
�

Neural Network Formalization

E� Fiesler

Institut Dalle Molle d�Intelligence Arti�cielle Perceptive �IDIAP�

Case postale ���� CH�	�
� Martigny� Switzerland

Electronic mail� EFiesler�IDIAPCH �Internet�

Abstract

In order to assist the �eld of neural networks in its maturing� a formal�

ization and a solid foundation are essential Additionally� to permit the

introduction of formal proofs� it is essential to have an all encompassing

formal mathematical de�nition of a neural network

Most neural networks� even biological ones� exhibit a layered struc�

ture This publication shows that all neural networks can be represented

as layered structures This layeredness is therefore chosen as the basis

for a formal neural network framework This publication o�ers a neu�

ral network formalization consisting of a topological taxonomy� a uniform

nomenclature� and an accompanying consistent mnemonic notation Sup�

ported by this formalization� both a �exible hierarchical and a universal

mathematical de�nition are presented
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� Introduction

The �eld of �arti�cial� neural networks has evolved independently in and among

many communities such as neurobiology� mathematics� computer science �arti��

cial intelligence�� physics� and psychology� As a result� a varigated terminology

and synonymic nomenclature developed� Coinciding� there has been a parallel

evolution of neural network de�nitions� This is reminiscent of arti�cial intel�

ligence� which� despite notable successes and failures over decades still lacks

formalization� Leading neural network proponents� like Stephen Grossberg and

Bart Kosko� have argued that neural networks di	er from arti�cial intelligence

by having formal theorems like the Cohen�Grossberg theorem and ABAM the�

orem 
Kosko���� rather than simply ad hoc methods and procedures� Once

a formalization is established� an increase can be expected to be seen in the

knowledge to become more �vertical� �cumulative� than �horizontal� �new� pos�

sibly di	erent approaches��

Theoretical computer science may well be a suitable model� Once a formal

de�nition of a Turing machine was accepted� theorems began to emerge to

clarify what their capabilities and incapabilities were� Even unprovable theses�

like Church�s Thesis� could at least be asserted with clarity and become vital

to the �eld�

Most neural networks� even biological ones� exhibit a layered structure� This

publication shows that for universality all neural networks can be regarded as

layered� This layeredness is therefore chosen as the basis for a formal neural

network framework�

� Prior work

The e	orts of the committee on neural network standardization of the IEEE

Neural Network Society �cf� 
Eberhart���� is the only other signi�cant neural

network standardization attempt� �Some of the introductory books on neural

networks contain a chapter of foundations� such as 
Rumelhart���� 
Wasserman�

��� 
Dayho	���� 
Hecht�Nielsen���� and 
Simpson���� but these can not be

considered neural network formalizations per se��

There have been a few publications which included a �formal� description of

a neural network� Usually they address only a limited class of neural networks�

Jiawei Hong 
Hong��� describes in his paper a �connectionist computational

machine�� which can be regarded as a formal neural network de�nition� Cling�

man and Friesen describe in their group theoretical paper 
Clingman��� �learn�

ing automata� and address neural networks as an application of their theory�

They only consider three layer neural networks and assume back�propagation

as the learning rule� Valiant 
Valiant��� de�nes a �neural tabula rasa �NTR���

which is roughly a sparse asymmetric neural network with real�valued weights�
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All these attempts focus on the dynamics �training� of the neural network�

while the underlying static description is limited in scope� For example� none of

the approaches addresses higher order �see section ����� ontogenic �see section ���

or slabbed �see section ���� neural networks�

� Notation

A �rst step towards standardization should be the use of a convenient and con�

sistent notation� For a notation to be convenient� it should have symmetry and

it should be mnemonical� Symmetry means that similar entities should have

similar notations� and mnemonical means that the chosen symbol or variable

should re�ect its meaning� For example the �rst letter�s� of a word that de�

scribes an entity should be chosen as the parameter that represents that entity�

An important issue is indexation� For example the number of neurons in a

speci�c layer should be denoted as an indexed symbol� where its index indicates

the layer number� N� could therefore indicate the number of neurons in the

second layer� If a di	erent symbol is chosen for each layer� as seen in most neural

