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Abstract

We propose an automated approach to modeling drainage channels|and, more

generally, linear features that lie on the terrain|from multiple images. It produ-

ces models of the features and of the surrounding terrain that are accurate and

consistent and requires only minimal human intervention.

We take advantage of geometric constraints and photommetric knowledge. First,

rivers ow downhill and lie at the bottom valleys whose oors tend to be either

V- or U-shaped. Second, the drainage pattern appears in gray-level images as a

network of linear features that can be visually detected.

Many approaches have explored individual facets of this problem. Ours uni�es

these elements in a common framework. We accurately model terrain and features

as 3{dimensional objects from several information sources that may be in error

and inconsistent with one another. This approach allows us to generate models

that are faithful to sensor data, internally consistent and consistent with physical

constraints. We have proposed generic models that have been applied to the speci�c

task at hand. We show that the constraints can be expressed in a computationally

e�ective way and, therefore, enforced while initializing the models and then �tting

them to the data. Furthermore, these techniques are general enough to work on

other features that are constrained by predictable forces.

�This work was conducted at SRI International and supported in part by contracts from the Defense

Advanced Research Projects Agency.
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1 Introduction

We propose an automated approach to modeling drainage channels|and, more gene-

rally, linear features that lie on the terrain|from multiple images, which results not

only in high-resolution, accurate and consistent models of the features, but also of the

surrounding terrain.

This is an important problem from both a practical point of view|drainage modeling

is an essential component of map making|and a theoretical point of view: We must

address two key generic problems. The �rst is the obvious requirement to replace reliance

on generally unavailable prior knowledge of explicit shape with more general ways of

recognizing and describing natural objects. The second is the necessity to merge several

sources of information that may not be consistent with one another.

In our speci�c case, we have chosen to exploit the fact that

� Rivers ow downhill and lie at the bottom of local depressions perpendicular to the

stream's direction.

� Valley oors tend to be \V" or \U" shaped and locally horizontal in the direction
perpendicular to the main valley at the river's location.

� The drainage pattern appears as a network of linear features that can be visually
detected in single gray-level images.

Di�erent approaches have explored individual facets of this problem. There is extensive
literature on the extraction of valleys from terrain models, for example see [O'Callaghan
and Mark, 1984, Band, 1986, Fair�eld and Leymarie, 1991] among many others. The
terrain model, however, is almost always assumed to be error-free, which, in practice,

only rarely is the case. Furthermore, Koenderink and Van Doorn have shown [1993]

that the strictly local di�erential criteria many of these systems use to detect valleys

have inherent problems that must be addressed using a more global approach. Much

work has also been devoted to the extraction of linear patterns from single images using
techniques such as dynamic programming [Fischler and Wolf, 1983, Merlet and Zerubia,
1995] or graph-based techniques [Fischler et al., 1981]. These techniques typically do not

use the terrain information or guarantee that the recovered drainage pattern satis�es the

physical constraints discussed above. Furthermore they do not take advantage of the fact
that multiple images of the same site may be available.

Our approach uni�es these elements in a common framework. Because the features
and the physical constraints we handle are fundamentally 3{D and because we want to

be able to deal with an arbitrary number of images, there are very signi�cant advantages

in using an object-centered 3{D representation of the terrain surface. We therefore take
advantage of the Model-Based Optimization (MBO) paradigm that we have developed

in earlier work [Fua, 1996] to express geometric, photometric and physical properties of
the features of interest and to enforce hard constraints among these features.
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We have chosen to concentrate on the extraction and the re�nement of drainage pat-

terns because they are potentially complex but obey well-understood physical constraints

and therefore constitute a very good test case for our research. However, we will argue

that the same techniques are robust enough to work on other linear features that are

constrained by predictable forces. For example, roads typically comply with known en-

gineering limits for slope, side slope, radius of curvature, and so forth. Mountain ridges

exhibit well-known di�erential properties that are comparable to those satis�ed by river

valleys [Koenderink and van Doorn, 1993].

We view the contribution of this paper as proposing a general approach to accurately

modeling terrain and features from several information sources that may be in error and

inconsistent with one another. This approach allows us to generate models that are

faithful to sensor data, internally consistent and consistent with physical constraints.

We have proposed generic models that have been applied to the speci�c task at hand|

river delineation and digital elevation model (DEM) re�nement|and shown that the

constraints can be expressed in a computationally e�ective way and, therefore, enforced
while initializing the models and then �tting them to the data.

We �rst introduce our overall framework. We then review our approach to modeling
the terrain and estimating its curvature and present the techniques we use to quickly
sketch the drainage pattern and to automatically enforce the consistency constraints.
Finally, we evaluate our results against di�erent kinds of \ground truth."

2 Approach

We model the terrain as a triangulated mesh that can be re�ned by minimizing an
objective function. The resolution of the mesh is chosen so that riverbeds are a few
facets wide and we can represent the rivers' centerline as polygonal paths

� that lie on the terrain surface,

� that are located where the largest principal curvature of the terrain surface is locally
maximal in the direction normal to the path,

� whose tangent vectors are the directions of maximal elevation decrease,

� whose altitude decreases monotonically.

We start by recovering the approximate shape of a terrain mesh by minimizing a multi-

image stereo score [Fua and Leclerc, 1995] and computing a curvature map. From this

map, we extract paths of maximal curvature using dynamic programming. This simple

approach is depicted by Figure 1(a). It would be su�cient if the recovered terrain surface

was perfect and if the terrain was steep enough for all streams to ow at the bottom of the
sort of \V" shaped valleys that erosion produces [Gilluly et al., 1968]. In practice, this is
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Figure 1: Approaches to 3{D delineation. (a) Simple approach: The features
are extracted directly from the terrain model. If there is not enough
relief or if the terrain model is not precise enough, the resulting fe-
atures may be poorly located or inconsistent. For example, a river
may seem to ow uphill or on the side of a hill. (b) Re�ned ap-

proach: First, the terrain, its di�erential properties and the actual
gray-level images are all used to compute the location of the featu-
res. Then, the terrain and features are re�ned under consistency
constraints that prevent problems such as the ones described here.

