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Abstract. Refactoring is a powerful technique to improve the quality of
software models including implementation code. The software developer
applies successively so-called refactoring rules on the current software
model and transforms it into a new model. Ideally, the application of
a refactoring rule preserves the semantics of the model on which it is
applied. In this paper, we present a simple criterion and a proof tech-
nique for the semantic preservation of refactoring rules that are defined
for UML class diagrams and OCL constraints. Our approach is based
on a novel formalization of the OCL semantics in form of graph trans-
formation rules. We illustrate our approach using the refactoring rule
MoveAttribute.
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1 Introduction

Modern software processes advocate the frequent application of so called refac-
toring rules in order to improve the quality of software under development. A
refactoring step is typically a small change made a schematic way. So far, many
approaches and tool are tailored for refactoring of programming code. Only re-
cently, refactoring rules became also applicable on more abstract software models
such as UML class diagrams. The literature (e.g. [1, 2]), however, ignores so far
the fact that UML class diagrams usually contain additional OCL annotations
in form of invariants, pre and post conditions and that these OCL annotations
are often affected by a refactoring of the underlying class diagram.

There are two important criteria each refactoring rule should meet. Firstly,
a rule should be syntactic preserving, i.e. whenever the rule is applicable on a
source model then the target model obtained by the application of the rule should
be syntactically correct. Secondly, a rule should be semantic preserving, i.e. the
semantics of source and target model should coincide. Proving the semantic
preservation is often seen to be difficult (cf. [3]), also because for many modeling
languages lack a formal semantics and criteria for the semantical equivalence of
two models.



In this paper we define a general criterion of semantic preservation for refac-
toring rules of UML class diagrams with OCL annotations (called UML/OCL
models in the remainder of this paper). In addition, we describe a technique
for proving the semantic preservation according to our criterion. Our proofs are
comparably easy to understand since the refer only to definitions given in a
graphical way that are easy to grasp by humans.

In Sect. 2 we give a brief introduction to graph transformation rules. Sec-
tion 3 introduces UML/OCL refactoring rules, our criterion for their semantic
preservation, and our approach to prove it. Section 4 concludes paper and gives
an outlook for future work.

1.1 Related Work

In his seminal work [4], Opdyke gives a catalog of refactoring rules for C++
programs. Opdykes defines semantic preservation (also called behavioral preser-
vation when refactoring rules are tailored for implementation code) as ”...if the
program is called twice (before and after a refactoring) with the same set of in-
puts, the resulting set of output values will be the same”. In practice, it turned
out that this simple criterion is hard to prove. Thus, more fine grained criteria
such as access preservation, update preservation, and call preservation emerged
(a good overview is given by Mens et al. in [5]).

Unfortunately, the criteria for semantic preservation of refactoring rules for
implementation code are not applicable for UML/OCL refactoring rules be-
cause the ’domain of refactorings’ are different. When refactoring implemen-
tation code, one is interested to keep the (observable) behavior of the program
implemented by this code (cmp. Opdyke above). When refactoring UML class
diagrams, Opdyke’s criterion is not applicable. What should be kept unchanged
are the possibilities to instantiate the class diagram, so here ’structural preser-
vation’ is more important. The basic idea of our approach goes back on works
on equivalent data structure representations by Hoare, e.g. [6]

2 Graph Transformation Rules

Graph transformation rules are a popular formalism to specify refactoring rules
because of their expressive power and their graphical syntax. The source and
target model of a refactoring step are seen as a typed graph, more precisely, as
an instance of the modeling language’s metamodel. We assume the reader to
be familiar with the technique of metamodeling (a good introduction is [7]) and
illustrate this technique here merely with a toy example of a FileFolder-language.

