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Abstract

This paper advocates an implicit-surface representation
of generic 3–D surfaces to take advantage of occluding
edges in a very robust way. This lets us exploit silhouette
constraints in uncontrolled environments that may involve
occlusions and changing or cluttered backgrounds, which
limit the applicability of most silhouette based methods.

This desirable behavior is completely independent from
the way the surface deformations are parametrized. To
show this, we demonstrate our technique in three very dif-
ferent cases: Modeling the deformations of a piece of pa-
per represented by an ordinary triangulated mesh; tracking
a person’s shoulders whose deformations are expressed in
terms of Dirichlet Free Form Deformations; reconstructing
the shape of a human face parametrized in terms of a Prin-
cipal Component Analysis model.

1 Introduction

Occluding contours are a key clue to recovering the
shape of smooth and potentially deformable surfaces in
monocular sequences and they have been used extensively
for this purpose. However, because extracting them reli-
ably against potentially cluttered or changing backgrounds
,is difficult, most of the published work involves engineer-
ing the environment to make this task easier.

In this work, we show that representing generic 3-D sur-
faces as implicit surfaces allows us to take advantage of oc-
cluding contour constraints in such a robust way that we can
model smooth surfaces even when the boundary detection
algorithm [3] we use is far from reliable. Furthermore, it
also lets us effectively combine silhouette information with
that provided by interest points that can be tracked from
image to image. This is important because this may mean
the difference between the ability or the inability to exploit
silhouettes in uncontrolled real-world situations where oc-
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clusions and difficult backgrounds often degrade the output
of even the best edge detection algorithms.

More specifically, we use implicit meshes [9], which are
implicit surfaces that closely approximate generic triangu-
lar 3-D meshes and deform in tandem with them. This for-
mulation allows us to robustly detect the occluding contours
on the 3-D surface as the solution of an ordinary differential
equation [13]. Their projections can then be used to search
for the true image boundaries and deform the 3–D model so
that it projects correctly.

This well-formalized approach yields a robust imple-
mentation that we demonstrate for monocular tracking of
deformable 3–D objects in a completely automated fash-
ion: We start with a generic 3-D model of the target object,
find its occluding contours, and use them to search for the
corresponding contours in the images. We then use the de-
tected 2-D contours and the constraints they impose, along
with some feature information when available, to deform
the model.

This approach is effective independently of the specific
way the deformations are parametrized. We validated the
tracker in several very different cases: Modeling the defor-
mations of a piece of paper represented by an ordinary tri-
angulated mesh; tracking a person’s shoulders whose defor-
mations are expressed in terms of Dirichlet Free Form De-
formations [12]; reconstructing the shape of a human face
parametrized in terms of a Principal Component Analysis
model [1, 7].

In the remainder of the paper, we first review related ap-
proaches and our earlier work [9] on implicit meshes. We
then show how we use them first to guide the search for
silhouettes in the images, and second to enforce the corre-
sponding differential constraints on the surface. Finally, we
discuss our results in more details.

2 Related Work

Occluding contours have long been known to be an ex-
cellent source of information for surface reconstruction, and
sometimes the only available one when the surface slants
away from the camera and makes it impractical to use other
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Figure 1: Approximating an explicit mesh by an
implicit one. Top row: Spherical implicit meshes
wrapped around an explicit mesh and shown as
being transparent. Bottom row: Triangular implicit
meshes. Note the much improved approximation.

approaches such as feature point matching. This informa-
tion has been put to very good effect by many researchers,
including [16, 20, 6, 17, 2, 5, 18] among many others. In
many of these works, the technique used to actually extract
the occluding contours is often fairly straightforward. It
can be simple edge detection and linking [3], active con-
tour models [10], or space carving [11]. However, while
perfectly appropriate in the context in which they are used,
these methods would fail in the presence of cluttered and
changing backgrounds.

Detecting occluding contours in such situations requires
much more sophisticated algorithms. Recent color and
texture-based segmentation algorithms [14, 4] have proved
very good at this. However, since they are essentially 2–D,
it is not trivial to guarantee that the outlines they produce ac-
tually correspond to the target object’s occluding contours.