Finally, as new images become available, terrain and features can

be further re�ned.

not always the case. There may not be enough relief to tell the real but shallow valleys

from spurious valleys that may be present in the recovered terrain surface. Furthermore,

even if there are deep and easy-to-detect \V" shaped valleys, vegetation tends to be
taller on river banks, thus making the elevations computed by our surface-reconstruction
algorithm unreliable. As a result, the recovered path may not follow the true valley

bottom and may not exhibit monotonically decreasing elevations.

To solve these problems, we have developed the approach depicted by Figure 1(b):

� We use both the terrain model and the actual gray-level images to extract a rough

estimate of the features' locations, thus preventing the estimate from being too far

o� if there are errors in the terrain model.
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� We simultaneously re�ne the models of the terrain and features under consistency

constraints that ensure that they �t the image data as well as possible, while

conforming to the physical constraints known to apply.

Using images from a number of di�erent sites, we will show that this technique allows the

quick generation of consistent 3{D models of the drainage channels and the surrounding

terrain with minimal manual intervention. We will also show that enforcing consistency

does not detract from the accuracy of the reconstruction.

3 Terrain Modeling and Curvature Estimation

Many object-centered surface representations could be used to represent the terrain. Ho-

wever, practical issues are important in choosing an appropriate one. First, it should

be relatively straightforward to generate an instance of a surface from standard data
sets such as depth maps or digital elevation models. Second, there should be a com-
putationally simple correspondence between the parameters specifying the surface and
the actual 3{D shape of the surface, so that images of the surface can be easily gene-
rated, thereby allowing the integration of information from multiple images. Finally, it

should be natural to express the geometric constraints inherent to the problem we are
attempting to solve.

A regular 3{D triangulation such as the one shown in Figure 2(c,d) is an example of a
surface representation that meets the criteria stated above, and is the one we have chosen
for our previous work [Fua and Leclerc, 1995]. In our implementation, all vertices except
those on the edges have six neighbors and are initially regularly spaced. Such a mesh

de�nes a surface composed of three-sided planar polygons that we call triangular facets,
or simply facets. These facets tend to form hexagons and can be used to construct
arbitrary surfaces

3.1 Recovering the Shape of the Terrain

The shape of a mesh S is de�ned by the position of its vertices. It can be re�ned
by minimizing a regularized objective function that accounts for the stereo information

present in multiple images of a cartographic site to produce models such as the one shown

in Figures 2(e) and 3(c). In other words, this technique uses 3{D triangulations not only
as a representational tool but also as a computational one.

The objective function E(S) is taken to be

E(S) = ED(S) + ESt(S) ; (1)

where ED(S) is a regularization term that is quadratic in terms of the vertices' coordinates

and ESt(S) is a multiple-image correlation term. It is derived by comparing the gray
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Terrain modeling at the National Training Center (NTC), Ft. Ir-
win. (a,b) A stereo pair of a hilly site. The linear structure that
runs horizontally in the middle of the images is a streambed and is

indicated by the cluster of arrows at the bottom of the �gure. A

second streambed runs vertically from the top of the image into the
�rst one. (c) One of the hexagonally triangulated meshes we use
for surface reconstruction shown as a wireframe. (d) A shaded view

of the same mesh. (e) A shaded view of the mesh after subdivision

and optimization. The two arrows point at the valley of the ho-

rizontal streambed shown in (a). The second streambed is hidden

behind one of the hills. (f) The curvature image registered to the
image shown in (a). Regions of high positive curvature|that is,

candidate valley regions|are shown in white.

levels of the points in all the images for which the projection of a given point on the
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(a) (b)

(c) (d)

Figure 3: Terrain modeling at the Martin-Lockheed UGV site, Denver. (a,b)

A stereo pair of with two streambeds forming a Y. (c) A shaded view
of the terrain mesh recovered by our algorithm. (d) The curvature
image corresponding to image (a) and computed using the mesh
shown in (c).

surface is visible. This comparison is done for a uniform sampling of the surface. ESt
is closely related to the terms used by Wrobel [1991] and Heipke [1992] in their least-

squares approaches. This method allows us to deal with arbitrarily slanted regions and
to discount occluded areas of the surface. For more details, we refer the interested reader
to our previous publication [Fua and Leclerc, 1995].

E(S), the total energy of Equation 1 is a sum of two terms whose magnitudes are

respectively geometry- and image-dependent and are therefore not necessarily commen-
surate. One therefore needs to scale them appropriately. The dynamics of the op-

timization are controlled by the gradient of the objective function. As a consequ-
ence, we have found that an e�ective way to normalize the contributions of the va-

rious components is to multiply them by constant weights computed so that the ratios
of the gradients of ED(S) and ESt(S) has a given value|the same for all examples

shown in this paper|at the beginning of the optimization [Fua and Leclerc, 1990,

Fua and Leclerc, 1996].
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In our application, we �x the x and y coordinates of the vertices of S, and the free

variables are the z coordinates. The process is started with an initial estimate of the

elevations typically derived from a coarse DEM. Because ED is quadratic, these meshes

are amenable to \snake-like" optimization [Kass et al., 1988, Fua and Leclerc, 1996].

