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ABSTRACT

The successful design of sensor network architectures depends
crucially on the structure of the sampling, observation, and
communication processes. One of the most fundamental ques-
tions concerns the sufficiency of discrete approximations in
time, space, and amplitude. In the case of space and time,
the question can be rephrased as whether there is a spatio-
temporal sampling theorem for typical data sets in sensor net-
works. This question has a positive answer in many cases
of interest. The issue of discretization of amplitudes is more
subtle and can be expressed as the question of whether there
is a (source/channel) separation theorem for typical sensor
networks. We show that this question has a negative answer
in general and that the price of separation can be large. To
illustrate these issues, we review the underlying theory and
discuss specific examples.

1. INTRODUCTION

In this paper, we take a structure-driven end-to-end approach
to the sensor network problem, illustrated in Figure 1. Under-
lying the whole problem is the physics of the process of inter-
est. This structures the data sets, points to sampling schemes,
and indicates what types of correlation will be present in the
sensor data. After sampling using the sensors, we are faced
with the classic dilemma of the communication engineer: “to
separate or not to separate”. That is, we either go to the digi-
tal domain, and apply discretization of the data through quan-
tization and source compression, or we keep data in analog
form. The former implicitly assumes a separation into source
and channel coding, and can be optimal in certain scenarios,
while the latter permits any form of joint source-channel cod-
ing. Thus, the main focus and goal is to show how the struc-
ture of the distributed sensing and communication problem
dictates new processing architectures. The key challenge lies
in the discretization of space, time, and amplitude, since most
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Fig. 1. The end-to-end sensor network problem. (a) A physi-
cal environment, possibly driven by sources, generates a dis-
tributed data set. (b) A number of sensors acquire, through
spatio-temporal sampling, a discrete time-space version of the
physical data set. (c) The data set needs to be conveyed to a
central location, via distributed compression combined with
communication, or via a joint source channel scheme.

of the advanced signal processing systems operate in discrete
domain. In the paper, we investigate and illustrate the suffi-
ciency of such discretization, but also the lack thereof.

2. TIME AND SPACE

Sampling is so common that we sometimes forget it is a lit-
tle miracle, and that it comes with a few strings attached. In
the case of sensor networks, the critical issue is certainly the
sampling in space, inherent in the discrete nature of the sen-
sors. Also, distributed signals exist in time and space, and
are thus inherently multidimensional. Distributed signal ac-
quisition is thus the spatio-temporal sampling of such signals.
Of course, the field of array signal processing has dealt with
such problems in the past (see e.g. [1]), but with a perspec-
tive that is different from the one used in sensor networks. In
typical array signal processing, the array is one-dimensional,
regular, and the signals are often narrow band. In sensor net-
works, the array is irregular and two dimensional (random
sensor placement on a plane), and the signals can be wide-
band (e.g. sound, images, etc.). The obvious question is one
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of spatial sampling, with the twist that there cannot be any
spatial lowpass filtering before sampling. Thus, most sensor
network data is aliased with respect to spatial frequency.

The methodology can then be summarized as follows: First,
consider the physical process producing the quantity of inter-
est for the sensor network. This leads to a specific spatio-
temporal behavior. From there, analyze the possible sampling
and aliasing, especially in the spatial dimension. A concrete
example is outlined in the next paragraph for the case of dis-
tributed audio signals and the plenacoustic function [2]. Other
examples of interest where such an analysis can be applied in-
clude distributed camera systems, where the plenoptic func-
tion [3] plays a key role. This function can be used as an un-
derlying model for distributed image or video acquisition. In-
terestingly, a sampling theorem for spatial sampling can also
be derived in this case [4]. The distribution of temperature,
where the heat equation is central, has been considered in [5].

Example 1: The plenacoustic function. To make mat-
ters specific, we first consider the concrete case of acoustics
signals and microphone arrays. The sound field, be it in open
space or inside a room, is the solution of a second order partial
differential equation called the wave equation. The driving
term in the differential equation is given by the various sound
sources. The key is thus the kernel of the wave equation, since
the source distribution is convolved with the kernel to pro-
duce the actual acoustic field. This kernel, also known as the
Green function, has a particular form. Its Fourier transform
for a particular temporal frequency is essentially bandlimited
in spatial frequency. For a concrete example, consider a line
in a room, and the spatio-temporal room impulse response
h(x, t) with respect to a source. The Fourier transform H(ω)
is essentially supported on a triangle with

φ ≤ ω/c (1)

where c is the speed of sound, φ and ω are the spatial and
temporal frequencies, respectively . Figure 2 shows a sketch
of the Fourier transform support, as well as a simulated and a
measured spectrum. For details, we refer to [2].

