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Abstract

This paper proposes a way to incorporate a priori infor-
mation in a 3D stereo reconstruction process from a pair of
calibrated face images. In our framework, a 3D mesh mod-
eling the surface is iteratively deformed in order to mini-
mize an energy function in a snake-like process. Differen-
tial information about the object shape is used to generate
an anisotropic mesh that can both fulfill the compacity and
the accuracy requirements. Moreover, in areas where the
stereo information is not reliable enough to accurately re-
cover the surface shape, because of inappropriate texture or
bad lighting conditions, we propose to incorporate some ge-
ometric constraints related to the differential properties of
the surface. These constraints can be intuitive or can refer
to some predefined geometric properties of the object to be
reconstructed. They can be applied to scalar fields, such as
curvature values, or structural features, such as crest lines,
governing their location, number, or spatial organization.
We demonstrate our approach using faces.
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1 Introduction

3D face modeling is currently receiving a lot of atten-
tion among the Computer Vision and Computer Graphics
communities and is a thriving research field that can yield
to various applications such as virtual reality, animation,
face recognition, etc... In all these applications, the recon-
structed face needs to be compact and accurate, especially
around significant areas like the nose, the mouth, the or-
bits, etc... These areas can often be characterized in terms
of differential properties of the surface, and a great effort

has to be done in order to accurately reconstruct those fea-
tures. Several attempts to deal with that problem have been
made. In [2], the differential properties of the surface are
inferred from a disparity map and used to modify the shape
of a correlation window. In [11], crest line extraction is
performed on a 3D model and used to improve the recon-
struction around sharp ridges. These methods improve the
accuracy of the reconstruction but do not suffice if the ini-
tial depth map is not reliable. For instance, it is well known
that bad lighting conditions or lack of texture can make
correlation-based stereo fail. Consequently, the image in-
formation alone is sometimes not sufficient to recover the
shape. In [5], constraints on the depth of a given set of
points on a surface mesh are applied in order to improve
terrain reconstruction. In [9], curvature information and
structural features such as crest lines are extracted from the
3D model or interactively specified in order to generate an
anisotropic surface mesh that reflects the geometric proper-
ties of the object. In this paper, we propose a further step
towards incorporation of a priori information in the recon-
struction process from a pair of calibrated face images. Dif-
ferential information is used to constrain the topology of a
mesh modeling the surface and the parameters of an analyt-
ical surface model, through the specification of low(high)-
curvature areas, or structural features. Mathematically, this
incorporation is achieved via constrained mesh optimiza-
tion. We show preliminary results of this ongoing work,
which aims at building 3D face models from Computer Vi-
sion techniques, that are as compact and accurate as pos-
sible and are consistent with a priori constraints about the
face geometry.

2 The reconstruction process

2.1 An energy minimization scheme

Our reconstruction process is based on the iterative de-
formation of a 3D triangular mesh (i.e. a collection of ver-
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tices, triangular faces and edges) modeling the face in order
to minimize an energy functionE. The reconstruction pro-
cess is thus treated as a snake-like process ([7],[6],[11]).
The initial mesh is given by triangulating the depth map pro-
vided by a standard correlation algorithm [4]. The energy
function is the weighted sum of two terms: one external
termEext, whose minimization makes the model fit to the
data, and one internal termEint, whose minimization con-
strains the model to be smooth enough.
The external termEext is derived from the stereo informa-
tion. We assume that the projections of a given 3D point in
the 2 image planes have the same intensities. The purpose
is thus to minimize the intensity difference between the two
projections (see [6] or [11] for more details). Notice that
this process will behave the same way as the correlation al-
gorithm, i.e. it will fail in the same cases: lack of texture,
lighting problems,...
The internal termEint is a regularization term which tends
to minimize the deviation of the mesh from a plane. Its
purpose is to minimize the global curvature of the surface.
It is a quadratic term (which helps the convergence of the
optimization process) and a function of the second order
derivatives of the surface. It restricts the set of all possible
solutions to the most “regular” ones.
Consequently, we minimizeE = �extEext+�intEint. We
thus have to find a trade-off between data-fitting (through
the stereo term) and the smoothness of the solution (through
the regularization term).

