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Abstract. The structure of aperiodic crystals which in-
cludes incommensurate, quasi- and composite crystals is
usually described in spaces of higher dimension, the so
called superspace. The main advantage of the superspace
formalism is that an aperiodic structure in three dimensions
recovers its full periodicity in higher dimensions. The
symmetry properties of aperiodic crystals are obviously
more convenient to describe in superspace too. The origin
of the incommensurate nature of structures can often be
found in competing interatomic interactions. From molecu-
lar dynamics simulation of a simple three dimensional
model with close-packed layers and a single degree of
freedom for each particle, it is possible to find the exis-
tence conditions of commensurate and incommensurate
phases. Incommensurate phases can already be predicted
on the basis of nearest and next nearest neighbour particle
interactions only. We illustrate this principle of interactions
with two examples of structures, Na2CO3 and K3In(PO4)2.
These examples shows clearly the importance of non-oxy-
gen interactions i.e. next nearest interactions for the forma-
tion of incommensurate structures.

Introduction

The study of aperiodic crystals was initiated many decades
ago when crystallographers realised that some specific dif-
fraction patterns could not be conventionally indexed with
three integers, i.e. the three coefficients associated to the
three dimensional scattering vector. The appearance of ad-
ditional reflections, so called satellite reflections, was al-
ready noted in the forties in some alloys (Daniel and Lip-
son, 1944; Hargreaves, 1951) and later in the silicate
mineral labradorite. Korekawa (1967) presented a theory
of satellite reflections relating their presence to some spe-
cific deformation and in particular modulations of the
crystalline structure. In his work, he also presented the
basic principles to deduce the structural characteristics

from the diffraction pattern. All these studies were essen-
tially concerned with the origin of the satellite reflection
but did not address the field of symmetry which is so fun-
damental in any crystallographic study. An important
breakthrough was established when de Wolff (1974, 1977)
introduced the idea to describe modulated structures and
their symmetry in spaces of higher dimensions. The main
advantage of this method was to recover the periodicity of
the structure which is lost in the three-dimensional space.
In the meantime, the field of modulated crystals and its
generalisation, aperiodic crystals, developed up to the
point that aperiodic structures have been identified and de-
scribed in all type of materials, from minerals to metals
and from organic to inorganic crystal structures.

In this article, we shall focus on the contribution to
crystal chemistry resulting from the study of aperiodic
crystals. We shall however limit the scope of our study
to incommensurately modulated crystal structures. In par-
ticular, we shall show how the embedding and the de-
scription of modulated crystal structures in higher dimen-
sional space, i.e. the superspace can help us to explain
the origin of the departure from periodicity and thus con-
tribute to a better understanding of interatomic interac-
tions in general. In a first section, we shall explain
shortly the method of crystal embedding in superspace
and how the periodicity of aperiodic crystals in three
dimensions can be recovered in higher dimensional
space. In a second section, we shall show by molecular
dynamical simulations what kind of conditions the poten-
tial function must satisfy in order to allow the existence
of aperiodic structures. In the next two sections, we shall
present the incommensurate structures of two parent
compounds from the structural point of view, Na2CO3

and K3In(PO4)2 and show the importance of non-oxygen
atom interactions which can be inferred from the analysis
of the structures in superspace.

The description of incommensurately
modulated structures in the superspace
formalism

The main characteristic of aperiodic crystals and conse-
quently incommensurate crystals is that their diffraction
pattern consists essentially of discrete intensities but which
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cannot be indexed with three integers only. The idea of de
Wollf (1974) was to extend the number of rationally inde-
pendent vectors beyond three increasing thus the number
of integer indices to describe the full spectrum of recipro-
cal vectors associated with the diffracted intensities. Each
reciprocal vector can thus be expressed by

H ¼ h1a1* þ h2a2* þ . . .þ hiai*

where i is the minimum number of indices which are
needed to index all the diffraction peaks. This number can
vary in general between four and six and is called the
rank of the superspace. If in the present context, we shall
limit the rank to four and define the following expression

a4* � q ¼ q1a1*þ q2a2*þ q3a3*

where at least one of the qi is irrational. Following de
Wolff, we illustrate in direct space the description of aper-
iodic crystals in superspace of dimension equal to the
rank. Fig. 1 illustrates the embedding of the crystal struc-
ture in higher dimensional space.