In the course of the optimization, we progressively re�ne the mesh by iteratively sub

dividing the facets into four smaller ones whose sides are still of roughly equal length,

thus preserving the regularity of the mesh.

3.2 Di�erential Properties of the Terrain Surface

In Section 4, we will show that we can combine the di�erential properties of the terrain

surface|speci�cally, its largest principal curvature|with the information present in the

gray-level images to automate the delineation of the drainage pattern. It is therefore

important to be able to represent both kinds of information in a common frame of

reference. In our application, we deal with near-vertical aerial imagery and we either use

an orthophoto or the vertical-most available image.

We use the largest principal curvature rather than the mean or Gaussian curvature

because we expect valley bottoms to be be curved in one direction and horizontal in the
other. As suggested by Koenderink and Van Doorn [1991], we could also use the ratio of
largest to smallest principal curvature. For our speci�c application, we have found this
latter choice to yield fairly similar results to those presented here.

Following Sander and Zucker [1990], we estimate the maximal curvature at each
vertex of the surface by �tting a quadric to the vertices in the neighborhood of that
vertex [Lengagne et al., 1996]. For each point on the surface, we then take the curvature
to be a weighted average of the curvatures of the three vertices of the facet to which it

belongs. We have found experimentally that this approach to estimating curvature is
slower but more stable than other methods such as the one proposed by Taubin [1995],
mainly because the quadric �tting is expensive but introduces a much-needed element of
smoothing.

More speci�cally, the altitude z of vertex V (x; y; z) is approximated by

z(x; y) = ax2 + bxy + cy2 + dx+ ey + f :

The tangent plane to the surface is de�ned by the two vectors ~v1 =
@V

@x
and ~v2 =

@V

@y
.

The normal to the tangent plane is de�ned as ~n = ~v1 ^ ~v2. We compute the matrices of

the two fundamental forms of the surface �1 and �2 and the matrix of the Weingarten

endomorphismW = ���1
1
�2. The largest eigenvalue of W is an estimate of the maximal

curvature at vertex V .

Using this method and given a surface triangulation, we can compute, for each original
gray-level image, a \curvature image" that is registered with it such as the ones shown

in Figures 2(f) and 3(d).
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4 Automating Drainage Delineation
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Figure 4: Sketching the rivers at the NTC site. (a) The maximal curvature
paths overlaid on the curvature image of Figure 2(f). For one of
the paths, we speci�ed two endpoints and one intermediate point

denoted by the black circles; for the other we speci�ed only the two

endpoints denoted by the black rectangles. (b) The paths overlaid
on the original image. (c) The paths overlaid on a shaded view of

the terrain mesh of Figure 2(e). (d,e) Elevations along the paths.

Note that because of imprecisions in the reconstruction, they are
not monotonic. (f,g,h) Curvature of the surface along the three
perpendicular cross sections shown as white segments in (a). Note

that the paths lie at local maxima of curvature.

We outline our approach to sketching the drainage pattern with a minimum of user

intervention. We distinguish between steep terrain where the geometry of the terrain

surface is usually su�cient to detect the drainage channels and atter terrain where
geometry becomes less relevant and the information present in the original images must

be used more directly.
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Figure 5: Sketching the rivers at the UGV site. (a) The maximal curvature
paths overlaid on the curvature image of Figure 3(d). For both
paths we speci�ed only the endpoints, denoted by the black circles
and black rectangles, respectively. (b) The paths overlaid on the

original image. (c) The paths overlaid on a shaded view of the ter-
rain mesh of Figure 3(c). (d,e) Nonmonotonic elevations along the

paths. (f,g,h) Curvature of the surface along the three perpendicu-

lar cross sections shown as white segments in (a).

4.1 Steep Terrain

In high-relief areas, rivers create valleys by eroding the surrounding terrain and over time

carve channels that typically are not completely �lled with water. As a result they tend
to appear as local depressions and their center lines closely match maxima of curvature

in the terrain surface.

It is therefore natural to look for paths of maximum curvature in the \curvature
images" introduced in Section 3.2 and computed using the terrain mesh. As shown in

Figures 4, 5 and 6, this can be achieved by simply specifying endpoints and using a
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(a) (b) (c)

Figure 6: River delineation at the McKenna, MOUT site, Ft. Benning. (a)

One of a pair of stereo images with a meandering ditch. (b) The
corresponding curvature image. (c) Maximal curvature path com-
puted by specifying only the endpoints and overlaid on the original

image.

dynamic programming algorithm [Fischler et al., 1981] to �nd a path C that minimizes

ECurv(C) =
Z
(Cmax(f(s)) �C1

max)
2 ds ; (2)

where f(s) is a vector function mapping the arc length s to points (u; v) along the
curve, Cmax(u; v) is the terrain's surface maximal curvature at image location (u; v),
and C1

max is the largest value of Cmax(u; v) in the curvature image. Using recent dynamic
programming implementations [Mortensen and Barrett, 1995, Cohen and Kimmel, 1996],

this can be done in near real time on a regular workstation, making this approach a very
attractive way to sketch the drainage pattern.

In Appendix A we prove that if C minimizes ECurv(C)|that is, if it is a local minimum
of ECurv with respect to in�nitesimal deformations of the curve|it veri�es:

@Cmax(s)

@n
= 1=2�(s)(Cmax(s)�C1

max) 8s ; (3)

where �(s) is the curvature of the path|as opposed to the curvature of the surface
Cmax(s)|and @=@n denotes the derivative in the direction normal to the curve. It follows

that, wherever �(s) is small,

@Cmax

@n
� (Cmax(s)� C1

max) : (4)

Therefore C is close to being the locus of points that are maxima of curvature in the

direction normal to the curve. We therefore refer to these paths as \maximal curvature"
paths.
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In practice, because C is computed using dynamic programming, it is discretized and

made of points with integer coordinate values. Therefore, Equation 4 does not hold

strictly. But, as illustrated by Figures 4 and 5, we have veri�ed experimentally that the

points of C are within a pixel of the actual maxima of curvature of the terrain surface.

