.1 0.9 100.0 768 2284 1382.2 504.1
0.05 0.9 100.0 1519 6844 2902.2 1351.7
0.5 0.5 100.0 720 1488 1033.4 197.1
0.1 0.5 100.0 | 3762 11838 6365.5 | 2101.6
0.05 0.5 100.0 | 7574 | 26384 | 13286.2 | 5121.8
Batch BP 0.5 0.9 100.0 33 55 44.0 6.0
0.1 0.9 100.0 43 139 74.8 26.0
0.05 0.9 100.0 64 146 86.5 21.1
0.5 0.5 100.0 48 130 94.8 20.1
0.1 0.5 100.0 91 390 164.2 70.9
0.05 0.5 100.0 176 528 243.1 81.4
SCG — — 100.0 20 42 28.4 5.6
Chan- 0.5 0.5, 0.9 100.0 162 856 338.1 165.9
Fallside 0.1 0.5, 0.9 100.0 166 816 339.5 155.8
0.05 0.5, 0.9 100.0 170 813 340.8 154.8
Silva- 0.05 0.9 100.0 34 87 63.5 15.0
Almeida 0.01 0.9 100.0 42 80 59.3 11.5
0.005 | 0.9 95.0 47 87 58.0 10.1
0.05 0.5 100.0 47 100 66.3 13.6
0.01 0.5 100.0 53 101 65.3 12.1
0.005 | 0.5 100.0 48 85 64.7 10.9
RPROP — — 100.0 42 137 71.6 23.2
Salomon- 0.5 0.9 100.0 8 74 22.1 14.2
van Hemmen 0.1 0.9 100.0 14 46 30.2 8.1
0.05 0.9 100.0 21 111 40.0 20.2
0.5 0.5 100.0 21 90 49.0 18.2
0.1 0.5 100.0 24 165 59.1 36.9
0.05 0.5 100.0 22 135 57.7 27.5

Table 7: Results from the simulations with the Exclusive-OR benchmark.

Method ‘ 10 ‘ ag ‘ %Conv | Number of Epochs |
[ Min T Max [ Mean | o |
On-Line BP 0.5 0.9 65.0 217 409 309.6 60.5
0.1 0.9 95.0 1013 4784 2399.7 1113.9
0.05 0.9 90.0 1947 12616 5502.6 3312.1
0.5 0.5 80.0 903 2681 1301.2 424.9
0.1 0.5 95.0 5004 18178 9011.5 3596.6
0.05 0.5 85.0 9655 27288 16236.4 4666.4
Batch BP 0.5 0.9 60.0 32 6307 673.8 1720.3
0.1 0.9 90.0 48 193 53.3 32.8
0.05 0.9 95.0 69 236 120.6 48.5
0.5 0.5 75.0 51 5607 455.5 1376.9
0.1 0.5 90.0 91 429 186.2 90.8
0.05 0.5 95.0 161 761 299.7 146.4
SCG - - 85.0 16 54 33.1 9.6
Chan- 05 05,00 900 | 146 | 1511 7652 | 3475
Fallside 0.1 0.5, 0.9 95.0 | 154 | 1593 4824 | 891.1
0.05 0.5, 0.9 95.0 157 1902 484.2 392.1
Silva- 0.05 0.9 65.0 50 113 81.4 20.7
Almeida 0.01 0.9 45.0 51 101 64.7 16.4
0.005 0.9 70.0 52 112 72.9 15.8
0.05 0.5 60.0 48 106 70.2 18.9
0.01 0.5 65.0 51 115 72.7 21.5
0.005 0.5 70.0 50 119 67.9 16.5
RPROP - - 55.0 50 154 87.8 25.3
Salomon- 0.5 0.9 95.0 8 145 31.9 34.2
van Hemmen 0.1 0.9 90.0 15 60 28.9 12.8
0.05 0.9 100.0 14 63 32.8 13.1
0.5 0.5 100.0 13 94 33.1 21.6
0.1 0.5 90.0 18 111 52.4 27.1
0.05 0.5 95.0 20 275 61.7 54.8

Table 8: Results from the simulations with the Exclusive-OR(2) benchmark.