A popular solution to this problem among researchers
involved in tracking articulated or rigid objects is to model
them using volumetric primitives whose occluding contours
can be computed given a pose estimate [8, 15]. These con-
tours are then used to search for the true image bound-
aries in directions that are normal to them. This is effec-
tive but has only been demonstrated for relatively simple
shapes such as ellipsoids and truncated cones. The work we
present here can be understood as a generalization of this
approach to more complex surfaces that can deform in less
predictable ways.

3 Implicit Meshes

In earlier work, we introduced implicit meshes [9]. They
are implicit surfaces that are designed to closely approxi-
mate the shape of arbitrary triangulated meshes and to de-

form in tandem with them, as shown in Fig. 1. To convert a
triangulated mesh into an implicit one, we attach a spherical
or triangular implicit surface primitive, and corresponding
field function f , to each facet. We then define the surface
as the set S(Θ) = {x ∈ R3 , F (x,Θ) = T} , where
F =

∑

fi, i = 1..N is the sum of the individual field func-
tions, one for each of the N mesh facets, Θ a set of param-
eters or state vector that controls the shape of the explicit
mesh, and T a fixed isovalue.

A spherical primitive is created by circumscribing a
sphere around the facet i so that the centers of the sphere
and of the circle circumscribed around the facet coincide.
In this case, fi simply is fi(x) = exp(−k(ri(x)−r0

i )) i =
1..N, where x is a 3–D point, ri is the Euclidean distance
to the sphere’s center, r0

i is the radius of the spherical primi-
tive and k is a free coefficient defining slope of the potential
field function. For triangular primitives, we replace the Eu-
clidean distance ri by a piecewise polynomial C2 function
di that more accurately approximates the actual distance to
the facet i. di is computed as the squqred distance from the
facet plane for points that project on the facet and as the
distance from its edges and vertices otherwise. fi becomes
fi(x) = exp(−k(di(x)−d2

0)) , which has almost the same
form as before, but where d0 now represents the thickness
of the implicit surface and is the same for all facets.

Spherical primitives are best for relatively regular
meshes because they are computationally inexpensive. Tri-
angular primitives are more expensive but also more general
and provide better surface approximations, especially when
the explicit mesh is either irregular or low resolution. In
any event, the method proposed in this paper is applicable
to both since it only depends on the surface differentiability.

4 Silhouette Detection

As discussed earlier, given the estimated shape and pose
of a 3–D model, our goal is to compute its 3–D occlud-
ing contours, project them into the image and use that pro-
jection as a starting guess to find the corresponding im-
age boundaries, which should be the real silhouettes. In
this section, we first show some of the problems involved
in performing this task using traditional techniques. We
then show that our implicit mesh formalism solves them and
gives us cleaner and more consistent results, which can then
be exploited to detect the right image boundaries.

4.1 Occluding Contours from Explicit Meshes

In the absence of the implicit surface formalism we pro-
pose, one of the most popular ways of finding occluding
contours is to perform a visibility computation: For exam-
ple, we can use OpenGL to project the model into the im-
ages and flag the hidden facets. The edges at the border
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Figure 2: Occluding contours on explicit versus implicit meshes. (a) High resolution mesh of the face
and low resolution mesh of the upper body. (b) Shaded model with eges at the boundary between visible
and hidden facets overlaid in yellow. (c) The same edges seen from a different viewpoint (d,e) Shaded
models with the occluding contour computed using implicit mesh, corresponding to views (b) and (c)
respectively. Note the much greater smoothness and improved precision.

between visible and invisible facets whose normals satisfy
the appropriate constraints can then be treated as candidate
occluding contours.

As shown in Fig. 2(b,c), the results of this procedure are
heavily dependent on mesh resolution and the resulting con-
tours are rarely as smooth as they should. Of course, more
sophisticated heuristics would certainly yield improved re-
sults but we are not aware of any existing technique whose
results are as clean and mesh-resolution independent as
those of Fig. 2(d,e), which were obtained using our implicit
surface formalism.