A graph transformation rule consists of two patterns: left hand side (LHS)
and right hand side (RHS). When applying a rule on a given source model, a
LHS-matching region in the source model is first searched and then substituted
by RHS under the same matching. A matching is a binding to concrete values for
all variables occurring in the pattern. Patterns are specified in a generalized form
of object diagrams where variables are used to label objects and to represent



values of attributes. Patterns might contain also further syntactic structures,
such as negative application conditions or multiobjects, but these extensions
depend on the concrete graph transformation system being used. In this paper,
we rely on the OMG standard QVT whose detailed syntax and semantics is given
in [8]. QVT allows to restrict the values for pattern variables by a when-clause.
When applying a rule for which more than one LHS-matching regions in the
source model exist, one of them is non-deterministically chosen and rewritten by
RHS. The application of the rule is repeated until the current model does not
contain any LHS-matching region.

We illustrate the graph transformation approach on instances of the class
diagram shown in Fig. 1(a) (that serves as a metamodel in this example). In-
stances of this metamodel form tree-like structures of folders and files. Each file
or folder has an attribute readOnly of type Boolean.

Folder File

Item

readOnly:Boolean

+parent

item
*

0..1

(a) FolderFile metamodel

ChangeAccess()

{when}

f:Folder

readOnly=X

fi:File
readOnly=Y

X<>Y

+parent +item

f:Folder

readOnly=X

fi:File
readOnly=Y

+parent +item

(b) ChangeAccess transformation rule

Fig. 1. Metamodel and transformation rule

Imagine, we want to unify for each file the value of readOnly with the
readOnly value of its parent folder (if such a folder exists). Such a transfor-
mation is elegantly formalized by the graph transformation rule ChangeAccess
shown in Fig. 1(b).

:File

readOnly=false
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readOnly=false

:Folder

readOnly=false

:File

readOnly=true

:File
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+parent +parent
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+item+item
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:Folder

readOnly=false

:File

readOnly=false

+parent
+item+item
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Fig. 2. Sequence of transformations

The LHS of ChangeAccess matches in a given source model with all folder-file
pairs that are connected by a parent-item link and whose readOnly values differ
(see when-clause). Due to the RHS, the LHS-matching structure is rewritten by
the same folder-file pair but the value for readOnly in the file has changed. Note



that ChangeAccess is applied iteratively as long as it can find LHS-matching
structures (the when-clause ensures in this example the termination of this pro-
cess). Since the rule ChangeAccess is confluent (as well as the rules presented
later) the result of the transformation does not depend on the ordering with
which the LHS-matching regions where chosen. Figure 2 shows an application of
ChangeAccess on a concrete source model.

3 Semantic Preserving Refactoring Rules for UML/OCL

The refactoring of software artifacts more abstract than implementation code
became only recently a topic in research, but many refactoring rules for (object-
oriented) implementation languages can be adapted to UML class diagrams and
OCL constraints [9]. Refactoring rules for UML/OCL models refer to the meta-
model defining UML class diagrams and OCL expressions (the relevant fragments
are shown in App. A). For the sake of readability, the metaclasses from the OCL
metamodel are rendered with gray rectangles.

In this paper, we investigate the refactoring rule MoveAttribute that moves
the attribute a from its current class to class dest (dest and a are passed as
parameters when MoveAttribute is applied). There are two application condi-
tions. Firstly, the class owning attribute a in the source model and destination
class dest must be connected by an association with multiplicity 1-1. Secondly,
the name of the moved attribute must not already be used for another attribute
in dest or in one of its parent or child classes.

Figure 3 shows from top to bottom the application of rule MoveAttribute on
a concrete UML/OCL model, the attribute named producer is moved from class
Product to ProductDescription. Please note that the attached OCL constraint
has to be changed as well, otherwise it would become syntactically incorrect.