Method ‘ 10 ‘ ag ‘ %Conv | Number of Epochs |
[ Min | Max | Mean | o |
On-Line BP 0.5 0.9 50.0 5 328 117.6 138.0
0.1 0.9 100.0 2 5 3.8 0.9
0.05 0.9 100.0 4 7 5.4 0.8
0.5 0.5 100.0 3 17 5.2 4.0
0.1 0.5 100.0 13 21 15.7 2.8
0.05 0.5 100.0 31 44 35.5 4.1
Batch BP 0.5 0.9 100.0 7 10 8.3 1.1
0.1 0.9 100.0 14 20 16.7 1.9
0.05 0.9 100.0 20 29 24.0 2.5
0.5 0.5 100.0 8 12 9.4 1.0
0.1 0.5 100.0 20 28 21.7 2.3
0.05 0.5 100.0 35 50 39.1 4.1
SCG - - 100.0 11 17 13.2 1.8
Chan- 0.5 0.5, 0.9 100.0 7 9 7.8 0.7
Fallside 0.1 0.5, 0.9 100.0 9 12 10.3 0.9
0.05 0.5, 0.9 100.0 10 13 11.9 9
Silva- 0.05 0.9 100.0 13 17 15.4 1.4
Almeida 0.01 0.9 100.0 20 24 22.6 1.4
0.005 0.9 100.0 24 27 25.9 1.1
0.05 0.5 100.0 15 19 15.8 1.2
0.01 0.5 100.0 22 28 24.0 1.5
0.005 0.5 100.0 26 36 28.1 2.7
RPROP - - 100.0 10 14 11.9 1.4
Salomon- 0.5 0.9 100.0 6 8 6.7 0.6
van Hemmen 0.1 0.9 100.0 10 13 11.4 1.0
0.05 0.9 100.0 13 17 15.1 1.4
0.5 0.5 100.0 6 11 8.5 1.4
0.1 0.5 100.0 11 14 12.3 0.9
0.05 0.5 100.0 12 16 14.8 1.0

Table 9: Results from the simulations with the Promoters benchmark.

Method ‘ 10 ‘ ag ‘ %Conv | Number of Epochs |
[ Min | Max | Mean | o |
On-Line BP 0.5 0.9 0.0 — — — —
0.1 0.9 100.0 184 554 355.0 128.3
0.05 0.9 100.0 300 645 434.5 110.0
0.5 0.5 90.0 219 529 356.8 209.7
0.1 0.5 90.0 560 914 751.1 118.0
0.05 0.5 100.0 1108 1729 1390.9 216.7
Batch BP 05 0.9 900 | 176 | 549 | 244.1 79.3
0.1 0.9 90.0 215 1457 655.1 387.4
0.05 0.9 100.0 236 1978 648.8 489.6
0.5 0.5 100.0 864 1149 996.5 81.0
0.1 0.5 100.0 1443 4880 2021.0 970.1
0.05 0.5 100.0 1455 5112 2068.2 1029.1
SCG - - 100.0 108 309 172.8 57.1
Chan- 0.5 0.5, 0.9 70.0 845 1741 1205.7 272.2
Fallside 0.1 0.5, 0.9 60.0 879 1168 1080.3 101.6
0.05 0.5, 0.9 80.0 952 1421 1208.4 151.0
Silva- 0.05 0.9 60.0 172 396 269.2 90.6
Almeida 0.01 0.9 40.0 131 188 162.8 21.4
0.005 0.9 50.0 139 1232 421.2 410.9
0.05 0.5 10.0 701 701 701.0 0.0
0.01 0.5 0.0 - - - -
0.005 0.5 0.0 - - - -
RPROP = = 200 | 297 | 833 | 5445 | 230.90
Salomon- 0.5 0.9 100.0 425 1343 779.5 262.9
van Hemmen 0.1 0.9 90.0 529 1123 703.6 200.5
0.05 0.9 100.0 351 1763 903.6 419.7
0.5 0.5 100.0 455 1109 723.1 196.0
0.1 0.5 100.0 499 1105 741.3 178.8
0.05 0.5 100.0 335 1653 728.3 391.5

Table 10: Results from the simulations with the Sonar benchmark.