network publications� besides being less clear� one soon runs out of symbols �for

multi�layer neural networks�� In general� when using indices� one should avoid

the use of �superscript� indices as much as possible because of the confusion

with exponentiation�

As an example� observe the notation of one of the most important concepts

in neural computing� that of a weight� In order to specify a speci�c weight �or

connection� in a �rst order neural network� four indices are needed� the index

numbers of the layer where the connection originates �l� and where it terminates

�m�� plus both the index numbers of the neurons within these layers �i and j��

Using the mnemonic W to represent a weight� leads to the notation Wlimj
� If

the network contains only interlayer connections �see section ����� the notation

can be abbreviated to Wl�ij� with the assumption that either l indicates the

layer where the connection originates� or where it terminates� The indicated

assumption is a source of confusion� which is worse for asymetric neural networks

�see section ����� For single layer neural networks� the notation can be further

reduced to Wij�

Appendix A shows the proposed �symmetrical and mnemonical� notation�

� Neural network statics

Neural network statics complements the �eld of neural network dynamics� It

deals with network parameters which remain constant during the training and

recall phases� In this publication� the network architecture is assumed to be part
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of the neural network statics� Neural network architectures can be classi�ed by

their topology�

��� Neural network topology

The topology of a neural network is a combination of its frame and its intercon�

nection scheme�

The frame or framework of a neural network is de�ned by two variables�

�� the number of clusters �i�e� layers or slabs�

�� the number of neurons per cluster

The framework can be described by the �ordered� set fN�� N�� � � � � NLg� where

L is the total number of clusters in the neural network�� and the size of the

individual clusters� which is the number of neurons per cluster� is denoted by

Nl� where l is the cluster number �� � l � L�� If the clusters are ordered they

are called layers and the network is called a layered neural network� Otherwise

the clusters are called slabs and the network is called a slabbed neural network

�see section �����

The interconnection scheme of a neural network is determined by the fol�

lowing four properties��

�� the types of connections used �interlayer� intralayer� supralayer� �sec�

tion �����

�� whether the connections are symmetric or asymmetric �section �����

�� the order of the connections �section ����� and

�� the connectivity� i�e� which neurons are connected�

These topological properties can serve as a taxonomy for neural networks�

��� Layers versus slabs

In most neural network architectures the neurons are clustered into layers� or

more generally into slabs� In case a neural network architecture has no explicit

clustering of neurons� they can be seen as neural networks consisting of one

�Since the majority of all neural networks are layered� L is chosen to represent the number

of layers �clusters��
�Hybrid architectures which incorporate di�erent interconnection schemes within the same

network� should be treated as a collection of subnetworks� each of which has a uniform
interconnection scheme�
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cluster� A slab is a collection of neurons that have a similar function� or hier�

archical level� Layered neural networks are a more speci�c case� in a layered

neural network� the clusters are ordered and can be numbered� the input layer�

ordinal number �� the �rst hidden layer� number �� the second hidden layer�

number �� and so on� until the output layer� which has ordinal number L� N is

the total number of neurons in the network� and therefore

N �
LX

l��

Nl� ���

The neurons within a layer �or slab� are not necessarily ordered� they are inter�

changeable� They are often numbered for reference purposes� though�

��� Types of connections

In layered neural networks one can discriminate three types of connections�

�� De�nition � An interlayer connection is a connection between neurons in

adjacent layers of the neural network�

The most commonly used neural networks� such as the multi�layer per�

ceptron 
Rosenblatt��� and the standard back�ward error� propagation

neural network 
Werbos��� 
Rumelhart��� are usually fully interlayer

connected�

�� De�nition � An intralayer connection is a connection between neurons of

the same layer of the neural network�

Brain�State�in�a�Box �BSB� 
Anderson��� and Adaptive Resonance The�

ory �ART� 
Carpenter��� are just two of the better known neural networks

that use intralayer connections� A sub�class of intralayer connections are

self�connections�

De�nition � A self�connection is a connection which originates and termi�

nates at the same neuron� It provides direct feedback to the neuron itself

�self�inhibition or self�excitation��

�� De�nition � A supralayer connection is a connection between neurons that

are neither in adjacent layers� nor in the same layer of the neural network�

i�e� they �skip� at least one layer�

Multi�layer recurrent neural networks �see section ���� often have supra�

layer connections�

�Note that the input and output layers are counted as layers �cf� section ���
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A neural network can have all possible connections�

