-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Modular Object-Oriented Neural Network
Simulators and Topology Generalizations

G. Thimm, R. Grau, and E. Fiesler

IDIAP, Case postale 609, CH-1920 Martigny, Switzerland

Published in
Proceedings of the International Conference on Artificial Neural Networks (ICANN 94)
M. Marinaro and P. G. Morasso, ed., volume 1, Part 2: Mathematical Model,

pages 747-750, 26—-29 May, 1994, Springer-Verlag.

1 Introduction

In current neural network research, simulation plays a crucial role. Although there
is a wide range of neural network simulators available, it is impossible to keep up with
the continuous surge of new neural networks and their variations. Consequently, the
extensibility and modularity of neural network simulation software is an important
issue. Implementation and modification of neural networks and their embedding into
an simulation environment should be possible with minimal effort.

Object-oriented programming languages facilitate the fulfillment of these demands
and allows the software developer to reuse software models and therefore reduce the
overall implementation effort.

OpenSimulator' 3.1 and Sesame® J.5, two simulation packages written in C++,
have the potential of fulfilling the need. Besides ready to use modules, these packages
also provide a graphical user interface. Their flexibility is tested using higher order
ontogenic neural networks as an example of non standard neural network topologies
(see for example [Fiesler-94.1] and [Fiesler-94.2]).

2 Some Neural Network Topology Generalizations

Topologies of higher order ontogenic neural networks differ from standard neural
networks topologies in two points. Firstly, the interconnections, which usually connect
a source neuron with a sink neuron, are generalized by allowing a connection to
combine several inputs by means of a so called splicing function, which maps one or
more input values to a single output value.

The properties of the used connections characterize the network: the number of
inputs of a connection define its order and the maximal order of a connection in a
neural network determines the order of the network.

A second generalization allows a variable number of units (neurons or connec-
tions), where the number and kind of units to be added or removed is determined by
a learning algorithm. This kind of network is called an ontogenic neural network.

3 Data Structures for High Order Ontogenic Networks

An intuitive approach for implementing higher order neural networks is to store
the weights of connections of order w in w+ 1-dimensional matrices, where each di-
mension of the matrix either refers to one of the inputs, or to one of the outputs of a
connection. Unfortunately, this data structure has some drawbacks, since several ma-
trices have to be reserved for the connections between two layers of neurons, one for
each group of connections having the same order and splicing function. These matri-
ces are often largely unused, since ontogenic neural networks are likely to be sparsely
connected. Besides this, the numerous matrices complicate both the propagation of
values through the network and the updating of weights.

An improved approach introduces only necessary connections, using a projection
of the activation values of layer I—1 to a variable sized vector V;. Each vector element
stores the result of a splicing function applied to the activation values of layer {—1
(see figure). In the implementation, this projection is realized by instances of a class
defining connections. Each connection instance has pointers to some elements of the
output vector of layer I—1, as well as to an element of vector V;. Whenever such
a connection instance is called, it applies a splicing function to the values indicated
as its inputs and the outcome is written to result vector V;. This vector provides
the inputs for a variable sized perceptron. Only if the ith connection (writing its
output to the ith element of vector V;) is expected to take part in the input for the

1 OpenSimulatoris copyrighted by the ETH Zirich.
2 Sesame is copyrighted by the GMD Schlof$ Birlinghoven.

https://core.ac.uk/display/147914633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7th neuron, the element in the ith column and the jth row of the weight matrix is
allowed to be non-zero. If a connection is introduced, and another connection with
the same splicing function, order, and combination of inputs exists and writes to the
1th element of the vector Vi, the corresponding entry in the weight matrix is allowed to
become non-zero. Otherwise, the size of the weight matrix is increased by a column,
the size of the vector V; by an element, and a new instance of the connection class is
initialized.

Layer Splicing functions; Vector 1 gSparse) weight matrix; Sigmoidal Layer 1
1-1 id = identity illed square = takes part function
* = multiplication in output j

The second approach is more efficient, both in memory and execution time. Fur-
thermore, the vector V; can be regarded as an input vector for a standard perceptron
layer, which implies only minor modifications to a Perceptron layer implementation.

4 The Neural Network Simulators

4.1 OpenSimulator

The OpenSimulator software package was developed by J.-F. Leber at the Institute
for Signal and Information Processing of the ETH Ziirich [Leber-92] [Leber-93]. The
proliferation of the software is restricted. OpenSimulator 3.1 requires UNIX®, X View
and X-Windows*. The user can enter commands using a menu based interactive
graphical interface or a command interpreter, or restore a previously saved session,
since all data, such as the network topology, the patterns, and the weight matrices,
are saved in files. OpenSimulator allows a group of users to share a common version
of the simulator and to generate an extended version in the user’s private workspace.