Product
id : Integer
price : Real
producer : String

Product
id : Integer
price : Real

ProductDescription
info : String

pd
11

ProductDescription
info: String
producer : String

pd
11

context Product inv:
   self.producer='Comp'
   implies self.price > 5000

context Product inv:
   self.pd.producer='Comp'
   implies self.price > 5000

Fig. 3. Application of MoveAttribute on an example

In the rest of this section we present a graph-transformation based formal-
ization of the refactoring rule MoveAttribute and, as the new contribution of
this paper, an argumentation why this refactoring preserves the semantics when
applied on a concrete UML/OCL model. Our argumentation includes an intu-



itive criterion for semantic preserving refactoring rules. Moreover, we sketch the
proof that this criterion is met for our formalization of MoveAttribute.

3.1 Refactoring Rules for UML/OCL Models

MoveAttributeUML(dest:Class, a:Attribute)

a:Attribute

name=attrName

+owner
+feature

{when}
dest->union(dest.allParents)->union(dest.allChildren)->forAll(p|p.feature->
          select(a|a.oclIsTypeOf(Attribute)).name->excludes(attrName))

dest:Classinit:Class

as:Association

+participant
+association

+participant
+association

ae1:AssociationEnd

multiplicity=1

+connection+connection
ae2:AssociationEnd

multiplicity=1

a:Attribute

name=attrName

+owner
+feature

dest:Classinit:Class

as:Association

+participant
+association

+participant
+association

ae1:AssociationEnd

multiplicity=1

+connection+connection
ae2:AssociationEnd

multiplicity=1

MoveAttributeUML+OCL extends MoveAttributeUML(dest:Class, a:Attribute)

ac:AttributeCallExp

oe:OclExpression

a:Attribute
+referredAttribute

+source
+appliedProperty

ac:AttributeCallExp

aec:AssociationEndCallExp

oe:OclExpression
+source

+referredAssociationEnd

+appliedProperty

+appliedProperty
+source

a:Attribute+referredAttribute

dest:Class

+type
+type

{when}

subInit:Class
subInit:Class

subInit.allParents->including(subInit)->includes(init)

+type
ae2:AssociationEnd

Fig. 4. Influence of MoveAttribute on class diagrams and OCL constraints

In [9], we have already formalized a number of frequently used refactoring
rules for UML class diagrams and analyzed their influence on OCL constraints
attached to the refactored class diagram. Figure 4 shows the formalization of rule
MoveAttribute as it is given in [9]. The formalization is split into two graph
transformation rules where the second one, which describes changes on OCL,
extends the first rule, which formalizes the changes of the class diagram. QVT’s
extension mechanism allows the second rule to refer to elements from the first
rule, e.g. a:Attribute. Semantically, the second rule is applied as many times as
possible in parallel to each single application of the first rule. For our example,
this means that whenever attribute a is moved from class init to class dest each
attribute call expression of form oe.a1 is rewritten by oe.ae2.a where ae2 is the
association end on dest of the 1-1 association connecting init with dest. The
when-clause imposes for the type of oe the restriction to be a subclass of init.
This condition ensures termination of the rule application.
1 Here, for the informal argumentation, we render the attribute call expression men-

tioned in MoveAttributeUML+OCL with OCL’s concrete syntax.



3.2 A Correctness Criterion for Semantic Preserving Refactoring
Rules

In order to be refactoring rule, a graph transformation rule as the one defined in
Fig. 4 should preserve both the syntax and semantics when applied on any pos-
sible source model. Syntactic preservation means that the application of the rule
terminates and the target model is syntactically correct, i.e. the target model is
an instance of the UML/OCL metamodel and obeys its well-formedness rules.
For rule MoveAttribute, termination is ensured by the when-clauses. Further-
more, the target model indeed conforms to the UML/OCL metamodel (the for-
mal proof requires intimate knowledge of complete UML/OCL metamodel and is
skipped here). Semantic preservation intuitively means, that the source and the
target model express ’the same’. In case of refactoring of implementation code,
’the same’ usually means that the observable behavior of original and refactored
program coincide, but the literature lacks so far a commonly agreed criterion on
what ’the same’ means in the context of UML/OCL refactoring rules.