Method ‘ 70 ‘ ag ‘ %Conv | Number of Epochs |

[ Min [ Max | Mean | o |
On-Line BP 0.5 0.9 0.0 - - - -
0.1 0.9 60.0 918 2286 1718.0 490.6
0.05 0.9 100.0 1815 4086 2726.4 781.7
0.5 0.5 50.0 1086 3804 1981.2 1007.5
0.1 0.5 100.0 3285 3648 3483.1 125.3
0.05 0.5 100.0 6418 8383 7048.3 592.9
Batch BP 0.5 0.9 100.0 428 838 602.1 147.6
0.1 0.9 100.0 461 870 671.1 159.9
0.05 0.9 100.0 465 585 524.2 33.1
0.5 0.5 100.0 1769 2029 1895.9 74.7
0.1 0.5 100.0 2479 2934 2680.4 154.4
0.05 0.5 100.0 2658 3103 2831.9 152.7
SCG — — 0.0 — — — —
Chan- 05 05,00 10.0 | 1788 | 5157 | 4948.0 | 1404
Fallside 0.1 0.5, 0.9 10.0 | 4720 | 4720 | 4720.0 0.0
0.05 0.5, 0.9 30.0 5723 6304 5997.3 238.3
Silva- 0.05 0.9 60.0 142 276 207.7 54.4
Almeida 0.01 0.9 90.0 154 399 224.8 75.3
0.005 0.9 90.0 167 392 276.0 54.9
0.05 0.5 60.0 432 851 642.0 150.2
0.01 0.5 50.0 512 1165 701.6 285.4
0.005 0.5 60.0 407 768 542.0 112.5
RPROP = = 700 | 491 | 1354 | 788.6 | 2704
Salomon- 0.5 0.9 100.0 995 1299 1127.4 86.9
van Hemmen 0.1 0.9 100.0 892 2098 1140.9 336.2
0.05 0.9 100.0 954 1359 1163.2 118.6
0.5 0.5 100.0 902 1419 1073.6 130.0
0.1 0.5 100.0 850 1334 1069.4 131.8
0.05 0.5 100.0 925 2427 1233.5 412.8

Table 11: Results from the simulations with the Vowels benchmark.

Method 70 ag Number of Square Error Percentage Percentage of Misclassification
Epochs (Mean) Training [ Validation | Test
Mean | o Train. [ Valid. | Test | Mean [ ¢ | Mean [ o | Mean |

On-Line BP 0.5 0.9 224.0 18.0 0.610 0.433 0.470 17.2 0.5 10.9 1.4 11.6
0.1 0.9 993.5 63.8 0.580 0.457 0.442 15.1 0.3 15.6 0.7 10.0

0.05 0.9 1948.5 136.2 0.582 0.464 0.441 15.1 0.6 15.7 0.7 9.0

0.5 0.5 998.0 61.0 0.579 0.456 0.444 15.3 0.3 15.8 0.8 11.2

0.1 0.5 4876.5 363.9 0.581 0.466 0.442 15.2 0.6 15.9 0.5 9.1

0.05 0.5 7428.0 469.5 0.641 0.500 0.475 15.7 0.7 17.9 1.0 9.1

Batch BP 0.5 0.9 64.5 30.6 0.626 0.607 0.453 17.1 1.5 17.2 1.2 13.8
0.1 0.9 121.0 3.0 0.621 0.513 0.439 14.7 0.5 15.2 0.7 8.8

0.05 0.9 210.0 11.6 0.592 0.501 0.430 14.3 0.8 15.8 1.0 9.3

0.5 0.5 227.0 33.3 0.574 0.452 0.438 15.6 0.8 14.9 0.8 11.7

0.1 0.5 464.0 20.3 0.579 0.463 0.439 14.9 0.8 15.4 0.5 9.6

0.05 0.5 895.0 19.6 0.581 0.467 0.441 15.2 0.6 15.8 0.7 9.1

SCG - - 768.0 1290.7 0.587 0.484 0.438 15.6 1.2 15.2 1.1 9.2
Chan- 0.5 0.5, 0.9 320.5 103.0 0.613 0.579 0.440 14.7 0.6 15.6 0.7 11.7
Fallside 0.1 0.5, 0.9 312.0 16.5 0.616 0.577 0.443 14.4 0.5 15.7 0.7 11.8
0.05 0.5, 0.9 379.0 187.0 0.612 0.565 0.454 14.4 0.4 16.0 0.7 11.6

Silva- 0.05 0.9 104.0 30.2 0.602 0.590 0.431 16.0 1.2 16.8 1.5 11.6
Almeida 0.01 0.9 102.5 28.9 0.616 0.598 0.418 16.4 2.0 16.4 1.3 11.2
0.005 0.9 125.5 42.3 0.599 0.586 0.438 16.1 2.0 16.0 1.7 10.7

0.05 0.5 66.0 8.3 0.624 0.569 0.419 16.1 0.7 14.7 0.9 10.9

0.01 0.5 76.0 15.5 0.624 0.581 0.423 16.1 0.9 15.9 0.7 10.9

0.005 0.5 76.0 13.9 0.633 0.577 0.426 17.1 1.2 15.7 1.7 10.9

RPROP - - 219.0 80.6 0.606 0.577 0.428 15.8 1.5 15.3 1.6 10.8
Salomon- 0.5 0.9 60.5 17.4 0.632 0.603 0.440 16.6 1.6 15.7 1.9 12.2
van Hemmen 0.1 0.9 87.0 26.3 0.667 0.609 0.455 19.0 2.0 15.3 1.4 12.8
0.05 0.9 146.0 127.6 0.622 0.589 0.447 17.1 1.5 15.3 1.6 12.0