4.2 Occluding Contours and ODE

As shown in [13], occluding contours of implicit sur-
faces can be found by solving an ordinary differential equa-
tion (ODE) as follows: Let x(t), t ∈ [0, 1] be a 3–D occlud-
ing contour on the implicit surface S(Θ) of Sec. 3, such as
the one depicted by Fig. 3. For all values of t,

1. x(t) is on the surface and therefore F (x(t),Θ) = T,

2. the line of sight is tangential to the surface at x(t).

This implies [13] that x(t), t ∈ [0, 1] is a solution of the
ODE

∂x(t)

∂t
=

(H(x(t))(x(t) − COpt)) ×5F (x(t),Θ)

‖(H(x(t))(x(t) − COpt)) ×5F (x(t),Θ)‖
(1)

where H(x(t)) is the Hessian matrix of F , 5F (x(t)) its
gradient vector and COpt the optical center of the camera,
as shown in Fig. 3.

Solving this ODE requires an appropriate starting point
x(0), that is one 3–D point on the occluding contour. To
find one single vertex of the explicit mesh that is very likely
to be an occluding vertex, we use a visibility algorithm sim-
ilar to the one described in Section 4.1. We then project it
onto the implicit mesh and search in the neighborhood of
the projection for a point that satisfies the two above stated
constraints. Note that this is very different from the ap-
proach of Section 4.1 because, since we only need one 3–D
point, we can impose very tight constraints and thus ensure
that it really is on the occluding contour. This results in the
very clean contours of Fig. 2(d,e) that are quite insensitive
to the resolution of the mesh used to compute them.

4.3 Finding Silhouette Edges in the Image

Given a 3–D occluding contour x(t) computed as de-
scribed above, we project it into the image and look for the
true silhouette edge in a direction normal to its 2–D projec-
tion as depicted in Fig. 3. This is geometrically consistent
because, at a silhouette point xi ∈ x(t), t ∈ [0, 1], the 3–D
surface normal n is perpendicular to the line of sight li and,
as a result, projects to the normal np of the 2–D contour.

In other words, at each point ui of the 2–D projection,
we simply have to perform a 1–D search along a scan-line
for the true edge location and we are back to the old edge
detection problem, but in a much simpler context than usual.
We use a technique that has proved effective for edge-based
tracking [19, 8]: Instead of selecting one arbitrary gradi-
ent maximum along the scan-line, we select multiple gra-
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Figure 3: Finding multiple silhouette edge points
in the image. Notations are defined in Section 4.3

dient maxima resulting in several potential silhouette edge
points u

j
i and corresponding lines of sight l

j
i for each xi.

Along these new lines of sight, we could choose the x
j
i

where the line is closest to the surface as the most likely
point where the surface should be tangent to the line of
sight. However, this involves a computationally expensive
search along the line of sight. In practice, as shown in Fig. 3,
a simpler and equally effective approach is to take each x

j
i

to be the point on l
j
i that is at the same distance from the

optical center as the original xi. These x
j
i are then used as

silhouette observations, as explained in Section 5.

5 Fitting Implicit Mesh 3–D Models

Silhouettes are a key clue to surface shape and deforma-
tion in monocular sequences, but they are also a sparse one
since they are only available at a few image locations. For
objects that are somewhat textured, point correspondences
between interest points in pairs of images complement them
ideally. They can be established best where silhouettes are
least useful, that is on the parts of the surfaces that are more
or less parallel to the image plane.

In this section, we show that our formalism allows us to
effectively combine these two information sources. Given
a set of correspondences and silhouette points, we fit our
model to the data by minimizing a set of observation equa-
tions in the least-squares sense. To this end we use the
Levenberg-Marquardt algorithm and, for each image frame,
we recompute the occluding contours and corresponding
silhouette points in the image using the technique of Sec-
tion 4.