4.2 Flat Terrain

As the terrain's relief becomes less pronounced, the channels become increasingly di�cult

to detect from the geometry of the surface mesh alone. In the limit, a river meandering

through an almost at ood plain could not be sketched using the technique described

above.

Figure 7 illustrates this problem in an area where the terrain's shape is close to that

of a slanted plane. In such cases the clues to the river's presence are to be found in the

original gray-level images where they appear as elongated linear structures that can be
detected using a low-resolution linear delineation (LRLD) system.

Because it has demonstrated excellent performance, we use the LRLD system de-

veloped by Fischler and Wolf [Fischler and Wolf, 1983]. It has two major components.
The �rst component, the detector/binarizer, accepts an image and is intended to re-
turn a binary mask that retains the linear structures of interest in a form clearly visible
to a normal human observer. The second component, the generic linker, uses generic
criteria|continuity, contiguity, coherence, length as the basis for extracting sequences of

points that represent the perceptually obvious curved lines present in the binary mask
yielding results such as those shown in Figure 8(a). These linear features can then be
chamfered and used to mask the curvature image. This operation produces the image
of Figure 8(b) in which the curvature of all points but those that are within a given
number of pixels|10, for the examples shown in this paper|of the linear structures is

set to C0

max, the smallest value in the original curvature image, and will therefore tend

to be avoided by the dynamic programming algorithm. Using the same endpoints as
previously, we obtain the paths shown in Figure 8(c) that are much closer to those that a
human analyst would delineate using a stereoscope as shown in Figure 18 of Appendix C.

In Figure 9, we use a second site at the National Training Center to further illustrate

the importance of combining gray-level and 3{D information.

5 Enforcing the Physical Constraints

We now turn to the physical constraints that the drainage pattern and surrounding
terrain must ful�ll. As illustrated by Figures 4 and 5, there is no guarantee that the

features sketched using the techniques of Section 4 will be consistent with the laws of

physics|for example, they may not have monotonically decreasing elevations|mainly

because the terrain model may be in error.
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(a) (b) (c)

(d) (e)

Figure 7: A atter part of the Martin-Lockheed UGV site. (a) One of the
three images of this area. The terrain is close to being a slanted
plane with the highest elevations at the top of the image. Note the

three gullies running from top to bottom of the image. (b) The

corresponding curvature image. (c) The maximal curvature paths
computed by specifying two endpoints for each gully. (d) Detail of
the upper part of the middle path|denoted by the topmost white

arrow in (c)|that meanders away from the clearly visible linear

structure that marks the actual location of the gully. (e) Similar
problem in the lower part of the leftmost path, denoted by the other

white arrow in (c).

Our goal is therefore to enforce these constrains while deviating as little as possible

from what the image data predicts; otherwise we might be \hallucinating" river valleys

where there are none. Constrained optimization [Fletcher, 1987, Gill et al., 1981, Metaxas

and Terzopoulos, 1991] is an e�ective way to achieve this goal because it allows the use
of arbitrarily large numbers of constraints while retaining good convergence properties.

In fact, the more constraints there are, the smaller the search space and the better the
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(a) (b) (c)

Figure 8: Combining gray-level and curvature information. (a) The linear

features detected by the low-resolution linear delineation system in
the image of Figure 7(a). (b) The potential image computed by
using those linear features to mask the curvature image. (c) The
linear structures delineated by using the potential image (b) and

supplying two endpoints for each of the three linear structures.

convergence becomes. In previous work [Fua and Brechb�uhler, 1996], we have developed
a constrained optimization algorithm that exploits the speci�cities of the models we use|
surface meshes and polygonal curves|to reduce the required amount of computation and
to allow us to impose the constraints at a very low computational cost. This method is

described briey in Appendix B and in more detail in our earlier publication.

Formally, a constrained optimization problem can be described as follows. Given a
function f of n variables S = fs1; s2; ::; sng, we want to minimize it under a set of m
constraints C(S) = fc1; c2; ::; cmg = 0. That is,

minimize f(S) subject to C(S) = 0 : (5)

It can be generalized to handle inequality constraints by replacing the constraints of the
form ci(S) = 0 by constraints of the form ci(S) � 0.

In our application, we model the terrain as a triangulated mesh S and linear features

as a set of l polygonal curves Cj;1�j�l. We associate to each an energy term E(S) and

E(Cj). E(S) is discussed in Section 3 and E(Cj) is introduced below. The state vector S
is the vector of all the x,y and z coordinates of the vertices of S and of the Cjs. f(S) is
taken to be

f(S) = fE(S); E(C1); ::::; E(Cl)g ;

and our algorithmminimizes each component of f while attempting to satisfy the constra-

ints. Note that in our approach, we do have not sum E(S) and the E(Cj ). It is therefore
not necessary to normalize them or to compute relative weights.
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(a) (b) (c)

(d) (e) (f)

Figure 9: A di�erent site at the National Training Center (NTC). (a) One of
four aerial images with two streambeds denoted by the two clusters
of white arrows. (b) The curvature image. Regions of high po-

sitive curvature are shown in white. Because the relief is not as
pronounced as in the case of Figure 2, the valleys do not appear
as clearly. (c) The linear features detected by the low-resolution
linear delineation system. (d) The paths delineated by using only
the curvature image shown in (b). For the path at the top, we

speci�ed two endpoints and one intermediate point denoted by the

black circles. For the path at the bottom, we speci�ed only the two
endpoints denoted by the black rectangles. Because there is not
enough relief, the paths wander away from their apparent location

at the places indicated by the white arrows. (e) The paths deline-

ated by specifying the same endpoints and using a potential image
that combines the curvature image and the output of the linear

delineation program shown in (c). (f) The paths, shown as dark
lines, overlaid on a shaded view of the terrain mesh after constra-

ined optimization using all four images. In this scene, there are also
dirt roads that form light linear features in the gray-level images.