We can observe that the higher dimensional structure
with cell parameters aSi repeat the motif (here a continu-
ous string with arbitrary shape) periodically. The intersect-
ing horizontal line R represents a three dimensional cut of
the hypercrystal. In other words, the position of each atom
is given by the intersection of the string with the horizon-
tal line R. On the figure, we can observe the position of
the atoms A, B and C in adjacent cells with dimension a1.
We observe in particular that the (interatomic) distance AB
is different from BC. This intersection is not periodic if q1

is irrational, whereas it is periodic if q1 is rational. On the
same figure, we can also see that the periodic string (the

modulation function) represents the mapping of all the dis-
placements in each individual cell from the average posi-
tion x1h i. In other words, if we can deduce from the ex-
perimental measurements the shape of the string for each
individual atom, we can completely characterize the nature
of the aperiodic structure for all atoms. If the line R char-
acterized by the parameter t ¼ 0 is shifted in the direction
aS4 with values of t 6¼ 0, the corresponding aperiodic
structure will be the same but with a shifted origin. Note
that the modulation function is periodic with period t ¼ 1.
We see here all the advantages that we can gain by ex-
ploiting the superspace formalism. For the analysis of the
structure, we need only to concentrate on the hyper unit
cell in superspace delimited by the vectors aSi.

Since a few decades, numerous examples of incommen-
surate structures have been analyzed and published in the
specialized literature. Each atom is characterized by a
modulation function depending on x4. However, for practi-
cal purpose it is preferable to express the modulation in
term of t owing to the property that the physical structure
is given by an intersection with constant t (see Fig. 1).

The interested reader may consult a complete overview
on the subject published by Yamamoto (1996). The meth-
ods of structure analysis of incommensurate and compo-
site crystals are also presented in this issue by Petřı́ček
and Dušek (2004). The large number of published exam-
ples of incommensurate structures is thus a very rich
source of information in order not only to understand the
nature and origin of the incommensurate structures but
also to get a deeper understanding of the interatomic inter-
actions occuring in crystalline structures and during phase
transitions.

Before going into the details of some examples of in-
commensurate structures, we shall attempt to estimate the
conditions under which an incommensurate structure can
exist. For this purpose, we shall use the methods of mole-
cular dynamics and find the conditions that the potential
function must satisfy. With this knowledge, we shall be in
a better position to analyze the experimental data and de-
duce the fundamental interactions leading to the incom-
mensuration of crystal structures.

Molecular dynamical simulations
of incommensurate structures

In molecular dynamics (MD), the movement of every par-
ticle in a large physical system is subject to the classical
equation of motion, the Newton equation:

mi€xxi ¼ Fi ¼ �
@V xið Þ
@xi

xi, mi and Fi are the position, mass and force of particle i.
VðxiÞ is the potential energy of the particle. The trajec-
tories of the particles are obtained by numerical integra-
tion of Newton’s equation. In general, this integration is
usually obtained from a simple central difference proce-
dure which gives reasonable accuracy. Time derivatives
are thus replaced by finite differences with arbitrary inter-
val 4t. The optimal choice of 4t is a matter of consider-
able attention and must be evaluated for each system. In
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Fig. 1. The embedding of an aperiodic crystal in superspace. aS1 and
aS4 are cell parameters in superspace, x1 and x4 are components of
the coordinates of a point in superspace, q1 is the first component of
the modulation vector q. The horizontal line R (here at at t ¼ 0) re-
presents a three dimensional cut of the superspace, i.e. the real crys-
tal.



general, 4t must be small as compared to the shortest
normal period of the system. Starting with a complete set
of positions xiðtÞ at arbitrary time t and the corresponding

velocities _xxi t �4t

2

� �
, the method evaluate the new posi-

tions and velocities at t þ4t resp. t þ4t

2
. The process is

then iterated a large number of times until it reaches an
equilibrium. The macroscopic properties of the system are
obtained from the average over the configurations thus ob-
tained. As an example, the temperature of the system with
N particles is related to the kinetic energy with the equi-
partition theorem:

P
i

mi _xx
2
i

2

� �
¼ 3

2
NkT :

Application to incommensurate systems

We present here the results of a MD simulation based on
a hexagonal model of particles with one particle per unit
cell and one degree of freedom for each particle. The
model has the shape of a rhombic prism consisting of
60� 60� 30 ¼ 108 000 particles in the a, b respectively c
directions. Each particle is only allowed to move in the z
direction and interacts with its first and second nearest
neighbours as indicated on Fig. 2. The potential energy
has the following form