To perform this optimization, we have implemented a
finite-element scheme. Consequently, for each facet of the
mesh, we have an analytical expression of the surface. The
depthZ of each surface point is expressed as a polynomial
function of the two other coordinatesX andY . This poly-
nomial is of degree 5, which guarantees that the surface is
piecewiseC1 (see [10], [12]). The parameters of the opti-
mization process are the depths of each vertex, as well as
the partial derivatives of the depth with respect toX and
Y . Consequently, if the mesh is composed ofn vertices, we
come up with a6n-variable state vector:
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We take as initial values of theZi the depth values given by
the triangulation of the depth map. To compute the initial
values of the partial derivatives, we have locally approx-
imated the surface by a quadric and computed the partial
derivatives of the surface as being the partial derivatives of
the corresponding quadric. These values define the poly-

nomial approximation of the surface. Reciprocally, we can
compute the partial derivatives and differential properties of
the surface from the analytical expression of the surface.

2.2 Adaptive meshes

The computation time can be very high if we keep a very
large number of vertices. Moreover, if we further want to
use our 3D model for animation purposes, for instance, a
large number of points can very soon become untractable.
Therefore, we have to reduce the number of vertices and
to keep the points in the most significant areas of the face.
Furthermore, this has to be achieved with as much automa-
tion as possible. For instance, we would like to keep many
points in the nose area, the orbits, the mouth, i.e. areas
which are likely to act as landmarks in an animation pro-
cess. All these areas can be characterized by geometri-
cal properties of the surface, especially differential prop-
erties. Indeed, areas like the nose ridge, the orbits, can be
expressed in terms of high curvature areas, or crest lines,
whereas the cheeks, the forehead (where we would like a
small number of facets) can be described as low curvature
areas.
We have thus chosen to refine the 3D model according to
the differential properties of the surface that can be easily
inferred from the analytical expression of the surface or es-
timated by a local quadric approximation. The surface de-
scribed by the finite element model isC1 inside each facet,
andC1 between two facets. Besides, the second order par-
tial derivatives are uniquely defined at each vertex, since
they belong to the parameters of the optimization problem.
Consequently, it is meaningful to compute the surface cur-
vatures at each vertex. This computation is straightforward:
we can easily compute the first and the second fundamen-
tal forms associated to the surface, respectively denoted by
their matricesM1 andM2, and the Weingarten endomor-
phismW = �M�1

1
M2 (see [3]). The principal curvatures

and the principal curvature directions are respectively the
eigenvalues and the eigenvectors ofW . We briefly review
the computation of the principal curvatures:
If kmax, kmin,K, andH respectively denote the maximum
curvature, the minimum curvature, the gaussian curvature
(= kmaxkmin) and the mean curvature (= 1

2
(kmax+kmin))

of the surface at a given vertex, and ifZx denotes the par-
tial derivative ofZ with respect toX at this vertex, we can
write:
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If j k1 j�j k2 j, kmin = k1 andkmax = k2.

Otherwise,kmin = k2 andkmax = k1.

As described in [9], we generate an adaptive mesh gov-
erned by the principal curvatures and the principal curvature
directions of the surface.

The algorithm can be summarized as follows:

� compute on the initial mesh the principal curvatures
kmax andkmin and the principal curvature directions
~tmax and~tmin.

� specify for each vertex of the initial mesh the three
parameters (two scalar valuesh1 andh2 and an angle
�) of an ellipse centered on the vertex which governs
the generation of a new mesh.

� optimize the new mesh by minimizing the energy
functionE = �extEext + �intEint.