They have been outlined using dynamic programming and appear
as white lines.

We must now express the fact that rivers ow downhill and lie at the bottom of
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(a) (b)

Figure 10: Minimizing elevation under constraint. (a) If the terrain was \V"

shaped, the on-terrain constraints would force the z minimizing

curves that we use to model drainage to settle into the position

shown on the right side of the �gure. (b) In fact the valley-bottom

constraints force the valleys to be \U" shaped and the curve to

settle on the horizontal par of the U, although not necessarily in

the middle of it. The exact location is determined by the fact that

the curve must minimize its own curvature.

local depressions in the terrain and that valley oors tend to be \U" shaped and locally
horizontal in the direction transverse to the river's direction in terms of a set of constraints
of the form ci(S) = 0 or ci(S) � 0:

� Rivers lie at the bottom of valleys: We treat a river as smooth 3{D curve C.
We re�ne its position by minimizing an energy E(C) that is the weighted sum of a
regularization term ED(C)|the integral of the square curvatures along the curve|

and a potential term EP (C)|minus the integral of the elevations along the curve.
We write

ED(C) =
Z
�(s)2 ds (6)

EP (C) = �

Z jCj

0

z(s) ds ;

where s is the arc length along the curve, �(s) is the curvature of the curve and

z(s) its elevation.

Following standard snake practices [Kass et al., 1988], we model C as a list of

regularly spaced 3{D vertices S3 of the form

S3 = f(xi yi zi); i = 1; : : : ; ng ; (7)

and we write

ED(C) =
1

2

X
(2xi � xi�1 � xi+1)

2 + (2yi � yi�1 � yi+1)
2 + (2zi � zi�1 � zi+1)

2

EP (C) =
X

zi : (8)

As discussed below, during the optimization the curve C is constrained to remain
on the terrain while the vertices are moved to minimize EP (C) and the elevations
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of the individual vertices. As a result, and as shown in Figure 10, at the end of the

optimization, the curve has to lie at the bottom of a valley.

� Rivers ow downhill: The z coordinates of the curve's list of n 3{D vertices S3
decrease monotonically, which is expressed as a set of n� 1 inequality constraints

zi+1 � zi ; (9)

that we refer to as \downhill" constraints.

� Rivers lie on the terrain: For each edge ((x1; y1; z1); (x2; y2; z2)) of the terrain

mesh and each segment ((x3; y3; z3); (x4; y4; z4)) of the polygonal curve representing

the river that intersect when projected in the (x; y) plane, the four endpoints must

be coplanar so that the segments also intersect in 3{D space. This is written as���������

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

���������
= 0 ; (10)

which yields a set of constraints that we refer to as \on-terrain" constraints.

� The valley is horizontal in the direction transverse to the river's dire-

ction: Each edge ((x1; y1; z1); (x2; y2; z2)) of the terrain mesh that intersects, in the
(x; y) plane, a segment ((x3; y3; z3); (x4; y4; z4)) of the polygonal curve representing
the river must have the following property: the component of the vector

�!e12 =

0
B@ x2 � x1

y2 � y1
z2 � z1

1
CA

that is perpendicular to the vector

�!e34 =

0
B@ x4 � x3

y4 � y3
z4 � z3

1
CA

must be horizontal. This can be written as�������
x2 � x1 x4 � x3 y3 � y4
y2 � y1 y4 � y3 x4 � x3
z2 � z1 z4 � z3 0

������� = 0 ; (11)

because it implies that �!e12 is a linear combination of �!e34 and the vector0
B@ y3 � y4

x4 � x3
0

1
CA

which is both horizontal and perpendicular to �!e34. This yields another set of

constraints that we refer to as \valley-bottom" constraints.
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In practice, the downhill constraints are inequality constraints that are turned on and

o� during the optimization as required, \following an active set strategy" as explained

in Appendix B. Before the start of the constrained optimization, we compute the in-

tersections in the x; y plane between the edges of the mesh and the polygonal curves to

instantiate the required number of on-terrain and valley-bottom constraints. Optionally,

we could reiterate this procedure during the optimization. This would be necessary if the

polygonal curves deformed a lot. However, because the delineation method of Section 4

is robust, the initial location of the curves is within a few pixels of their true locations

so that, in practice, they do not deform very much.

Figures 11, 12, 13 and 14 demonstrate the improvement in consistency brought about

by constrained optimization: The channels now have monotonically decreasing elevations

and the rivers lie at their bottoms, which also is close to being a maximum of curvature

in the direction normal to the feature. In Figure 12, we compare the elevations compu-

ted before and after constrained optimization and show that imposing the constraints

improves the de�nition of the valley. In Figure 14 we show similar results for the images

of Figure 7.

Having re�ned the terrain model using the technique of Section 3 and enforced phy-
sical constraints as described in Section 5, we are now confronted with the perennial
Computer Vision question: How close are we to ground truth? In our speci�c case, we
also want to know if we have paid any price|in terms of accuracy, for instance|to en-

force consistency. For example, how often have we mistakenly constrained the slope of
the terrain to be in a certain direction to satisfy the constraints?