We propose as a criterion for semantic preservation of UML/OCL transfor-
mation rules that the states and state transitions specified by source and target
model are ’the same’. A state is an object diagram that conforms to the model
(all annotated OCL invariants are satisfied). State transitions are used as the
semantic domain for operation specifications and consist of pre- and post-states.

MoveAttributeUML+OBJ extends MoveAttributeUML(dest:Class, a:Attribute)

a:Attribute

al:AttributeLink

dv:DataValue

+slot

+attribute
ae1:AssociationEnd

le1:LinkEnd

as:Associationl:Link

init:Class

initO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
+classifier+associationEnd

+associationEnd

+association

+classifier
+instance
+linkEnd

+connection

+connection

+linkEnd
+instance

a:Attribute

al:AttributeLink

dv:DataValue

+slot +attribute

ae1:AssociationEnd

le1:LinkEnd

as:Associationl:Link

init:Class

initO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
+classifier+associationEnd

+associationEnd

+association

+classifier
+instance
+linkEnd

+connection

+connection

+linkEnd
+instance

+value
+value

Fig. 5. Influence of MoveAttribute on object diagrams

Since the source and target model often have structural differences (for
MoveAttribute, both models have the same classes and associations but the
owning class of the moved attribute has changed) the states of source and target
model have structural differences as well. Thus, having ’the same’ states can-
not mean that source and target model have an identical statespace. Instead,
a mapping between the statespaces is needed and this mapping should become
part of the graph transformation rule. In case of MoveAttribute, this mapping
is actually an isomorphism and defined in Fig. 5 by an new extension of the rule
given in Fig. 4.



Note that each object diagram of the source model (no matter if the OCL in-
variants are satisfied) is mapped now to exactly one object diagram of the target
model. The correctness criterion means that object diagrams of the source model
satisfying the annotated OCL constraints are mapped to exactly those object di-
agrams of the target model which satisfy the refactored OCL constraints. Thus,
in order to verify semantic preservation of a refactoring rule, it would be sufficient
to prove the following: Let cdo, cdr, constro, constrr, odo, odr be the source and
target version of a class diagram, OCL constraint, and object diagram. Then2,

evalcdo(constro, odo) = evalcdr (constrr, odr)

3.3 MoveAttribute is Semantic Preserving

For an argumentation on the semantic preservation it is necessary to have a
formal definition on how OCL constraints are evaluated, i.e. a formal defini-
tion of eval. The function eval is defined with mathematical rigor in the OCL
language specification [10]. The mathematical definition is, however, clumsy to
read and would not be match the graphical style we used so far suitable for the
formalization of the refactoring rules. Thus, we have formalized that part of eval
needed for the argumentation of MoveAttribute’s semantical correctness in a
graph-transformation way. As we will see later, we only need the definition of
eval for attribute call expressions and navigation expressions over an association
with multiplicity 1.

The formalization of eval given in Fig. 6 refers to a slightly extended version
of the OCL metamodel where the metaclass OclExpression has a new associa-
tion to metaclass Instance (with multiplicity 0..1 and role eval)3. A link of this
association to an object i:Instance indicates for an instance of OclExpression
that the expression is evaluated to i. If an expression has no such link, it means
that this expression has not been evaluated yet.

The first rule EvalAttributeCallExp defines the evaluation of expressions
of form oe.a (where a denotes an attribute) in any object diagram that conforms
to the underlying class diagram. The rule can informally be read as follows:
Within the syntax tree of the OCL constraint to be evaluated, we search suc-
cessively for expressions of form oe.a which are not evaluated yet (when-clause)
but whose subexpression oe is already evaluated (to an object named o). Due
to the type rules of OCL we know that object o must have an attribute link (in
former version of UML called slot) for attribute a. The lower part of the LHS
shows the relevant part of the object diagram in which the OCL constraint is
evaluated. The value of attribute link on object o for attribute a is represented
by variable dv. The RHS of rule EvalAttributeCallExp differs from LHS just

2 We cover only the case here where constro, constrr are invariants or pre-conditions.
The evaluation of post-conditions would require two states. However, if states are
mapped correctly, then pairs of states are mapped correctly as well.