The algorithm completely remeshes a 2D domain, which
is taken here to be a frontal projection of the face. There-
fore, the vertices will not be at the same locations anymore
and the surface will be sampled according to the sets of
h1, h2 and�. These values govern the local topology of
the new mesh in the vicinity of the old vertex they are at-
tached to. As shown in figure 1, the angle� determines in
which direction the new facet in the remeshed surface will
be “elongated”. This direction will be given by~tmin. In
other terms, the edges of the new facets will be longer in
the minimum curvature direction than in the maximum cur-
vature direction (those two directions are orthogonal). This
is rather intuitive: for instance, in the case of the nose ridge,
the minimum curvature direction lies along this ridge. We
want to capture as many details as possible in the direc-
tion orthogonal to this ridge, since there is a high curva-
ture change in that direction. Consequently, it is natural to
generate longer edges in the minimum curvature direction
(i.e.along the ridge) than in the maximum curvature direc-
tion (i.e. across the ridge). The scalar valuesh1 andh2
determine the average lengths of the edges in those two di-
rections. They are decreasing functions ofkmax andkmin,
since we want more facets in low curvature areas. Typi-
cally, they are chosen as inverses of a second order polyno-
mial function.h1 is determined by the minimum curvature
andh2 is determined by the maximum curvature. This pro-
cedure uses a mesh generation software developed for the
Computational Field Simulations ([1]).

h1

h2

Figure 1. the ellipse de�ning the local topology
of the new mesh

We show in figures 2 to 4 some experimental results de-
rived using this method. Figure 2 shows a stereo pair of a
face in a rectified position (here, the horizontal disparities
are zero). The image sizes are 512x512.
Figure 3 shows the initial depth map obtained by a corre-
lation algorithm, and the triangulation of the depth map in
high resolution (4627 vertices). Such a number of vertices
is much too large for any kind of subsequent applications.
Our purpose is thus to selectively reduce the number of ver-
tices while keeping a good reconstruction accuracy and, if
possible, improve the reconstruction in significant areas.
Figure 4 shows an anisotropic mesh of the face and the re-
sult of its optimization. This new mesh has 248 vertices. Of
course, it is hard to visually compare the initial mesh and
this one in shaded views (which are planar approximations
of the surface) since the number of points has been roughly
divided by 18, but the main point is to keep a good recon-
struction around typical features like the nose or the orbits.

Figure 2. a stereo pair of a face

2.3 Limitations of the scheme

We have therefore generated a new mesh which is much
more compact than the original one and which preserves



Figure 3. the depth map and the initial mesh
(4627 vertices)

Figure 4. the anisotropic mesh and the result
of its deformation (248 vertices)

the high curvature areas. However, this method can only be
used if the initial 3D model is good enough to yield reli-
able curvature information. In many cases, the initial model
is too far from the true surface to produce such informa-
tion. For instance, in the above example, the 3D shape of
the forehead cannot be recovered accurately from stereo in-
formation alone because of the presence of hair, which will
make the correlation process fail in this area. This is anal-
ogous to the case of terrain reconstruction in presence of
vegetation, which will make the recovery of the 3D shape
impossible. In other cases, bad lighting conditions will
produce the same undesirable effects. Therefore, it seems
necessary to incorporate in the reconstruction process ex-
tra information that can help the recovery of the 3D shape.
Mainly, this incorporation has two goals:

� compensate the reduction of the number of vertices in
order to preserve a good reconstruction accuracy.

� compensate the insufficiency or the inadequateness of
the information contained in the image to accurately
reconstruct the 3D shape.

3 Incorporating a priori knowledge

3.1 A priori knowledge and di�erential
properties

When we want to reconstruct an object, we have a rough
idea about its shape, especially the location of typical fea-
tures like crest lines, the spatial relation between these lines
or the existence of patches that we can describe as “flat”,
“spherical”, “cylindrical”,etc... This kind of a priori knowl-
edge can be of great interest where the classical stereo meth-
ods fail because of the reasons expressed above.
The a priori knowledge that a user can have about the shape
he wants to reconstruct can be intuitive (“This region is flat,
or spherical”) or can rely on well-known geometric prop-
erties, which can come from anthropometry in case of face
reconstruction, or geology, in case of terrain reconstruction,
etc...
In any case, this a priori knowledge can very often be ex-
pressed in terms of differential properties. For instance, the
knowledge “This area is flat” is obviously “translated” as:
at each vertex,kmax = kmin = 0.
“This area is spherical” means: at each vertex,kmax =