In Appendix C, we use two methods to generate \ground truth." The �rst is to
use a good algorithm and to consider its results only in areas where it is known to be
particularly reliable and accurate. The second method is to do it manually to the best
of the ability of a human operator. By comparing the outputs of both these methods on

the scenes of Figures 2 and 7 against the results produced by our system, we show that

our approach to surface modeling yields excellent accuracy whether or not we impose
our physical constraints|in the order of 0.2 to 0.3 RMS error in disparity|and that
imposing the constraints does not detract from the accuracy.

To highlight the generality of the approach, we show that it can also be used to

delineate ridgelines and roads. The dirt roads of Figure 9 appear as distinct white lines

that can easily be delineated using dynamic programming in the gray-level images alone.

Ridgelines such as those of Figure 15, are characterized by extremal negative curvatures
and appear as dark lines in the gray-level images. They can therefore also be delineated

using the technique of Section 4. We have re�ned both roads and ridgelines by treating
them as 3{D snakes [Fua, 1996] that are attracted by white or dark lines and used

on-terrain constraints to force them to remain on the ground. In a more sophisticated
system, we could further improve the road reconstruction by introducing constraints that

reect known construction practices such as the fact that roads do not have arbitrary

slopes or curvatures.
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Figure 11: NTC model after constrained optimization. (a) A shaded model of
the re�ned and constrained surface mesh of Figure 4 (c). Note the
at-bottomed valleys. (b) The two optimized streambeds overlaid

on the mesh. (c) The optimized streambeds overlaid on a recompu-

ted curvature image. (d,e) Their elevations are now monotonically
decreasing, unlike those of Figures 4. (f,g,h) Curvature of the sur-
face along the three perpendicular cross sections shown as white

segments in (c).

6 Conclusion

We have presented an approach to terrain modeling and 3{D linear delineation that
allows us to generate site models including terrain, drainage channels, roads and ridge

lines that are accurate and consistent with minimal human intervention.

We have shown that, by re�ning an object-centered representation of the terrain and
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(a) (b) (c)

Figure 12: Comparing the elevations before and after reoptimization under

constraints. (a) A window of the image of Figure 2(a) centered on

a section of the horizontal valley. (b) A pseudo-color depiction of

the corresponding elevations computed using the terrain mesh of

Figure 2(e), that is, before constrained optimization. The lowest

elevations appear in black. (c) A pseudo-color depiction of the

elevations using the terrain mesh of Figure 11(a), that is, after

reoptimization under constraints. Note that the valley is now much

better de�ned.

features under a set of well-designed constraints, we can generate, with a high level of

automation, models that are faithful to sensor data, internally consistent and consistent
with physical constraints. We have also shown that we can achieve this result with little
human intervention: the operator is only required to specify a few endpoints, and the
system handles everything else.

We have concentrated on the modeling of drainage patterns but the framework descri-
bed here extends naturally to modeling all objects obeying known physical constraints.

For example, man-made objects such as roads, railroad tracks, or buildings are built
according to well-understood engineering practices. Similarly, silhouette edges can be
extracted from ground-level views of mountain ridges and used to constrain the terrain

modeling from aerial views.

We believe that the capabilities described here will prove indispensable to automating

the generation of complex object databases from imagery, such as the ones required for
realistic simulations or intelligence analysis. In such databases, the models must not

only be as accurate|that is, true to the data|as possible but also consistent with each

other. Otherwise, the simulation will exhibit \glitches" and the image analyst will have
di�culty interpreting the models.
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Figure 13: First UGV model after constrained optimization. (a) A shaded

model of the re�ned and constrained surface mesh of Figure 5 (c).

(b) The two optimized streambeds overlaid on the mesh. (c) The
optimized streambeds overlaid on a recomputed curvature image.

(d,e) Their elevations are monotonically decreasing, unlike those

of Figure 5(d,e). (f,g,h) Curvature of the surface along the three
perpendicular cross sections shown as white segments in (c).
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(a) (b)

Figure 14: Second UGV model after constrained optimization. (a) A shaded

model of the re�ned and constrained surface mesh of Figure 7 (c).

(b) The three optimized streambeds overlaid on the mesh.

(a) (b)

(c) (d)

Figure 15: Modeling ridges at the UGV site. (a,b) Two images of a rocky
outcrop. (c) The ridgeline recovered by the dynamic programming

algorithm. (d) A shaded view of the terrain mesh recovered by our
algorithm.
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Appendices

A Maximizing Curvature

In this appendix, to prove Equation 3, we summarize a proof that has appeared in one

of our earlier publications [Fua and Leclerc, 1990]. We show that if an open curve C is a

local extremum of

E(C) =
Z jCj

0

G(f(s))ds (A.1)

with respect to all in�nitesimal deformations, then

@G(f(s))

@n
= �(s)G(f(s)) ; (A.2)

where the curve C is parameterized by its arc length s and of length jCj, G is a C2

function, f(s) is a vector function mapping the arc length s to points (x; y) along the
curve, �(s) is the curve's curvature and and @=@n denotes the derivative in the direction
normal to the curve. Replacing G(f(s)) by (Cmax(f(s))�C1

max)
2 in Equation A.2 yields

Equation 3.

To prove this result, consider deformations of the curve C, which we shall call C�, such

that the mapping from arc length s to points (x; y) is of the form

f�(s) = f(s) + � (�(s)n(s) + � (s)t(s)) ; (A.3)

where n(s) is the normal to the curve, t(s) is the tangent, and �(s) and � (s) are arbitrary
continuous and di�erentiable functions such that � (0) = � (jCj) = �(0) = �(jCj) = 0.