V ¼ 1
2

P
j; l; n

Az2
j; l; n þ Bzj; l; nðzjþ1; l; n þ zj�1; l; n þ zj; lþ1; n

þ zj; l�1; n þ zjþ1; lþ1; n þ zj�1; l�1; nÞ
þ zj; l; nðzjþ1; l�1; n þ zj�1; lþ1; n þ zjþ2; lþ1; n

þ zj�2; l�1; n þ zjþ1; lþ2; n þ zj�1; l�2; nÞ
þ Czj; l; nðzj; l; nþ1 þ zj; l; n�1Þ þ Hz3

j; l; n þ z4
j; l; n :

This potential function is characterised by the three har-
monic parameters A, B and C and the anharmonic parameter
H. We note that the anharmonic terms are local only and
that two coefficients have been set equal to one by appropri-
ate choice of the units (Parlinski et al. 1992; Parlinski and

Chapuis, 1993). The simulations have been performed using
the canonical ensemble with constant temperature.

Phase diagrams

From the above potential function, it is possible to derive
the phase diagrams depending on the coefficients A, B, C
and H. The T�A diagrams represented on Fig. 3 have
been obtained from the hexagonal model by setting B and
C to �2:0 resp. �1:0. It has been shown elsewhere (Par-
linski and Chapuis, 1993) that the magnitude of the wave
vector k associated with a stable incommensurate modula-
tion is directly related with the coefficient B. In our exam-
ple, the value of B corresponds to the wave vector
k ¼ a*=6. The phase boundary between the normal (N)
and the lock-in phase (L) has been detected from small
changes in the average potential energy and the average
position hzj; l; ni as a function of the parameter A. The two
types of incommensurate phases (I; 1q) and (I; 3q) can be
detected from the intensity of the satellite reflections ob-
tained from the Fourrier transform of the spatial distribu-
tion of the particles. The (I; 1q) type is characterised by
one pair of satellites near the main reflections whereas the
(I; 3q) type is characterised by three pairs of satellites
close to the main reflections. It is interesting to note that
the lock-in and the incommensurate 3q phases appear only
for non-zero values of the third order potential term H.

The results of the simulation reveal the importance not
only of the nearest neighbour interactions but also of the
second nearest interactions. Coefficient B controlling the
nearest neighbours interactions in the potential function
has been set to �2. The coefficient of the next nearest
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Fig. 2. Each particle is interacting with six nearest and six next near-
est neigbours. In addition, each particle is also interacting with the
two neighbours above and below the plane.
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Fig. 3. T�A phase diagrams deduced from the MD simulation with
B ¼ �2 and C ¼ �1. N, I and L indicate the normal, incommensurate
resp. lockin phases.



neighbours has been set to 1 (third and fourth line in the
potential function terms given in brackets). Thus the exist-
ence of the incommensurate phases indicated in the dia-
gram reveal that both type of interactions (nearest and
next nearest) must be represented in the potential and
moreover with coefficients of roughly the same magni-
tude. In the next sections, we shall describe two examples
of incommensurate structures and show the role of some
specific interactions which are responsible for the incom-
mensuration.

Na2CO3 and its incommensurate phase g

g-Na2CO3 is a very interesting case study and can be con-
sidered as the archetype of an incommensurate crystal. In-
deed its structure analysis was at the origin of the concept
of superspace development applied to the description of
modulated structures. In 1964, Brouns et al. observed the
presence of satellite reflections for this compound. Ten
years later de Wolff (1974) proposed for the first time the
description of a modulated structure in space of higher
dimension and in 1976, the same author and coworkers
published the incommensurately modulated structure of
g-Na2CO3 in the superspace formalism. The interval be-
tween the first observation of satellites and the publication
of the incommensurate structure was dedicated to the theo-
retical development of the superspace concept for one di-
mensionally modulated structures (de Wolff et al. 1981).
We completed the work initiated by de Wolff by taking
advantage of modern diffraction equipments in order to
improve the resolution of the incommensurate structure
and to get some deeper insight into the nature of the in-
commensurate phase. In our refinement we used satellites
of up to 6th order which considerably improved the details
of the structure. Moreover, we succeeded to refine the
lockin phase stable below 170 K (Dus�ek et al., 2003). Ta-
ble 1 indicates the four phases of Na2CO3 which have
been clearly identified up to this date.