Now we are in a position to address the sampling ques-
tion. First, it is worth remembering that while the temporal
frequency can be limited using lowpass filtering, there is no
such possibility over space. That is, spatial sampling cannot
be preceded by any spatial filtering. Nonetheless, thanks to
the shape of the spectrum, if the maximal temporal frequency
is ω0, then the spatial spectrum is limited to ω0/c. That is,
spatial sampling with a distance between microphones of the
order of d = c/ω0 is adequate to obtain a good represen-
tation of the acoustic field. Such a rule of thumb is well
known in array signal processing [1]. A precise analysis is
given in [2], where the decay of the spectrum and the anal-
ysis of the resulting SNR is given. It is to be noted that the
discrete spectrum over time and space is not white, and thus
residual correlation is present and can be used in distributed
compression. One such scheme is analyzed in [6], where it

Fig. 2. The Fourier transform of the plenacoustic function,
with spatial and temporal frequencies. Simulated (left) and
measured (right) plenacoustic function of a room. The trian-
gular shape of the Fourier transform is clearly visible, which
leads to a sampling theorem over space when the temporal
frequency is limited.

is shown that distributed compression using quincunx sam-
pling achieves the same D(R) as centralized compression.
This points to the close interaction of signal structure, spatio-
temporal sampling, and distributed compression.

3. BITS

The term digital has become so pervasive that it is sometimes
assumed to be a given. That is, we go from whatever analog
values to some discrete representation. This is what we will
assume in the present section. But then, in the next section,
we will show that things are not always so simple in general.

In order to discuss digital architectures, we need to de-
fine them somewhat more formally. A digital architecture is
a two-stage procedure, where each stage is designed indepen-
dently, the only link between the two stages being digital rate
constraints. Intuitively, any scheme whose performance can
be expressed in terms of a rate-distortion behavior combined
with a capacity region will be considered a “digital” architec-
ture. In more detail, this can be described as follows:
1. The source code is designed with only the capacity (re-
gion) of the channel network available. No further informa-
tion about the finer structure of the channel can be used.
2. The channel code is designed without any knowledge about
the source at all. Its goal is to communicate messages in such
a way as to avoid errors.
Clearly, any traditional digital communication strategy falls
under this category, such as a system where the source is first
passed through a vector quantizer, followed by, for example,
an entropy coder, and where the resulting bit stream is com-
municated via an error-correcting code that avoids (block) er-
rors on the noisy channel. On the other hand, a strategy where
the channel provides soft information, and the source code is
designed to work with such soft information, is not consid-
ered a digital architecture since the two stages are not truly de-
signed independently of each other. It is clear that such a strat-
egy really constitutes a joint source-channel code. In the next
two paragraphs, we discuss digital processing for paradig-
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matic digital sensor network scenarios and evaluate the result-
ing performance. Other digital approaches have been studied
for example in [7, 8, 9].

Example 2: The Camera Sensor Network. Consider the
simplified camera sensor network set-up shown in Figure 3.
There are M digital pinhole cameras which are located along
a line. We assume that camera locations are known and de-
note with α the distance between two consecutive cameras.
The visual scene which is perpendicular to this line is made
of L Lambertian planes. Plane locations are unknown, but the
minimum and maximum possible distances of the planes to
the line are known and are denoted by zmin and zmax (zmax

can be infinity and zmin > 0). Cameras communicate to a
single base station through a classical multi-access Gaussian
channel with capacity C = 1

2 log2(1 + MP
σ2 ) where σ2 is the

variance of the noise and P is the power used by each sensor.

Fig. 3. Our camera sensor network configuration.

Because of the pinhole model, each camera observes a
perspective projection of the visual scene. Since the scene is
made of Lambertian planes, these projections are piecewise
constant functions. The acquisition process at each camera
can be modeled as a linear filtering followed by sampling (we
assume noiseless measurements for the sake of simplicity).
Thus, each camera observes a blurred and sampled version
of the original piecewise constant projection and it is possi-
ble to show that, in many case, exact reconstruction of the
original projection from the samples is possible [10]. The
reconstruction of the original visual scene is then obtained
by back-projecting the reconstructed perspective projections,
and is exact when there are at least M ≥ 2L + 1 cameras
observing the visual scene without suffering occlusion. This
means that, in this particular context, there exists an exact an-
swer to the sampling problem.