Let

E(C�) =
Z
G(f�(s�))ds� ; (A.4)

where s� is the arc length of C�.

If C is a local extremum of E(C), then

dE(C�)

d�

�����
�=0

= 0 ; (A.5)

for all �(s) and � (s) such that � (0) = � (jCj) = �(0) = �(jCj) = 0.

Using integration by part, it can be shown that for all such �(s) and � (s),

dE(C�)

d�

�����
�=0

=
Z "

@G(f(s))

@n
� �(s)G(f(s))

#
�(s)ds : (A.6)

The desired result follows immediately.
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B Constrained Optimization

Formally, a constrained optimization problem can be described as follows. Given a fun-

ction f of n variables S = fs1; s2; ::; sng, we want to minimize it under a set of m

constraints C(S) = fc1; c2; ::; cmg = 0. That is,

minimize f(S) subject to C(S) = 0 : (B.1)

In our application, there are always manymore variables than constraints, that is, n� m.

While there are many powerful methods for nonlinear constrained minimization [Gill

et al., 1981], with the exception of the approach proposed by Metaxas and Terzopoulos
[1991], few are designed for snake-like optimization: They do not take advantage of the

locality of interactions that is characteristic of snakes. We have therefore developed a

robust two-step approach [Brechb�uhler et al., 1995, Fua and Brechb�uhler, 1996] that is

closely related to gradient projection methods �rst proposed by Rosen [1961] and has
been extended to snake optimization.

Solving a constrained optimization problem involves satisfying the constraints and
minimizing the objective function. For our application, it has proved e�ective to decouple
the two and decompose each iteration into two steps:

1. Enforce the constraints by projecting the current state onto the constraint surface.
This involves solving a system of nonlinear equations by linearizing them and taking
Newton steps.

2. Minimize the objective function by projecting the gradient of the objective function
onto the subspace tangent to the constraint surface and searching in the direction

of the projection, so that the resulting state does not stray too far away from the
constraint surface.

Figure 16 depicts this procedure. Let C and S be the constraint and state vectors of

Equation B.1 and A be the n�m Jacobian matrix of the constraints. The two steps are

implemented as follows:

1. To project S, we compute dS such that C(S+dS) � C(S)+AtdS = 0 and increment

S by dS. The shortest possible dS is found by solving the underconstrained system

AtdS = �C(S) in the least-squares sense.

2. To compute the optimization direction, we �rst solve the overconstrained linear

systemA(S)� = rf in the least-squares sense and take the direction to berf�A�.
This amounts to estimating Lagrange multipliers, that is, the coe�cients that can
be used to describe rf as closely as possible, as a linear combination of constraint

normals.
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Figure 16: Constrained optimization. Minimizing (x�0:5)2+(y�0:2)2 under

the constraint that (x=2)2+y2 = 1. The set of all states that satisfy

the constraint C(S) = 0, i.e. the constraint surface, is shown as

a thick gray line. Each iteration consists of two steps: orthogonal

projection onto the constraint surface followed by a line search in

a direction tangent to the surface. Because we perform only one

Newton step at each iteration, the constraint is fully enforced after
only a few iterations.

These two steps operate in two locally orthogonal subspaces, in the column space of

A and in its orthogonal complement, the null space of AT . Because the interactions
are very local, the matrix A is always very sparse and both the underconstrained and
overconstrained least-squares problems can be solved reliably at a low computational
cost even when A is ill-conditioned|the constraints are not truly independent|using a
sparse least-squares solver such as LSQR [Paige and Saunders, 1982].

This technique can be generalized to handle inequality constraints by introducing an

\active set strategy." The inequality constraints that are strictly satis�ed are deacti-
vated, while those that are violated are activated and treated as equality constraints.
This requires additional bookkeeping but does not appear to noticeably slow down the
convergence of our constrained-optimization algorithm.

C Quantitative Evaluation of the Results

Here, we use the images of Figures 2 and 7 to gauge the accuracy of our approach.

We believe that these two examples are complementary because, in the �rst case, we

performed our initial delineation by using only the curvature information while, in the
second case, we took advantage of the low-resolution linear delineation system .

C.1 Comparison against the Output of Another Algorithm

One approach to generating \ground truth" is to use a good algorithm and to consider

its results only in areas where it is known to be particularly reliable and accurate. The
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STEREOSYS correlation-based stereo system [Hannah, 1988] has won an international

stereo competition [G�ulch, 1988]. It has been shown to yield extremely reliable results

provided that one only retains the points to which it gives very high con�dence scores

such as the ones shown in Figure 17. The root mean square (RMS) error for those

matches can usually be expected to be in the range of 0.2 to 0.4 pixels, which we will

compare to the RMS errors of our own system.

Given the most reliable STEREOSYS matches, we use the camera models associated

with the image pairs to compute the x,y and z coordinates of the points and we compare

the results to the elevation of the terrain meshes at the same x; y location. In the �rst

two colum of Figure 17, we histogram these di�erences in elevation, expressed in me-

ters, before|2nd row|and after|3rd row|the constrained optimization of Section 5.

The error distributions have barely changed, making these results statistically indistingu-

ishable as evidenced by the RMS values of those histograms shown in the two rightmost

columns of Table 1. For comparison's sake, Table 1 also contains the RMS values of the

di�erences in elevation with the initial coarse DEM before any re�nement of the meshes
as described in Section 3. They are, of course, considerably higher.