0.5 0.5 79.5 30.0 0.623 0.594 0.484 17.1 2.2 16.2 2.2 13.4

0.1 0.5 97.5 29.1 0.620 0.610 0.442 17.2 2.0 16.2 1.5 12.7

0.05 0.5 98.5 32.5 0.637 0.603 0.445 17.1 2.7 16.0 1.8 12.8

Table 12: Results from the simulations with the Auto-MPG benchmark.
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Method 70 ag Number of Square Error Percentage Percentage of Misclassification
Epochs (Mean) Training | Validation ] Test
Mean | o Train. [ Valid. | Test | Mean [ ¢ [ Mean | ¢ | Mean | o
On-Line BP 0.5 0.9 55.0 28.9 4.459 5.054 4.957 35.0 22.8 38.4 21.1 38.0 21.6
0.1 0.9 126.0 115.9 0.068 1.171 0.967 0.5 0.1 7.0 0.9 5.2 0.8
0.05 0.9 495.5 438.0 0.067 1.222 0.939 0.4 0.2 7.3 1.0 5.2 0.5
0.5 0.5 281.0 240.6 0.047 1.203 0.902 0.4 0.2 7.2 1.0 5.1 0.4
0.1 0.5 964.0 699.2 0.047 1.245 0.905 0.3 0.1 7.5 1.0 4.6 0.7
0.05 0.5 1518.0 948.4 0.045 1.251 0.911 0.3 0.1 7.5 1.0 4.7 0.6
Batch BP 0.5 0.9 107.0 40.0 1.674 2.636 2.445 16.4 11.2 21.2 10.4 19.9 9.9
0.1 0.9 181.0 47.2 0.147 1.306 1.031 1.3 3.0 8.2 3.2 6.0 3.1
0.05 0.9 229.0 44.1 0.039 1.267 0.927 0.3 0.1 7.5 1.0 5.4 0.7
0.5 0.5 397.5 84.7 0.033 1.242 0.914 0.3 0.1 7.3 1.2 4.9 0.5
0.1 0.5 533.0 126.6 0.037 1.241 0.910 0.3 0.1 7.4 1.1 4.7 0.6
0.05 0.5 714.0 129.0 0.037 1.243 0.907 0.3 0.1 7.4 1.1 4.8 0.6
SCG — — 24.0 23.4 9.803 9.805 9.805 89.4 1.7 89.4 1.5 89.2 2.0
Chan- 0.5 0.5, 0.9 72.5 29.8 2.031 3.005 2.908 19.8 7.2 24.6 6.1 24.0 6.1
Fallside 0.1 0.5, 0.9 89.0 22.3 1.382 2.494 2.312 13.6 4.3 19.1 3.3 17.6 4.1
0.05 0.5, 0.9 103.0 82.1 1.028 2.116 1.967 9.9 5.3 15.0 5.4 14.4 4.9
Silva- 0.05 0.9 84.0 16.9 0.556 1.723 1.627 5.5 4.9 11.7 4.4 11.1 3.9
Almeida 0.01 0.9 88.0 27.8 0.451 1.674 1.532 3.8 4.5 10.4 4.3 9.5 4.1
0.005 0.9 78.5 26.9 0.254 1.525 1.417 1.8 3.2 8.8 3.3 8.2 2.6
0.05 0.5 72.5 10.3 0.230 1.456 1.312 0.9 0.4 8.0 0.7 6.8 0.7
0.01 0.5 80.0 11.4 0.190 1.437 1.313 0.6 0.4 7.2 0.8 7.0 0.9
0.005 0.5 99.5 27.2 0.190 1.426 1.300 0.7 0.5 7.3 0.8 6.8 0.8
RPROP — — 60.5 13.5 0.236 1.707 1.981 0.9 0.7 9.4 1.6 10.2 1.1
Salomon- 0.5 0.9 194.0 60.9 0.038 1.185 0.954 0.3 0.1 7.1 1.1 5.2 0.7
van Hemmen 0.1 0.9 189.0 44.1 0.128 1.282 0.997 1.3 3.0 8.1 3.2 5.8 3.0
0.05 0.9 214.0 48.5 0.046 1.205 0.917 0.4 0.2 7.2 1.1 4.9 0.7
0.5 0.5 198.0 58.3 0.037 1.228 0.931 0.3 0.2 7.3 1.2 5.0 0.7
