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Abstract has to be done in order to accurately reconstruct those fea-

tures. Several attempts to deal with that problem have been

This paper proposes a way to incorporate a priori infor- made. In [2], the differential properties of the surface are
mation in a 3D stereo reconstruction process from a pair of inferred from a disparity map and used to modify the shape
calibrated face images. In our framework, a 3D mesh mod- Of a correlation window. In [11], crest line extraction is
eling the surface is iteratively deformed in order to mini- Performed on a 3D model and used to improve the recon-
mize an energy function in a snake-like process. Differen-struction around sharp ridges. These methods improve the
tial information about the Object shape is used to generate accuracy of the reconstruction but do not suffice if the ini-
an anisotropic mesh that can both fulfill the compacity and tial depth map is not reliable. For instance, it is well known
the accuracy requirements. Moreover, in areas where thethat bad lighting conditions or lack of texture can make
stereo information is not reliable enough to accurately re- correlation-based stereo fail. Consequently, the image in-
cover the surface Shape, because of inappropriate texture orformation alone is sometimes not sufficient to recover the
bad lighting conditions, we propose to incorporate some ge- shape. In [5], constraints on the depth of a given set of
ometric constraints related to the differential properties of points on a surface mesh are applied in order to improve
the surface. These constraints can be intuitive or can refer terrain reconstruction. In [9], curvature information and
to some predefined geometric properties of the object to bestructural features such as crest lines are extracted from the
reconstructed. They can be applied to scalar fields, such as3D model or interactively specified in order to generate an
curvature values, or structural features, such as crest lines, anisotropic surface mesh that reflects the geometric proper-

governing their location, number, or spatial organization. ties of the object. In this paper, we propose a further step
We demonstrate our approach using faces. towards incorporation of a priori information in the recon-

struction process from a pair of calibrated face images. Dif-

ferential information is used to constrain the topology of a

mesh modeling the surface and the parameters of an analyt-

ical surface model, through the specification of low(high)-

curvature areas, or structural features. Mathematically, this

incorporation is achieved via constrained mesh optimiza-

tion. We show preliminary results of this ongoing work,

1 Introduction which aims at building 3D face models from Computer Vi-

sion techniques, that are as compact and accurate as pos-

3D face modeling is currently receiving a lot of atten- Sible and are consistent with a priori constraints about the

tion among the Computer Vision and Computer Graphics face geometry.

communities and is a thriving research field that can yield

to various applications such as virtual reality, animation, 2 The reconstruction process

face recognition, etc... In all these applications, the recon-

structed face needs to be compact and accurate, especiallg.1 An energy minimization scheme

around significant areas like the nose, the mouth, the or-

bits, etc... These areas can often be characterized in terms Our reconstruction process is based on the iterative de-

of differential properties of the surface, and a great effort formation of a 3D triangular mesh (i.e. a collection of ver-
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tices, triangular faces and edges) modeling the face in ordemomial approximation of the surface. Reciprocally, we can
to minimize an energy functioR. The reconstruction pro- compute the partial derivatives and differential properties of
cess is thus treated as a snake-like process ([7],[6],[11]). the surface from the analytical expression of the surface.
The initial mesh is given by triangulating the depth map pro-

vided by a standard correlation algorithm [4]. The energy 2.2 Adaptive meshes

function is the weighted sum of two terms: one external
term E.,,, whose minimization makes the model fit to the

) e The computation time can be very high if we keep a very
data, and one internal terf;,,;, whose minimization con-

ins th del to b h h large number of vertices. Moreover, if we further want to

strzalnst e n:o elto gsmopt efnoug h. inf use our 3D model for animation purposes, for instance, a
The external ternk.... is derived from the stereo informa- |6 number of points can very soon become untractable.
tion. We assume that the projections of a given 3D pointin 1 refore we have to reduce the number of vertices and
the 2 image planes have the same intensities. The purposg, yaen the points in the most significant areas of the face.
is thus to minimize the intensity difference between the two £ i armore. this has to be achieved with as much automa-

projections (see [6] or [11] for more details). Notice that o, 4q hossible. For instance, we would like to keep many

this process will behave the same way as the correlation al inis i the nose area, the orbits, the mouth, i.e. areas
gorithm, i.e. it will fail in the same cases: lack of texture

. ' which are likely to act as landmarks in an animation pro-
lighting problems,...

he i | . larizati hich tend cess. All these areas can be characterized by geometri-
The Interna terr’rEW' IS a regularization term which tends . properties of the surface, especially differential prop-
to minimize the deviation of the mesh from a plane. Its

X e erties. Indeed, areas like the nose ridge, the orbits, can be
purpose is to minimize the global curvature of the surface.