The similarity of the error distributions shown in the two leftmost columns of Fi-
gure 17 is not necessarily meaningful, as one would expect most of the variations between
results to be found in the immediate vicinity of the drainage patterns. To further check

this, we have manually selected the subset of STEREOSYS-generated points shown at
the top of the rightmost column of Figure 17 that lie in the immediate vicinity of the
river. We have then performed our comparison again, using only this subset. Again, the
results are statistically indistinguishable and, if anything, the reoptimized mesh appears
to yield a slightly smaller RMS value than the non-reoptimized one.

Another important thing to note is that at the image resolution we are using, a 1-
meter change in elevation translates to a shift of approximately 0.8 pixels for the scene
of Figure 3 and 0.3 pixel for the scene of Figure 9. If we used those shift values to

express the RMS values of Table 1 in terms of pixels, we would obtain numbers in the

range of 0.2 to 0.3 pixel. This is close to being the uncertainty that can be expected of
STEREOSYS and, as a consequence, all these results can be seen as equally good from
a strict accuracy point of view.

C.2 Comparing against Hand-entered Features

Another way to generate \ground truth" is to do it manually to the best of the ability
of a human operator. In Figure 18, we show the manually entered features using RCDE,
the RADIUS Common Development Environment [Mundy et al., 1992], as though it were

a stereoscope. Here, we compare the di�erence in elevation between the ground truth

linear features and the terrain mesh before and after constrained optimization; again,
the di�erences appear to be statistically insigni�cant, as evidenced by Table 2. Note,

however, that these values are higher than those of the �rst row of Table 1. This can be
attributed to the fact that the resolution of the meshes we have used is still too coarse
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Figure 17: Comparing against the output of the STEREOSYS system. Row
(a): Points matched with high con�dence in the images of Figures 7
and Figure 2. In the rightmost image, we show only the subset of

the latter points that lie along the streambed. Row (b): Histogram
of the vertical distances of the points depicted by Row (a) to the
mesh before constrained optimization. Row (c): Histogram of the
vertical distances of the points depicted by Row (a) to the mesh
after constrained optimization. The distances are expressed in me-

ters. At the image resolution we use, a di�erence of 1 meter in
elevation roughly corresponds to a shift of 0.8 pixel in the images
of Figure 7 and 0.3 pixel in the images of Figure 2. Note that the
histograms of rows (b) and (c) are almost indistinguishable.

to very precisely model the bottom of the gullies. The precision could be increased by

further subdividing the whole mesh and reoptimizing. An even better solution would be
to replace our regular meshes by irregular ones and our �nite-di�erence implementation

by a �nite-element one [McInerney and Terzopoulos, 1993, Koh et al., 1994], so that we

could re�ne the triangulation only in the immediate vicinity of the streambeds.

It is worth noting, however, that hand-entering the three linear features very precisely

while ensuring that their elevations decreased monotonically took a great deal more e�ort
and attention|they respectively have 12, 11 and 11 vertices that must be painstakingly

positioned|than specifying the pairs of endpoints of Figure 8 and allowing the system
to do the rest.

C.3 Accuracy versus Consistency Tradeo�

These results suggest that
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Data/Matches All in Fig. 7 All in Fig. 2 Subset in Fig. 2

Number of points 834 1352 137

RMS of initial DEM 1.501 (1.20) 13.34 (4.00) 13.40 (4.02)

RMS of re�ned mesh 0.364 (0.54) 1.080 (0.32) 1.333 (0.40)

RMS of constrained mesh 0.400 (0.60) 1.045 (0.31) 1.197 (0.36)

Table 1: Root mean square values of the di�erences in elevation between

the STEREOSYS matches and our surface meshes initially, after

the unconstrained optimization of Section 3.1 and, �nally, after

constrained optimization. As in Figure 17, the �rst column cor-

responds to the matches in the images of Figure 7, the second one

to the matches in the images of Figure 2, and the third column to

the subset of those points that lie along the streambed. The errors

are computed in meters. The numbers in parentheses are the same
errors expressed in terms of image pixels at the resolution we use;
note that these numbers are in the same range as the RMS errors
of STEREOSYS.

Data/Streambed left middle right

Number of vertices 12 11 11

RMS of re�ned mesh 0.606 (0.48) 0.800 (0.64) 1.340 (1.07)

RMS of constrained mesh 0.620 (0.49) 0.842 (0.67) 1.181 (0.94)

Table 2: Root mean square values of the di�erences in elevation between

the vertices of the hand-entered features of Figure 18 and our
surface meshes �rst after unconstrained optimization and, then,
after constrained optimization. As in Figure 18, the �rst column
corresponds to the leftmost streambed, the second column to the

central one, and the last column to the rightmost streambed. The

RMS errors are shown both in meters and, within parentheses, in

pixels.

� The mesh approach to surface reconstruction of Section 3 yields excellent accuracy
whether or not we impose our physical constraints. This accuracy is comparable

to that of one of the best stereo-correlation algorithms available with the added
advantages that

{ we produce a dense model,

{ we can simultaneously deal with an arbitrary number of images,

{ we produce an object-centered representation that can handle geometric pro-

perties such as occlusions and can be made to interact naturally with other
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Figure 18: Comparison against hand-entered features. Row (a): Manually ou-
tlined drainage pattern using RCDE as a stereoscope. Row (b):
Di�erences in elevation between the linear features and the terrain

mesh before constrained optimization, plotted as a function of arc

length along the path. Row (c): Di�erences in elevation between

the linear features and the terrain mesh after constrained optimi-
zation.

features.

� Enforcing consistency as proposed in Section 5 does not detract from the accuracy,

and therefore yields a model that is more likely to be useful for applications such
as simulation and augmented reality where both faithfulness and consistency are

required.
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