As we will see, the silhouette-based constraints are best
expressed in terms of the implicit surface formalism while
it is simpler to formulate the correspondence-based ones us-
ing traditional triangulated meshes. Recall from Section 3
that both the implicit mesh and the underlying explicit one

deform in tandem when the state vector changes. As a
result, we can simultaneously use the implicit formalism
when dealing with silhouettes and the explicit one when
dealing with correspondences as needed to simplify our im-
plementation. We view this as one of the major strengths of
our approach.

5.1 Least Squares Framework

We use the image data to write nobs observation equa-
tions of the form Obs(xi,Θ) = εi , 1 ≤ i ≤ nobs ,

where xi is a data point, Θ the state vector, Obs a differen-
tiable distance function, and εi is deviation from the model.
We then minimize vT Pv, where v = [ε1, . . . , εnobs

] is the
vector of residuals and P is a diagonal weight matrix asso-
ciated with the observations. Because there are both noise
and potential gaps in the image data, we add a regularization
term ED that forces the deformations to remain smooth and
whose exact formulation depends on the kind of model we
use. The total energy that we minimize therefore becomes:

ET =
nobs
∑

i=1

wtypei

∥

∥Obstypei (xi,Θ)
∥

∥

2
+ ED, (2)

where Obstype is the function that corresponds to a partic-
ular observation type wtype weight associated to each ob-
servation of type typei. We now turn to the description of
these functions for the two data types we use.

5.2 Silhouettes

In Section 4, we showed how to use our formalism to as-
sociate 2–D image locations to 3–D surface points that lie
on the occluding contours. If the shape and pose of the 3–D
model were perfect, the 3–D points would project exactly
at those locations. In other words, for each i, at least one
of the candidate occluding points x

j
i introduced at the end

of Section 4.3 should be on the surface, as shown in Fig. 3.
During the optimization, this will in general not be true and
we enforce this constraint by introducing a silhouette func-
tion of the form

Obssilh(xj
i ,Θ) = w

j
i (T − F (xj

i ,Θ)), (3)

for each x
j
i , where w

j
i is the weight associated to the can-

didate, F the implicit surface field function, and T the iso-
value defined in the same equation.

For each x
j
i , w

j
i is taken to be inversely proportional to

its distance to the line of sight li. As a result, for each i

only one of these candidates, xbest
i , will end up being on li

while the others will eventually be ignored. As the total en-
ergy ET of Eq. 2 is minimized, the Obssilh(xj

i ,Θ) will col-
lectively decrease in the least-squares sense and xbest

i will



become closer and closer to actually being on the surface.
Note that, because xbest

i minimizes the distance to the sur-
face along the corresponding line of sight, the normal to
the closest surface point is perpendicular to it. Thus, xbest

i

will eventually tend to satisfy the two conditions that char-
acterize a point on an occluding contour introduced in Sec-
tion 4.2.

5.3 Correspondences

We use 2–D point correspondences in pairs of consecu-
tive images as our additional source of information: We find
interest points in the first image of the pair and establish
correspondences in the second using a simple correlation-
based algorithm. Given a couple ui = (p1

i , p
2

i ) of corre-
sponding points found in this manner , we define a corre-
spondence function Obscorr(ui, Θ) as follows: We back-
project p1

i to the 3–D surface and reproject it to the second
image. We then take Obscorr(ui, Θ) to be the Euclidean
distance in the image plane between this reprojection and
p2

i . Note that the simplest and fastest way of backprojecting
p1

i to the surface is to use OpenGl and the graphics hardware
of our machines to find the facet that is traversed by the line
of sight defined by p1

i . Therefore in our implementation,
when computing Obscorr(ui, Θ) and its derivatives, we use
the explicit representation instead of the implicit one.

6 Results

In previous sections, we claimed that our formalism ap-
plies independently of the specific parametrization used to
represent the deformations. Here we demonstrate this in
three different cases.

6.1 Tracking a Piece of Paper

We model the paper as a rectangular mesh parametrized
in terms of the coordinates of its vertices. To keep the defor-
mations physically plausible, we define a deformation en-
ergy that is the sum of two terms. The first one represents
the inextensibility of the paper by penalizing the variations
of the distance between a vertex and its neighbors. The sec-
ond one models the bending stiffness of paper by constrain-
ing the curvature of the mesh.