0.1 0.5 192.5 60.0 0.065 1.212 0.921 0.3 0.2 7.3 1.3 5.0 0.6
0.05 0.5 181.0 51.6 0.054 1.197 0.907 0.3 0.2 7.1 1.3 5.0 0.6
Table 13: Results from the simulations with the Digit benchmark.
Method 70 ag Number of Square Error Percentage Percentage of Misclassification
Epochs (Mean) Training [ Validation | Test
Mean | & Train. [ Valid. [ Test | Mean [ ¢ [ Mean | o | Mean [ o
On-Line BP 0.5 0.9 76.5 119.1 0.045 1.732 4.287 0.0 0.0 3.2 1.1 9.1 2.1
0.1 0.9 55.0 65.4 0.289 1.875 3.639 0.0 0.0 2.7 0.9 8.4 1.9
0.05 0.9 219.0 106.6 0.062 1.896 4.282 0.0 0.0 2.7 0.9 10.7 0.9
0.5 0.5 91.0 28.0 0.069 1.871 4.078 0.0 0.0 2.7 0.9 9.6 1.0
0.1 0.5 541.5 218.5 0.060 1.887 4.348 0.0 0.0 3.0 1.0 10.7 0.9
0.05 0.5 1160.5 436.6 0.051 1.888 4.394 0.0 0.0 3.0 1.0 10.7 0.9
Batch BP 0.5 0.9 35.5 14.4 0.048 1.676 4.491 0.0 0.0 2.5 0.7 8.9 2.0
0.1 0.9 58.0 8.1 0.040 1.755 4.392 0.0 0.0 3.0 1.0 9.3 0.9
0.05 0.9 79.5 4.7 0.043 1.815 4.330 0.0 0.0 2.7 0.9 9.6 1.0
0.5 0.5 101.0 14.3 0.100 1.726 3.884 0.0 0.0 2.3 0.0 8.9 1.0
0.1 0.5 155.5 13.9 0.046 1.834 4.319 0.0 0.0 2.5 0.7 10.2 1.1
0.05 0.5 254.5 12.9 0.040 1.870 4.464 0.0 0.0 3.0 1.0 10.7 0.9
SCG — 65.5 57.0 0.171 1.949 4.568 0.1 0.3 3.9 1.0 8.9 2.0
Chan- 0.5 0.5, 0.9 76.0 69.4 0.150 1.633 3.951 0.1 0.3 2.5 0.7 7.8 1.8
Fallside 0.1 0.5, 0.9 148.5 103.8 0.066 1.722 4.219 0.1 0.3 3.2 1.1 8.0 2.3
0.05 0.5, 0.9 120.5 107.0 0.153 1.662 3.995 0.2 0.4 2.5 0.7 7.8 2.5
Silva- 0.05 0.9 50.0 27.3 0.367 1.685 3.713 0.2 0.4 3.0 1.0 6.2 3.1
Almeida 0.01 0.9 65.0 47.6 0.189 1.657 4.329 0.2 0.4 3.6 1.5 7.6 1.1
0.005 0.9 49.5 14.6 0.333 1.990 4.077 0.3 0.5 4.8 3.0 7.3 2.0
0.05 0.5 60.0 31.8 0.509 2.026 3.631 0.3 0.5 3.4 1.5 6.7 2.4
0.01 0.5 74.0 41.5 0.182 1.729 3.601 0.1 0.3 3.0 1.0 6.4 1.2
0.005 0.5 77.0 33.3 0.200 1.796 3.476 0.0 0.0 3.4 1.1 6.2 1.3
RPROP — 60.5 37.2 0.426 1.437 3.776 0.3 0.5 2.3 1.4 7.8 2.0
Salomon- 0.5 0.9 51.5 15.2 0.056 1.640 4.222 0.0 0.0 3.2 1.1 9.3 1.9
van Hemmen 0.1 0.9 40.5 11.7 0.126 1.707 3.959 0.0 0.0 3.0 1.5 8.0 1.8
0.05 0.9 43.0 18.5 0.134 1.683 3.881 0.1 0.3 3.4 1.1 8.0 2.3
0.5 0.5 38.5 13.8 0.202 1.592 3.533 0.0 0.0 2.3 1.0 6.7 2.2
0.1 0.5 40.0 21.1 0.234 1.765 4.047 0.3 0.5 3.2 1.5 8.0 2.5
0.05 0.5 45.5 14.2 0.096 1.703 4.251 0.1 0.3 2.7 0.9 9.1 1.6

Table 14: Results from the simulations with the Wine benchmark.