Let us first describe the general features of the Na2CO3

structure. Fig. 4 is a schematic representation of the struc-
ture where all the O atoms have been omitted. We shall
show later that the role of the O atoms is essentially to
insure the charge neutrality bearing little influence on the
overall aspect of the architecture. The basic structural ele-
ment is a graphite or BN type layer consisting of C and
Na3 atoms (Fig. 5). The O atoms are covalently bound to
the C atoms. In this layer, the C––Na distances are close
to 3 �A and the hexagons have nearly ideal shape. It is
remarkable that the variation of interatomic distances in
this layer is negligible between all four phases. The layers
are stacked in the third dimension leaving hexagonal chan-
nels throughout the structure. Fig. 4 shows that C and Na3

atoms alternate in the third dimension. The center of the
cavities formed by two parallel hexagons are occupied by
additional Na atoms, Na1 and Na2. At high temperature,
the C––Na1,2 are larger then 3.2 �A and tend to decrease
with decreasing temperature to reach finally the optimal
value of 3 �A. An important architectural entity must be
introduced here in order to understand the reasons leading
to the phase sequence listed in Table 1. This entity is the
mirror plane m normal to b which contains the three Na
atom types and the C atoms as can be seen from Fig. 4.
All atoms of the structure with the exception of a fraction
of oxygens are present on this plane.

It is particularly interesting to observe the structure evo-
lution of phase b by decreasing temperature until it reaches
the incommensurate phase g. From the neutron powder dif-
fraction data published by Swainson et al. (1995), we can
analyse each structure at a specific temperature and follow
the evolution of the close contact formation between C and
Na atoms. In the high temperature phase a, the structure
contains three symmetry equivalent mirror planes which
intersect along the hexagonal axis. Below the a to b transi-
tion, only one of the three mirror planes remains (mM). A
description of the content of this plane at different tempera-
tures along with the content of the other two planes mV

which are lost during the hexagonal to monoclinic transfor-
mation will be sufficient to fully characterise the evolution
of the Na2CO3 phases over the whole temperature range.
We can also safely claim that the structure evolution by
decreasing temperature is associated with the overall ten-
dency of the system to increase the number of shorter
C––Na distances on each of these planes.
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Table 1. The sequence of commensurate and incommensurate phases
of Na2CO3 and their transition temperature (K).

a b g d

754 605 170

P63=mmc C2=m C2=mða0gÞ0s P21=n

x

z

y

Fig. 4. Structure of Na2CO3 below 754 K where all the O atoms have
been omitted. Small black spheres are C atoms.

Fig. 5. Essential constituent of the Na2CO3 structure consisting of a
layer of Na3 and CO3.



The hexagonal to monoclinic transformation can be
performed along three different directions. The measure-
ments presented by Dušek et al. (2003) in their Fig. 1 re-
veal clearly the imprint of the high temperature hexagonal
phase a below the transition temperature. One observes
that the complete diffraction pattern includes the three
twin components as can be derived from symmetry con-
siderations. At the transition temperature, the increase of
shorter contacts is achieved by gliding each hexagonal
layer relative to each other in one direction. The relative
shift of each layer allows the formation of additional
shorter C––Na2 contacts. The magnitude of this gliding
depends on the temperature. From 90� at the a to b tran-
sition, this angle reaches finally 99� at the b to g transi-
tion. At each step of the structure evolution of the b
phase deduced from the experimental measurements ob-
tained by decreasing temperature, we observe the step by
step formation of short contacts on the mM plane to reach
finally the stable configuration represented on Fig. 6. All
the contact distances between atoms indicated on the fig-
ures are very close to 3 �A. It appears that this unit is pre-
served at any temperature below the b to g phase transi-
tion.

The formation of the incommensurate phase g can be
much better understood if we concentrate on the structural
units formed by the atoms which are located on or close
to the mV planes defined above. These planes can ob-
viously not be realised as perfect mirrors owing to the
stable entity of the mM plane content. The monoclinic dis-
tortion observed on Fig. 6 has contributed to the stabilisa-
tion of the shortest distances in mM plane. Equivalent dis-
tortions for the other two mV planes are consequently not
possible. However, the aperiodic character of the phase g

allows the structure some degrees of freedom to accomo-
date at least locally in the crystal space structural units
which could closely approximate ideal mV planes. Fig. 7
illustrates the structure of a local fragment of the incom-
mensurate phase g where we observe the tendency of the
atoms located on the mV planes to reach an environment
similar to the mM plane. This can only be achieved by
introducing a considerable amount of distortion in form of
a wave along the z direction. This distortion allows a large
part of the atoms of the mV planes to approach the ideal
contact distances of approximately 3 �A.