\ ) hich helos th £ th expressed in terms of high curvature areas, or crest lines,
Itis a quadratic term (which helps the convergence of the e eag the cheeks, the forehead (where we would like a
optimization process) and a function of the second order

. X ~"small number of facets) can be described as low curvature
derivatives of the surface. It restricts the set of all possible

. p ) areas.
solutions to the most' regular Ones. We have thus chosen to refine the 3D model according to
Consequently, we minimiz€ = et Fewt + Aing Eing. We

g Lo the differential properties of the surface that can be easily
thus have to find a trade-off between data-fitting (through jte e from the analytical expression of the surface or es-
the stereo t_erm) and the smoothness of the solution (througqimated by a local quadric approximation. The surface de-
the regularization term). scribed by the finite element modelis® inside each facet,

i o i andC' between two facets. Besides, the second order par-
_ To perform this optimization, we have implemented a i3 gerivatives are uniquely defined at each vertex, since
finite-element scheme. Consequently, for each facet of they, oy ejong to the parameters of the optimization problem.
mesh, we have an analytical expression of the surface. Theqnsequently, it is meaningful to compute the surface cur-
depthZ of each surface point is expressed as a polynomialy a¢,res at each vertex. This computation is straightforward:
function of the two other coordinates andY". This poly- '\ e can easily compute the first and the second fundamen-

nomial is ofldegree 5, which guarantees that the surface is| torms associated to the surface, respectively denoted by
piecewiseC” (see [10], [12]). The parameters of the opti- y,qir matricesis, and M,, and the Weingarten endomor-

mization process are the depths of each vertex, as well a?)hismW — _ MM, (see [3]). The principal curvatures

. o . = 1 .
the partial derivatives of the depth with respect¥oand 5,4 the principal curvature directions are respectively the
Y. Consequently, if the mesh is composedofertices, we  gjganyalues and the eigenvectorsst We briefly review
come up with &n-variable state vector: the computation of the principal curvatures:

07, o7z, If kaz» kmin, KK, andH respectively denote the maximum
(21, Zn) (G570 30 ) curvature, the minimum curvature, the gaussian curvature
97 97 927 927 (= kmazkmin) and the mean curvature(%(kmaﬁkmm))
1 n 1 n

of the surface at a given vertex, and4f denotes the par-
tial derivative ofZ with respect taX at this vertex, we can
write:

Cov v )z e )
( 0?7, 0?Z, ) ((’)2Z1 82Zn)
0. ) SN €) SARN) ERENN ) £ R
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We take as initial values of thg; the depth values given by K= Zealyy — sz{
the triangulation of the depth map. To compute the initial (1+22+ Z;)Z
values of the partial derivatives, we have locally approx- V(1 + 22 Zyy — 2202y Zoy + (1 + Z2) Zoo
imated the surface by a quadric and computed the partial H = B 5 N
derivatives of the surface as being the partial derivatives of (+23+73)
the corresponding quadric. These values define the poly- k1 =H +VvH? - K




k2=H —-+vH?-K
If | k1 |§| ko |, kmin = k1 andkmm = k».
Otherwisekin = ko andk, o = k1.

As described in [9], we generate an adaptive mesh gov-
erned by the principal curvatures and the principal curvature
directions of the surface.