Now assume that no occlusion occurs at any of the M
cameras. The perspective projections have been reconstructed
and each projection is piecewise constant with L pieces and
2L discontinuities. Each projection is therefore specified by
3L parameters. The distributed compression is then performed
as follows: each sensor quantizes the 3L parameters indepen-
dently and then a Slepian and Wolf (S-W) encoder is used to
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Fig. 4. The “Wireless” Sensor Network example.

remove the remaining redundancy. The interesting element
here is that the design of the S-W encoders depends on the
properties of the physical phenomenon and, since we are as-
suming that zmin, zmax and α are known, the practical imple-
mentation of the S-W encoders is almost straightforward [11].
It is then possible to show that , if the total bit budget is R,
the distortion-rate behaviour at high rates is given by1

D(R) ∼ c12
− 2R

2L(2L+1)+L

and does not depend on the number of sensors involved [11].
Since we can only transmit R = C bits per channel use, we
obtain that the distortion at the base station behaves like

D(M,P,L) ∼ c1

(
1

1 + MP/σ2

) 1
2L(2L+1)+L

.

Example 3: A “Wireless” Sensor Network. A second
example is illustrated in Figure 4 and has different structural
properties. A vector source (with arbitrary distribution) is
observed M -fold through a matrix A and in additive noise,
independently by M sensors. The M sensors communicate
over an additive noise MIMO channel, characterized by the
matrix B, to a base station that houses the central estima-
tion officer. The sensors may have (generally limited) co-
operation capabilities. For this sensor network, the source
coding can be analyzed in extension of the well-known re-
sults on the CEO problem [12, 13]. Recent such extensions
to non-Gaussian sources appear in [14]. For the simplest case
where there is only one source (L = 1) with Gaussian distri-
bution and all the noises in Figure 4 also follow a Gaussian
law, the rate-distortion function for the source coding prob-
lem is well known, and the total available rate is clearly up-
per bounded by the capacity of the MIMO channel charac-
terized by the matrix B, and if J is held fixed while M in-
creases, this capacity increases at best logarithmically with
M , hence as a function of the total sensor power Ptot, we find

1For scaling law relationships, we use the notation f(x) ∼ g(x) if
limx→∞ f(x)/g(x) = c for a finite non-zero constant c.

V  1159



Ddigital ∼ 1/(log(MPtot)). The general case of Figure 4 is
discussed in more detail in [15].

4. BEYOND BITS

By contrast to the digital architectures discussed in Section 3,
there are ways of “coding” that are not based on the represen-
tation of all information in terms of discrete messages (such
as bit streams). For the purpose of this exposition, we will re-
fer to any such approach as analog architecture. Specifically,
it should be noted that analog is not taken to imply linear
processing nor any other constraint of this form. Rather, ana-
log should be defined negatively as non-digital, and the point
of the paper is to show that some sensor network scenarios
strictly require non-digital architectures. Such non-digital ar-
chitectures are, in certain contexts, also referred to as joint
source-channel coding.

As we have argued in Section 3, a set of powerful tools
has been developed over the past five decades that facilitate
the design of algorithms for handling discrete information,
including source codes as well as channel codes. No simi-
larly general tools are known for the design of analog archi-
tectures. Rather, these techniques are usually designed on a
case-by-case basis, and it is often hard to analyze their per-
formance in a precise fashion. Nevertheless, there is a set of
paradigmatic exemplary cases available to date that illustrate
the need for the development of a more systematic framework
for the design of non-digital communication system architec-
tures. The simplest one is illustrated below, and more general
cases can be found in [15].

Example 3, revisited. Consider again the linear additive
sensor network model of Example 3. For the same simple
case (L = 1 and the source and all noises are Gaussian), it is
easy to show that under a fixed total power Ptot, to be shared
between all the sensors, a simple direct forwarding strategy
permits to recover the underlying source to within a mean-
squared error distortion of Danalog ≈ σ2

Sσ2
W /(Mσ2

S + σ2
W ).