The functions of OpenSimulator are divided into two categories: functions of
the simulation kernel and functions of their interactive counterparts. Both have to be
created in order to introduce a new building block for a neural network. This creation
is supported by a menu, which allows the creation of templates for all necessary files,
to which the user is supposed to add code. In the source code, macros are used to
add variables, replace or add functions, add menus, and make plots. New macros
can easily be defined by the user and neural network topologies can either be defined
using the graphical interface or by a file containing calls to C++ functions.

For the construction of neural networks the following tools are available:

e matrix libraries for bytes, shorts, integers, floats, doubles, and complex data types,

e graphics libraries, and

¢ a basic layer class for backpropagation training, a perceptron layer class, and a topology-
preserving feature map class.

4.2 Sesame
Sesame was developed by A. Linden and Ch. Tietz at GMD Schloff Birlinghoven in
Germany [Linden-92] and is available as a freeware software package®. Sesame® 4.1

requires UNIX, InterViews', X-Windows, and several GNU tools and libraries. The
user interface is based on a command interpreter and the current state of a simulation
can be stored. Sesame is based on modules which can contain anything ranging from
a simple counter or a complex neural network to a graphical display. New modules
may be assembled from existing modules or designed in C++. In the latter case the
export of variables or command names to the command interpreter or the declaration
of typed communication sitesis done by function calls and their handling is completely

3UNIX is a registered trademark of AT&T.
4 X View and X-Windows are registered trademarks of the MIT.
5 Sesame is at least available via ftp at the anonymous ftp site ftp.gmd.de.

6 Meanwhile version 4.5 has been released. This version has some more features but also some
minor incompatibilities with version 4.1.

T InterViews is copyrighted by the Stanford University.

covered by their classes. This includes visualization of parameters in the user interface
and saving in files for future experiments.

A simulation is defined by a sequence of interpreted commands (typed or read
from files) which organize the static and dynamic data flow. The static data flow is
described using connection commands, whereas the dynamic data flow is described
by one or more procedures, which may contain calls to other procedures, calls to
modules, or simple control structures. Assembly of these commands and procedures
can be done in the command interpreter, and saved together with the current state
of modules, in intelligible files.

The existing modules supply the following features:

¢ available neural network models: one and two hidden layer backpropagation, Kohonen’s self
organizing feature map, and Kanerva’s sparse distributed memory,

¢ basic modules for neural networks, like neuron layers for backpropagation or radial basis
function neural networks,

¢ modules for data handling like vector comparison, statistical analysis, and graphical dis-
plays,

e vector/matrix handling (only completely implemented for double floating point), and

e list, stack, pattern, and file handling modules.

4.3 Comparison of the Simulators

In the table below, some of the main differences between the two simulators are
summarized, and marked as advantages (&) or disadvantages ().

Sesame 4.5 | OpenSimulator 3.1

© Provides limited on-line help and user doc-
umentation (tutorial only in German).

@ Has an interactive graphical surface and a
command interpreter.

@ Provides on-line help functions, has good
documentation, and a tutorial.

© Has no interactive graphical user interface,
therefore the interactive construction of ex-
periments, must be done with the command

@ Tts simulation kernel and interactive coun-

@ Is easy to understand.

@ Its source is easy to maintain and extend.
@ Is very flexible in combining basic modules
to a complete simulation.

© Tts functionalities are highly divided up

terpart are clearly distinct.

© Its graphical interface is mainly based on
a vast hierarchy of menus. Often, one has to
open a confusing amount of menus to get a

particular piece of information or to set pa-
rameter.
@ TIs based on shared libraries.

into small modules; this causes sometimes
confusion in the conception of an experiment.

4.3.1 Remark: OpenSimulator 4.0 has been announced

For December 1993, J.-F. Leber and A. Jarosch have announced version 4.0 of Open-
Simulator, wherein the objects of a simulation can be distributed over a network
containing different computer architectures, as the communication is quick and easy.
Computationally expensive algorithms can therefore be executed efficiently on a super
computer while the graphical interaction takes place on a workstation. Moreover, the
programmer of a new module does not need to concern himself with any graphics, as
they are generated on-line from an automatically generated ASCIT description. The
algorithms are thus ideally separated from the graphics. OpenSimulator 4.0 is more
modular and flexible, simpler to use, and easier to maintain.

5 The Implementation

The first approach to implement higher order ontogenic neural networks was done
using OpenSimulator. For the reasons given in section 3, the authors later switched
to the second approach, which was implemented using Sesame.

5.1 Extending OpenSimulator

For a neural network implementation, OpenSimulator offers classes for neuron layers
with input and output handling and optional forward, backward, and lateral feedback
weights. Tt also provides different sigmoidal functions and functions controlling the
training and testing phase.