The algorithm can be summarized as follows: Figure 1. the ellipse defining the local topology
of the new mesh

e compute on the initial mesh the principal curvatures
kma= @ndknin and the principal curvature directions  We show in figures 2 to 4 some experimental results de-
tmaz ANAt,yin. rived using this method. Figure 2 shows a stereo pair of a
face in a rectified position (here, the horizontal disparities
e specify for each vertex of the initial mesh the three 4.0 zero). The image sizes are 512x512.
parameters (two scalar valuesandh, and anangle  Figure 3 shows the initial depth map obtained by a corre-
0) of an ellipse centered on the vertex which governs |ation algorithm, and the triangulation of the depth map in
the generation of a new mesh. high resolution (4627 vertices). Such a number of vertices
_ o is much too large for any kind of subsequent applications.
* optmyze the new mesh by minimizing the energy Our purpose is thus to selectively reduce the number of ver-
function & = Aot Eeat + Aint Eint. tices while keeping a good reconstruction accuracy and, if
h possible, improve the reconstruction in significant areas.
Figure 4 shows an anisotropic mesh of the face and the re-
sult of its optimization. This new mesh has 248 vertices. Of
course, it is hard to visually compare the initial mesh and
this one in shaded views (which are planar approximations
of the surface) since the number of points has been roughly
divided by 18, but the main point is to keep a good recon-
struction around typical features like the nose or the orbits.

The algorithm completely remeshes a 2D domain, whic
is taken here to be a frontal projection of the face. There-
fore, the vertices will not be at the same locations anymore
and the surface will be sampled according to the sets of
hi, ho and@. These values govern the local topology of
the new mesh in the vicinity of the old vertex they are at-
tached to. As shown in figure 1, the angléletermines in
which direction the new facet in the remeshed surface will
be “elongated”. This direction will be given b, ;,. In
other terms, the edges of the new facets will be longer in
the minimum curvature direction than in the maximum cur-
vature direction (those two directions are orthogonal). This
is rather intuitive: for instance, in the case of the nose ridge,
the minimum curvature direction lies along this ridge. We
want to capture as many details as possible in the direc-
tion orthogonal to this ridge, since there is a high curva-
ture change in that direction. Consequently, it is natural to
generate longer edges in the minimum curvature direction
(i.e.along the ridge) than in the maximum curvature direc-
tion (i.e. across the ridge). The scalar vallhgsand h»
determine the average lengths of the edges in those two di-
rections. They are decreasing functionggf,. andkm», Figure 2. a stereo pair of a face
since we want more facets in low curvature areas. Typi-
cally, they are chosen as inverses of a second order polyno-
mial function. h; is determined by the minimum curvature 2.3 Limitations of the scheme
andhs is determined by the maximum curvature. This pro-
cedure uses a mesh generation software developed for the We have therefore generated a new mesh which is much
Computational Field Simulations ([1]). more compact than the original one and which preserves




3 Incorporating a priori knowledge

3.1 A priori knowledge and differential
properties

When we want to reconstruct an object, we have a rough
idea about its shape, especially the location of typical fea-
tures like crest lines, the spatial relation between these lines
or the existence of patches that we can describe as “flat”,
“spherical”, “cylindrical”,etc... This kind of a priori knowl-
edge can be of great interest where the classical stereo meth-
ods fail because of the reasons expressed above.

The a priori knowledge that a user can have about the shape
he wants to reconstruct can be intuitive (“This region is flat,
or spherical”) or can rely on well-known geometric prop-
erties, which can come from anthropometry in case of face
reconstruction, or geology, in case of terrain reconstruction,
etc...

In any case, this a priori knowledge can very often be ex-
pressed in terms of differential properties. For instance, the
knowledge “This area is flat” is obviously “translated” as:

at each verteXs,maz = kmin = 0.

“This area is spherical” means: at each vertex,. =

Figure 3. the depth map and the initial mesh
(4627 vertices)

kmin-
Figure 4. the anisotropic mesh and the result We can also express “structural” knowledge such as “There
of its deformation (248 vertices) is a crest line here”, and interactively outline the crest on

the depth map (or, ideally, on the images) in differential
terms: geometrically, a crest line is defined as a set of zero-
crossings of the derivative of the maximum curvature in the

the high curvature areas. However, this method can only be»yimum curvature direction, i.e. the set of points such