In order to compare this to the digital architectures discussed
in Section 3, suppose now that a minimum tolerable distor-
tion D0 and a power budget P0 is fixed. How many sensors
Manalog and Mdigital do the analog and the digital architec-
tures, respectively, require? By comparing the digital and to
the analog results, we find that

Mdigital = eManalog . (2)

That is, the digital architecture will require exponentially more
sensors than the analog.

5. SOURCE-CHANNEL SEPARATION:
SCALING-LAW PERSPECTIVE

It is well-known that the digital communication paradigm (i.e.,
the source-channel separation theorem) only exceptionally leads

to (exactly) optimal overall network designs. In many cases,
the digital communication paradigm leads to scaling-law op-
timal designs, but, as illustrated in this paper, not in all cases.
The main goal is therefore a characterization of these cases.
Several insights can be gained from studying the examples
presented in this paper. First of all, with reference to Fig-
ure 4, if the number of degrees of freedom of the underlying
process, L, is fixed while the number of sensors increases,
separation fails. This is to say, in the regime where the sensor
density is increased in order to “zoom in” and get a higher
resolution, digital communication will be vastly suboptimal.
Conversely, if the number of degrees of freedom is increased
at the same rate as the sensors, then in a scaling sense, sep-
aration holds. In other words, if more sensors are added to
cover more area, then digital communication will only incur
a bounded penalty.

6. REFERENCES

[1] D. H. Johnson and D. E. Dugeon, Array Signal Processing: Concepts
and Techniques, Prentice Hall, New Jersey, 1993.

[2] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function and its
sampling,” IEEE Transactions on Signal Processing, February 2005.

[3] E.H. Adelson and J. Bergen, “The plenoptic function and the elements
of early vision,” in Computational Models of Visual Processing, MIT
Press, Cambridge, MA, 1991, pp. 3–20.

[4] J. Chai, X. Tong, S. Chan, and H. Shum, “Plenoptic sampling,” in Proc.
Conf. on Computer Graphics, 2000, pp. 307–318.

[5] B. Beferull-Lozano, Robert L. Konsbruck, and Martin Vetterli, “Rate-
distortion problem for physics based distributed sensing,,” in IPSN’04,
Berkeley, CA, April 2004.

[6] R.L.Konsbruck, E.Telatar, and M.Vetterli, “On the multiterminal rate-
distortion function for acoustic sensing,” in Proc. IEEE Int. Conf.
Acoust. Speech, Sig. Proc., Toulouse, France, May 2006.

[7] D. Marco, E. J. Duarte-Melo, M. Liu, and D. L. Neuhoff, “On the
many-to-one transport capacity of a dense wireless sensor network and
compressibility of its data,” in IPSN’03, Lect. Notes in Comp. Sci., vol.
2634, Springer, New York, NY, April 2003.

[8] D. Marco and D. Neuhoff, “Reliability vs. efficiency in distributed
source coding for field-gathering sensor networks,” in IPSN’04 Berke-
ley, CA, April 2004.

[9] P. Ishwar, A. Kumar, and K. Ramchandran, “Distributed sampling for
dense sensor networks: A bit-conservation principle,” in IPSN’03 Lect.
Notes in Comp. Sci., vol. 2634, Springer, New York, NY, April 2003.

[10] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite
rate of innovation,” IEEE Trans. Signal Processing, vol. 50(6), pp.
1417–1428, June 2002.

[11] N. Gehrig and P.L. Dragotti, “DIFFERENT-DIstributed and Fully Flex-
ible image EncodeRs for camEra sensor NeTworks,” in Proc. of IEEE
Int. Conf. on Image Processing(ICIP), Genova (Italy), September 2005.

[12] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem,” IEEE
Trans. Info. Theory, vol. IT–42, pp. 887–902, May 1996.

[13] Y. Oohama, “The rate-distortion function for the quadratic Gaussian
CEO problem,” IEEE Transactions on Information Theory, vol. IT–44,
no. 3, pp. 1057–1070, May 1998.

[14] K. Eswaran, “Remote source coding and AWGN CEO problems,” M.S.
thesis, University of California, Berkeley, CA, 2005.

[15] M. Gastpar and M. Vetterli, “Power, spatio-temporal bandwidth, and
distortion in large sensor networks,” IEEE Journal on Selected Areas
in Communications, vol. 23, no. 4, pp. 745–754, April 2005.

V  1160