kmin.
We can also express “structural” knowledge such as “There
is a crest line here”, and interactively outline the crest on
the depth map (or, ideally, on the images) in differential
terms: geometrically, a crest line is defined as a set of zero-
crossings of the derivative of the maximum curvature in the
maximum curvature direction, i.e. the set of points such
that dk = rkmax:~tmax = 0. The location of the crest
on the depth map gives its location on the 3D mesh. The
line goes through several facets and separates areas where
dk > 0 from areas wheredk < 0 (see figure 5). Notice that
rkmax can be easily derived from the analytical expression
of the surface. Imposing a constraint on the location of the
crest line is thus equivalent to imposing on several vertices
dk < 0 and on othersdk > 0.

+
+

+
--

CREST LINE MESH

Figure 5. the crest line going through the facets
nad the sign of dk



3.2 Constrained optimization

Incorporating a priori knowledge in the reconstruction
process can be achieved using constrained optimization. All
the constraints are expressed in terms of the partial deriva-
tives which are the parameters of the optimization process.
We use for that purpose a constrained optimization software
especially designed for large systems [8] (which is our case,
since we have 6 parameters per vertex).

3.3 Applications

So far, we have only tested our constrained on synthetic
data (reconstruction of a sphere from a noisy initial state,
using the constraint of equal curvatures, and reconstruction
of a ridge with outlining the crest line). We have also re-
constructed the forehead of the face shown in the previous
section, using the a priori assumption that the part of the
skull above the orbits is roughly spherical.
In the latest example, we first constrain the topology of
the mesh to be rather uniform and isotropic (h1 = h2 and
� = 0 with the notations of the previous section), since
the curvatures are globally the same on this area. No-
tice that in the previous section, the program had gener-
ated many facets in some areas of the forehead, since the
correlation algorithm providing the initial depth map had
failed in reconstructing a smooth surface. We then minimize
E = �extEext + �intEint under the following constraints:

8i 2 f1; ::; ng; kmax(i) = kmin(i) (1)

8(i; j) 2 f1; ::; ng2; kmax(i) = kmax(j) (2)

8(i; j) 2 f1; ::; ng2; kmin(i) = kmin(j): (3)

wherei denotes the i-th vertex.

Figure 6. the reconstructed forehead without
di�erential constraints: the mesh and a shaded
view

In this example, we showed that we could achieve our
three goals:

Figure 7. the forehead: the �nal reconstruction
after incorporating di�erential constraints

� produce a compact and accurate reconstruction.

� get rid of some problems induced by stereo methods.

� be consistent with the a priori knowledge about the
object shape and about its differential properties.

Note that, if our goal had only been to flatten this area,
we could have merely minimizedE = �extEext+�intEint

with �int set to a very large value, thus constraining the
shape to converge to a plane. The sets of properties (1), (2)
and (3) would have been fulfilled as well, but the weight of
the image information would have been too small to make
the model converge towards the real shape, i.e. a sphere.
On the contrary, in our constrained optimization scheme,
the image information is still present, that makes the global
shape look like a sphere, and the differential constraints act
locally to avoid some undesirable behaviors such as the one
due to the presence of hair. These experiments are still pre-
liminary, but our purpose is to build a general framework
that could be applied to different cases when conventional
stereo fails.

4 Conclusion

We have proposed a way of interactively reconstructing
from stereo a complex 3D object like a face using a pri-
ori information about its shape and its differential proper-
ties. This kind of information can be of great interest when
dealing with objects whose texture generally make conven-
tional stereo algorithms fail, or captured in bad lighting con-
ditions. Our long-term purpose is to develop an interac-
tive image-based modeling software that takes into account
some a priori knowledge that a user can have about the dif-
ferential properties of the object to reconstruct.
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