The comparison of the structural entities extracted from
the two phases b and g gives some interesting aspects of
the incommensurate phase. Fig. 7 illustrates some charac-
teristic structural fragments extracted at various tempera-
tures from the mM plane of phase b. Each fragment can be
matched with a corresponding fragment of the mV plane
of phase g. Thus, at various values of the internal t para-
meter, the incommensurate phase reproduces the same
structural characteristics observed in phase b at various
temperatures. This means that the incommensurate struc-
ture reproduces locally in different parts of the crystal
most of the structural configurations of phase b which ap-
pear at different temperatures. Thus the formation of the
incommensurate structure can be interpreted as an attempt
to reproduce at lower temperature, at least locally on the
mV planes, the environment found on the mM planes. Ow-
ing to the monoclinic deformation, this condition can only
be realised in various portions of the crystal which are at
first independent (i.e. incommensurate) of the lattice peri-
odicity. The lockin phase d stable below 170 K is com-
mensurate with a structure very similar to phase g. The
unit cell is a supercell corresponding to the commensurate

modulation vector q ¼ 1
6 a1*þ 1

3 a3*. Its structure is charac-
terised by the close Na––C and Na––Na contacts, which
are ordered in 3D space.

In discussing the sequence of phase transitions of
Na2CO3, we have intentionally concentrated on the inter-
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Na1
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Fig. 6. Structure of atoms located on the mM plane at the b to g-
phase transition. This entity has reached it own stability and remains
unchanged by a further decrease of temperature. O atoms have been
omitted. Distances � 3.1 �A are indicated.

Na1

Na2

β − 684 K

β − 746 K

γ − 295 Kβ − 605 K

β − 684 K

z

β − 746 K

β − 605 K

Fig. 7. Comparison of structure fragments extracted from the mM

plane of phase b at various temperatures with a structure fragment
located on the mV plane of phase g at 295 K. The O atoms have
been omitted.



actions between non-oxygen atoms. This model is consist-
ent over the complete temperature range from phase a to
d and does not hint for a fundamental role of the O atoms
other than insuring the electroneutrality. It is however in-
teresting to note that the CO3 unit is not completely rigid.
Especially in the phase b, we observe not only an increase
of the C––O distances by decreasing temperature, but also
a different behaviour depending on the nature of the
planes, mV or mM on which the C atom is located.

The incommensurate structure K3In(PO4)2
and related compounds

The incommensurate structure of K3In(PO4)2 (Arakcheeva
et al., 2003) is closely related to the structure of Na2CO3

presented in the previous section. The close relationship
can best be seen first by omitting the O atoms. Fig. 8 in-
dicates that the structure can be again described in terms
of graphite like layers consisting of In, K and P atoms
stacked in the third dimension. The hexagonal channels
are occupied by additional K atoms. Compared to
Na2CO3, this arrangement is less regular and the layers
are corrugated. Each P atom is coordinated by four O
atoms forming a tetrahedron.

By focussing only on the P atoms, their partial struc-
ture consist of a distorted hexagonal close packing. In this
packing, the octahedral interstices are occupied by K
atoms whereas the bipyramidal interstices are orderly oc-
cupied by In and K atoms. The K atoms located in the
bipyramids are shifted towards one of the constituting tet-
rahedra. The possible displacement of this K atoms in one
of the two tetrahedra lies at the origin of the incommensu-
rate character of the structure represented in Fig. 9.

The geometry of the P tetrahedra is most stable along
the internal coordinate t. This indicates that the P––O
bonds are the strongest ones and do not vary significantly
with different local environments. The variability of the
InO6-octahedra is higher than for the InP5-bipyramids.
The surrounding of K with O atoms is extremely variable
in distances and CNs, whereas the variety of K––P dis-
tances in the KP4 tetrahedra is essentially smaller as a
function of t. The modulation relates to the ordering of the
displacement of K cation within the KP5 bipyramids. The

driving forces for the modulation of the other cations re-
lates to the In––P and K––P interactions found in the InP5-
bipyramid and KP6-octahedra. The modulation of O atoms
of the rigid PO4 units follows strictly the cations in order
to stabilize the first coordination sphere of the In cation,
the InO6 octahedron.