For the implementation of higher dimensional matrices it is not appropriate to
inherit from the available classes for two dimensional matrices, since these classes are
highly specialized for other purposes. Also, the matrix class definition may cause
some confusion, as they are distributed over a “kernel” file and other header files.
This is done with the aim of realizing a kind of C++-template concept (which was
not available when the library was written). The most specialized classes for the
implementation of a neural network in OpenSimulator represent layers with optional
weight matrices, which can be used as models for a first implementation approach

to higher order ontogenic neural networks. Although these classes do have to be
rewritten, the implementation does profit from existing classes through inheritance.

Changes to OpenSimulator are usually spread out over the software package: both
the functions in the simulation kernel and the macros used in the simulation descrip-
tion files have to be changed (compare paragraph 4.3.1). In the interactive counter-
part, facilities for handling the new features need to be created.

For an implementation of the second approach, the above mentioned modifications
as well as the problems with using the existing matrix implementation are similar.

5.2 Extending Sesame

Due to the design of Sesame, a class representing a high order ontogenic neural
network needed to be written, since no appropriate module exists. The new module
reuses code of a backpropagation network class, which provides a good model. The
variable size weight matrix and the vector V are realized by an oversized matrix
and vector respectively. A more elaborate implementation requires the extension to
variable sized subclasses, which is easy. A minor problem in the implementation is
the access of array elements via addresses, which was not foreseen in the design.

All changes to the Sesame code are confined to the new class module (except for
three lines to let Sesame know about the existence of the class). The concepts for
communication, matrix handling, and other basic concepts are clear and simple to
use, and the high order neural network class is therefore easily embedded.

Regarding the first approach, similar statements can be asserted: Sesame has no
matrix class for higher dimensional matrices but offers a suitable basic matrix class.

6 Conclusions

Both the OpenSimulator and the Sesame software packages are very useful tools
for the simulation of neural networks. Besides that both simulators have the (hope-
fully temporary) disadvantage of still being under development, they have other char-
acteristics in common: the functionalities presented for the implementation of higher
order and ontogenic neural networks are similar. As both software packages are writ-
ten in C++, new code can often be easily generated using the inheritance mechanism.

The overall concept of Sesame is clearer and the method of modular and object
oriented programming is better fulfilled, and therefore the implementation of a neural
network and embedding in the simulator is simpler (a revised version of OpenSim-
ulator has been announced, see paragraph 4.3.1). This can be seen from the fact
that changes to Sesame are localized in the new module, whereas OpenSimulator re-
quires extensions innon-neural networks parts. However, only OpenSimulator allows
the manipulation of the neural networks through a graphical interface. It should
also be noted that, Sesame and OpenSimulator can be considered generic simulator
construction tools with special features for neural networks.

Acknowledgements

The authors would like to thank Jean-Frangois Leber at the Institute for Signal
and Information Processing of the ETH Ziirich and Alexander Linden and Thomas
Sudbrak at the GMD in Schlofi Birlinghoven and their colleagues for their swift re-
sponses to questions, helpful discussions, and their overall support of the software.

References

[Fiesler-94.1] E. Fiesler (1994), Neural Network Classification and Formalization, accepted
by Computer Standards & Interfaces, 16, special issue on Neural Network Stan-
dards, J. Fulcher (ed.), North-Holland/Elsevier, Amsterdam, The Netherlands.

[Fiesler-94.2] E. Fiesler (1994), Comparative Bibliography of Ontogenic Neural Networks,
in these proceedings (ICANN’94).

[Leber-92] J.-F. Leber and G. S. Moschytz (1992), An Acoustical Signal Recognizer Imple-
mented on a Novel Interactive Object-Oriented Neural Network Simulator,
in I. Alexander and J. Taylor (ed.), Artificial Neural Networks, 2, pp. 12911294,
North-Holland /Elsevier, Amsterdam, The Netherlands, Sep. 4-7.

[Leber-93] J.-F. Leber (1993), The Recognition of Acoustical Signals Using Neural Net-
works and an Open Simulator. Series in Microelectronics, 20, W. Fichtner, W.
Guggenbiihl, H. Melchior, and G. S. Moschytz (ed.), Hartung-Gorre Verlag, Kon-
stanz, Germany.

[Linden-92] A. Linden and C. Tietz (1992). SESAME - A Software Environment for Com-
bining Multiple Neural Network Paradigms and Applications, in I. Alexan-
der and J. Taylor (ed.), Artificial Neural Networks, 2, pp. 1265-1268, North-
Holland /Elsevier, Amsterdam, The Netherlands, Sep. 4-7.