De�nition � A plenary neural network is a neural network which has all possible

interlayer� intralayer� and supralayer connections� in other words it is a �truly�

fully connected neural network�

For slabbed neural networks� some of these de�nitions have to be adapted�

Due to the lack of order of slabs� only two kinds of connections can be dis�

cerned in slabbed neural networks� an interslab connection connects neurons

from di	erent slabs� and an intraslab connections connects neurons within the

same slab with each other� A slabbed neural network with all possible interslab

and intraslab connections is a plenary �slabbed� neural network�

Multidirectional AssociativeMemory �MAM� neural networks 
Hagiwara���

are an example of fully interslab connected neural networks�

��� Symmetry versus asymmetry

Any connection can be either symmetric or asymmetric�

De�nition � A symmetric or bidirectional connection is a connection that has

the same �inter��connection strength �weight� when used in either direction�

De�nition � An asymmetric or unidirectional connection is a connection whose

weight is only used for propagation in one direction� like the connections in

feed�forward neural networks�

Note that the potential for a layered neural network to have bidirectional

information propagation in general� or intralayer connections in speci�c� makes

the input layer �layer one� a processing layer� This counters arguments of not

counting the input layer as a layer�

Neural network architectures with asymmetric connections can have two

weights associated with each pair of connected neurons� one is used in the for�

ward propagation� the other in the backward propagation� �If a neural network

with asymmetric connections uses only unidirectional propagation� the inter�

connection topology of the neural network is equivalent to one with symmetric

connections��

De�nition � A symmetric neural network is a neural network that contains solely

symmetric connections�

A symmetric neural network has one or more symmetric weight matrices�

De�nition � An asymmetric neural network has one or more asymmetric con�

nections�

De�nition � A recurrent neural network is either a symmetric neural network

which contains at least one cycle� or an asymmetric neural network that contains

at least one circuit�

For example� a neural network with self�connections is always recurrent� due

to the implicit asymmetry of self�connections�

�Cycle and circuit as de�ned in graph theory�
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Figure �� A hierarchical speci�cation of a neural network�
y These aspects can be de�ned globally �at network level� or locally �at connec�

tion level��

��� Order

In order to use the available information entering a neuron more extensively� so

called high�er� order connections 
Giles��� can be de�ned�

De�nition � A high�er� order connection is a connection that combines inputs

from several neurons� usually by multiplication� The number of inputs deter�

mines the order of the connection�

De�nition � A neural network of order � is a neural network whose highest

order connection has order �� A neural network with order two or higher is

called a high�er� order neural network�

Most �traditional� neural networks are �rst order neural networks�

� A hierarchical description of a neural net�

work

Based on the de�nitions of section �� a hierarchical neural network description

can be constructed� Figure � shows that the neural network speci�cation can

be split into a static part and a dynamic part� The neural network statics

�cf� introduction of section �� comprises both the topology and the constraints�

The constraints de�ne the value ranges for the weights� the local thresholds

�or o	sets�� and the activation values �or activities�� which can be seen as the

�output� values of the neurons� Example constraints are the set of real values a

continuous weight can assume� and a limited set of integers that discrete weights
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may assume �cf� 
Fiesler����� The topology of the neural network is de�ned in

section ��

The dynamics of a neural network can be fully described by an initial state�

consisting of a set of initial values for the weights� local thresholds� and �input

neuron� activations� plus transition functions which can be used to determine

the successive states of the neural network� Known transition functions are�

�� neuron functions� �or transfer functions�� which specify the output of a

neuron� given its inputs �this includes the non�linearity��

�� learning rules �or learning laws�� which de�ne how weights �and o	sets�

will be updated�

�� clamping functions� which determine if and when certain neurons will

be insusceptible to incoming information� i�e� they retain their present

activation value� and

�� ontogenic functions� which specify changes in the neural network topology�

The �rst two transition functions are found in almost all neural networks� the

latter two in speci�c architectures only�

� A formal neural network de�nition

This section describes a universal formal de�nition of a neural network� Like all