The result of the modulated structure refinement al-
lows us to draw some conclusions about the existence
and stability of chemical bonds. The analysis of the
InP5-bipyramid geometry and the InO6-octahedron geo-
metry indicates that the magnitudes of both interatomic
distance and angle variations as functions of t are smal-
ler for the second coordination sphere (the InP5 bipyra-
mid) then for the first (the InO6 octahedron). Conse-
quently, in this incommensurate structure, the In––P
interactions are more stable than the In––O interactions.
The shortest and practically constant In––P distance
(2.84(5) �A) is equal to the covalent In––P bond observed
in the InP4 tetrahedra of K3InP2 (Ohse et al., 1993) and
Na3InP2 (Blase et al., 1991). This is a clear indication
that the In––P interactions observed in these alloys are
partially conserved in the oxidized form K3In(PO4)2.
One consequence of the short In––P distance is that a
PO4 tetrahedron and an InO6 octahedron cannot share a
single O atom but only O––O edge.

Analogous arguments support the presence of K––P
interactions in K3In(PO4)2. In K3InP2, the shortest K––P
distances lies between 3.25 and 3.28 �A. These values
compares with the shortest K––P distances observed in
K3In(PO4)2. Here again, the solution of the incommensu-
rate structure reveal that the second coordination sphere
is much more stable in function of t. The displacement
of the K atom from the centre of the bipyramid towards
one of the tetrahedra can only be explained in terms of
the K––P interactions. It can thus be safely assumed that
both types of interactions In––K and K––P are the driv-
ing forces for the modulation of the structure. This de-
scription can be generalised to a larger group of com-
pounds with the general formula A4�nRn(XO4)2

(Arakcheeva et al., 2003). This include in particular Ni2In
which is usually described as a hexagonal close packing
of In atoms with Ni occupying the octahedral and bipyr-
amidal sites.
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Fig. 8. View of the average structure of K3In(PO4)2 without O atoms.
We can observe the graphite like layers with the channel K atoms.
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Fig. 9. Portion of the incommensurate structure of K3In(PO4)2 with-
out O atoms. The dark gray In bipyramids and the light grey K tetra-
hedra are coordinated by P atoms.



Conclusion

The superspace formalism which is applied for the de-
scription of incommensurate structures has many interest-
ing characteristics which can be exploited in order to ana-
lyse not only non-periodic but also periodic structures.
From Fig. 1 we have learned that for a specific atom the
complete information on all possible displacements from a
basic position in the entire crystal space is represented by
a periodic curve (string, crenel, sawtooth functions, etc.)
which depends on t. From the corresponding curves of
each atom, it is straightforward to extract any crystal che-
mical characteristic of interest as a function of t. In parti-
cular, we can extract the interatomic interactions by obser-
ving the relative displacements of e.g. groups of atoms as
a function of t, i.e. in different locations of the crystal
space. It is specifically this characteristic which makes the
superspace formalism very attractive. As this formalism
can also be applied to commensurately modulated struc-
tures it is very useful for the study of phase transitions
including the comparison of commensurate or incommen-
surate structures associated with the transition. We have
extensively used this possibility for the comparative study
of the Na2CO3 phases presented above.

In order to get some insights into the formation of in-
commensurate crystal structures, we have applied the
methods of molecular dynamics to simulate the conditions
for their stability. Based on a hexagonal array of particules
where each particle is subject to an unique displacement
along the hexagonal axis, we have succeeded to create
various commensurate and incommensurate structures and
established the conditions for their existence and transi-
tions. These simulations reveal the importance of atomic
interactions not only of the nearest neighbours but also of
the next nearest neighbours for the formation of incom-
mensurate structures. In addition, the magnitude of the in-
teractions between the next nearest neighbours is of the
same magnitude as between the nearest neighbours. We
have used this observation to study the origins of the in-
commensurabilities in two parent compounds Na2CO3 and
K3In(PO4)2. In both compounds, the formation of the in-
commensurate structures can be linked to interactions be-
tween non-O atoms, i.e. between next nearest neighbours.
In Na2CO3, the determining interactions not only for the
formation of the incommensurate phase g but also for the
formation of the other phases are associated with Na-Na
and Na––C interactions. In K3In(PO4)2, the formation of
the incommensurate structure is related to the ordering of
K atoms between two face sharing P-tetrahedra essentially
mediated by K––P interactions.

This study based on two example of incommensurate
structures and on MD simulations can be extended to
many other compounds. We can only stress here the role
of the superspace formalism to get some deeper insights
into the atomic interactions occurring in crystals.
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