Fig. 4 shows the results obtained when the paper is par-
tially occluded. The first row shows the deformed mesh we
obtain overlaid as a white wireframe on the original images.
The second row shows the side view of the same deformed
mesh. We can see that the back of the mesh also deforms
in a coherent manner. Even though the silhouette contours
are partially hidden, our algorithm still retrieves the correct
deformation and keeps on tracking the piece of paper.

Fig. 5 highlights the robustness of our algorithm to a
changing background. The first row shows the original se-
quence with the same tiger image as before and a moving
book behind. In the second row, we used the deformed mesh
to map a new texture onto the images. The new images look
realistic and such results couldn’t have been obtained by us-
ing a simple background substraction technique.

6.2 Head and Shoulders Tracking

Here we apply our method to recovering the motion of
moving head and shoulders in monocular sequences. Since
the meshes used here are of much higher resolution than be-
fore, parametrizing them in terms of the vertices coordinates
would have been computationally too expensive. There-
fore we used a Dirichlet Free Form Deformations (DFFD)
parametrization so that the shape of our model depends only
on a small set of DFFD control points that form a control
mesh [12]. In order to enforce a smooth deformation, neigh-
boring vertices of the control mesh must deform in a rela-
tively similar manner. This is achieved by using a deforma-
tion energy that approximates the sum of the square of the
derivatives across the control surface [9].

For each subject, we first build a 3–D model from a se-
quence where the person does not move but the camera
does. This model is then used to track the motion in se-
quences such as the one in the first row of Fig. 6. In this
case, interest points are found on the head while occluding
contours are used for the neck and shoulders. As shown
in the second row of Fig. 6 reconstruction results can be
used to resynthetize the subject in front of a different back-
ground, thus eliminating the need for a blue screen.

6.3 Head Modeling

In earlier work [7], we have shown that we can recover
the shape and camera motion from uncalibrated sequences
using a PCA based face model [1] and 2–D image corre-
spondences. Here, we extend this approach by also incor-
porating occluding contour information. The deformation
energy now penalizes PCA parameters values that are too
far from acceptable values for faces [1].

For comparison’s sake, in Fig. 7 we show side by side
the results obtained using correspondences alone and those
obtained by adding the silhouettes. Note that the latter are
noticeably improved.

7 Conclusion

In this work we have presented a framework for the ef-
ficient detection and use of silhouettes for recovering the
shape of deformable 3–D objects in monocular sequences.
We rely on an implicit surface formalism that lets us look



Figure 4: Occlusion handling. The front of the paper is taped to the table and one hand pushes the back
of the page while the other passes in front. Top row: The recovered mesh is overlaid on the images. Note
that the hand is in front of the paper even though the wireframed display gives the impression that it is
behind. Bottom row: Side view of the recovered mesh. Note that its shape is undisturbed by the occlusion
and that the back of the mesh also deforms correctly. A video of the sequence is given as supplementary
material.

Figure 5: Handling a changing background. Top row: Original sequence with book sliding in the back-
ground. Bottom row: A new texture is applied on the deformed mesh and reprojected in the images.
Note that background subtraction techniques could not have been applied in this case. A video of the
sequence is given as additional material.

for occluding contours as solutions of an ordinary differ-
ential equation and to enforce the resulting constraints in a
consistent manner.

To demonstrate the range of applicability of our method,
we applied it to three very different problems: Reconstruct-
ing a PCA based face model from an uncalibrated video
sequence; tracking a deforming piece of paper undergoing
a partial occlusion or with a changing background; recover-
ing head and shoulder motion in a cluttered scene.

In other words, our implicit surface based approach to
using silhouettes is appropriate for uncontrolled environ-
ments that may involve occlusions and changing or clut-
tered backgrounds, which limit the applicability of most
other silhouette-based methods. Furthermore, our approach
is independent from the way the surface deformations are
parametrized, as long as this parameterization remains dif-

ferentiable.
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