formal de�nitions� it involves symbols but does not restrict the set of �objects�

that may be symbolized or the mechanisms whereby the formally de�ned entities

may be realized� It is broad enough to encompass both simple biological neural

networks� and essentially all arti�cial neural networks�

The de�nition consists of a collection of lines� each consisting of a descriptor�

its symbolic notation� and its de�nition� sometimes followed by remarks� The

de�nition part can contain new symbols �non�terminals� which will be de�ned

on later lines �in depth �rst order��

A neural network �NN� can be described as a four tuple� its topology� its

constraints� its initial state� and its transition functions� The topology is a

tuple in itself� framework plus interconnection structure �cf� section ����� A

frame�work� is de�ned by its clusters� which are sets of neurons� There are L

clusters and N neurons in total� The interconnection structure consists of a set

of relations between sets of source neurons ��l�i� and terminal neurons�nm�j��

Source neurons are a subset of neurons from a cluster� say l� which supply

information for their terminal neuron�nm�j�� The number of source neurons is

equal to the order of the connection� and the order of the neural network ��� is

�A neural network can have di�erent neuron functions for di�erent clusters�
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de�ned as the maximum cardinal number of all the sets of source neurons� The

constraints and dynamics are discussed in section ��

In the following de�nition� k S k denotes the cardinal number of set S� i�e�

the number of elements in S� an arrow ��� denotes a mathematical relation� Z

represents the set of all integers and R represents the set of all real numbers�

The ellipsis �� � �� near the end of �the statics� indicates that any other number set

can also be used� nl�i denotes the ith neuron of the lth cluster� and � � l�m � L�

and � � i � Nl� and � � j � Nm�

Note that for layered neural networks�

jl�mj � � � intralayer connection

jl�mj � � � interlayer connection

jl�mj � � � supralayer connection

The following scheme shows the mathematical de�nition of a neural network�

Neural Network NN � �T�C� s������

The statics�

Topology T � �F� I�

Frame�work� F � fc�� � � � � cLg k F k� L

Cluster cl � fnl�ig k cl k� Nl�PL
l�� k cl k�

PL
l��Nl � N

Interconnection structure I � f�l�i � nm�jg k I k� W

Source neurons �l�i � fnl�ig � cl maxl�i�k �l�i k� � �

Constraints C � fCW � C�� CAg�

fC�j �C� � Z� � �C� � R� � � � �g� � � fW��� Ag

The dynamics�

Initial state s��� � fW ��������� A���g

Initial weights W ��� � fW�l�imj
g � CW W ��� � I � CW

Initial local thresholds ���� � f�l�ig � C� ���� � F � C�

Initial activity A��� � fal�ig � CA A��� � F � CA

Transition functions � � fnf� lr� cf� ofg�

nf � neuron function

lr � learning rule

cf � clamping function

of � ontogenic function

� Summary

This publication presents a neural network formalization based on the concept

of layeredness� It consists of a mnemonic notation� a uniform nomenclature� and
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a topological taxonomy� supplemented with both a hierarchical and a universal

mathematical de�nition of a neural network�

Appendix A The notation

al�i activity �or activation value� of neuron i in layer l

L number of layers �clusters� in neural network

N total number of neurons �clusters� in neural network

N� number of neurons in input layer �layer ��

Nl number of neurons in layer l

NL number of neurons in output layer �layer L�

�l�i set of �source neurons�� i�e� all the neurons a speci�c connection origi�

nates from

� order of neural network

�l�i local threshold �or o	set� of neuron i in layer l

W total number of weights in neural network

Wlimj
a weight between neuron i of layer l and neuron j of layer m

W�l�imj
a higher order weight between source neurons �l�i of layer l and neuron

j of layer m

The lowercase roman letters i� j� l� and m are used as index variables� sub�

sequent letters are used for subsequent entities of the same class�
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