used if the initial 3D m.odel is good enough tq yigld reli- that dr = VkpueEas = 0. The location of the crest
f':lble curvature information. In many cases, the |n|t|§1I model 5, the depth map gives its location on the 3D mesh. The
i too far from the true surface to produce such informa- jine goes through several facets and separates areas where

tion. For instance, in the above example, the 3D shape of ;. > 0 from areas whergk < 0 (see figure 5). Notice that
the forehead cannot be recovered accurately from stereo ind can be easily derived from the analytical expression

formation alone because of the presence of hair, which will o¢ 1o o\ rface. Imposing a constraint on the location of the

make the correlation process fail in this area. This is anal- et line is thus equivalent to imposing on several vertices
ogous to the case of terrain reconstruction in presence of ;. _  and on othersk > 0.

vegetation, which will make the recovery of the 3D shape

impossible. In other cases, bad lighting conditions will

produce the same undesirable effects. Therefore, it seems

necessary to incorporate in the reconstruction process ex- +
tra information that can help the recovery of the 3D shape. CRESTLINE MESH
Mainly, this incorporation has two goals:

e compensate the reduction of the number of vertices in

order to preserve a good reconstruction accuracy. . . .
Figure 5. the crest line going through the facets

o compensate the insufficiency or the inadequatenessof nad the sign of dk

the information contained in the image to accurately
reconstruct the 3D shape.



3.2 Constrained optimization

Incorporating a priori knowledge in the reconstruction
process can be achieved using constrained optimization. All
the constraints are expressed in terms of the partial deriva-
tives which are the parameters of the optimization process.
We use for that purpose a constrained optimization software
especially designed for large systems [8] (which is our case,
since we have 6 parameters per vertex).

3.3 Applications

So far, we have only tested our constrained on synthetic
data (reconstruction of a sphere from a noisy initial state,
using the constraint of equal curvatures, and reconstruction
of a ridge with outlining the crest line). We have also re-
constructed the forehead of the face shown in the previous
section, using the a priori assumption that the part of the
skull above the orbits is roughly spherical.

In the latest example, we first constrain the topology of

the mesh to be rather uniform and isotropig (= h, and

# = 0 with the notations of the previous section), since

the curvatures are globally the same on this area. No-
tice that in the previous section, the program had gener-

Figure 7. the forehead: the final reconstruction
after incorporating differential constraints

e produce a compact and accurate reconstruction.
e getrid of some problems induced by stereo methods.

e be consistent with the a priori knowledge about the
object shape and about its differential properties.

ated many facets in some areas of the forehead, since the Note that, if our goal had only been to flatten this area,

correlation algorithm providing the initial depth map had e could have merely minimizell = Acoi Eeet + Nint Eint
failed in reconstructing a smooth surface. We then minimize with ),,,, set to a very large value, thus constraining the

E = ezt Eert + Aint Eingy under the following constraints:

Vi € {1, ..}, kmae (i) = Emin(i) 1)
v(i, j) € {1, "7“}2:kmax(i) = kmaz(4) )
V(i,j) € {1: ~-,n}27kmin(i) = kmm(]) (3)

where: denotes the i-th vertex.

Figure 6. the reconstructed forehead without
differential constraints: the mesh and a shaded
view

shape to converge to a plane. The sets of properties (1), (2)
and (3) would have been fulfilled as well, but the weight of
the image information would have been too small to make
the model converge towards the real shape, i.e. a sphere.
On the contrary, in our constrained optimization scheme,
the image information is still present, that makes the global
shape look like a sphere, and the differential constraints act
locally to avoid some undesirable behaviors such as the one
due to the presence of hair. These experiments are still pre-
liminary, but our purpose is to build a general framework
that could be applied to different cases when conventional
stereo fails.

4 Conclusion

We have proposed a way of interactively reconstructing
from stereo a complex 3D object like a face using a pri-
ori information about its shape and its differential proper-
ties. This kind of information can be of great interest when
dealing with objects whose texture generally make conven-
tional stereo algorithms fail, or captured in bad lighting con-
ditions. Our long-term purpose is to develop an interac-
tive image-based modeling software that takes into account

In this example, we showed that we could achieve our some a priori knowledge that a user can have about the dif-

three goals:

ferential properties of the object to reconstruct.
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