3 This is actually a simplified version of OCL evaluation since we ignore here the
binding of free variables. For the two evaluation rules, however, variable bindings
can be ignored since they are not affected.



EvalAttributeCallExp()

a:Attribute

al:AttributeLink dv:DataValue+slot

+attribute

o:Object
+value

oe:OclExpression a:Attribute
+source

+appliedProperty
+referredAttribute

a:Attribute

al:AttributeLink dv:DataValue
+slot

+attribute

o:Object
+value

oe:OclExpression a:Attribute
+source

+appliedProperty
+referredAttribute

{and}
{and}

o:Object
o:Object

dv:DataValue

+eval

+eval

+eval

ac:AttributeCallExp ac:AttributeCallExp

{when}
ac.eval->isEmpty()

EvalAssociationEndCallExp()

ae2:AssociationEnd

le2:LinkEnd
l:Link

o2:Object

ae1:AssociationEnd

le1:LinkEnd

+associationEnd +associationEnd

+instance

+linkEnd

+connection

+linkEnd

+instance

+source

+referredAssociationEnd

+appliedProperty

+eval
o1:Object ae2:AssociationEnd

o1:Object

aec:AssociationEndCallExp

oe:OclExpression

{and}
+connection

ae2:AssociationEnd

le2:LinkEnd

l:Link

o2:Object

ae1:AssociationEnd

le1:LinkEnd

+associationEnd +associationEnd

+instance

+linkEnd

+connection

+linkEnd

+instance

+source

+referredAssociationEnd

+appliedProperty

+eval
o1:Object ae2:AssociationEnd

o1:Object

aec:AssociationEndCallExp

oe:OclExpression

{and}

+evalo2:Object

+connection

{when}aec.eval->isEmpty()

Fig. 6. Evaluation of OCL expressions (attribute call, association navigation)

by an added link from object ac (what represents expression oe.a) to dv. In-
formally speaking, the expression oe.a is now evaluated to dv. The second rule
EvalAssociationEndCallExp is defined analogously. Based on this formaliza-
tion we can state the following

Theorem 1 (Semantic Preservation of MoveAttribute). Let cdo, constro,
odo be a concrete class diagram, a concrete OCL invariant or pre-condition, and
a concrete object diagram, respectively, and cdr, constrr, odr their version after
the refactoring of moving attribute a from class init to dest has been applied.
Then,

eval(constro, odo) = eval(constrr, odr)

Proof (sketch): By construction, constro and constrr differ only at places
where constro contains an expression oe.a. The refactored constraint constrr has
at the same place the expression oe.ae2.a. By structural induction, we show that
these both expressions are evaluated to the same value. By induction hypothesis,
we can assume that oe is evaluated for both expressions to the same value initO.
In object diagram odo, object initO must have an attribute link for a whose
value is represented by dv. According to EvalAttributeCallExp, oe.a is evalu-
ated in odo to dv. Furthermore, in both odo and odr the object initO is linked
to an object destO of class dest. According to EvalAssociationEndCallExp,
the expression oe.ae2 is evaluated to destO in odr. Furthermore, we know by
construction of odr that destO has in this object diagram an attribute slot for
a with value dv. Hence, oe.ae2.a is evaluated to dv.



4 Conclusion and Future Work

While the MDA initiative of the OMG has triggered recently much research on
model transformations, there is still a lack of proof techniques to show that a
transformation rule is semantic preserving. In the MDA context, this question
has been neglected also because many modeling languages do not have an acces-
sible formal semantics yet what seems to make it impossible to define criteria for
semantic preservation. As our example shows, however, to prove the semantic
preservation of rules it is sometimes only necessary to have a partial formaliza-
tion of the involved modeling languages, in case of MoveAttribute it is enough
to agree on the semantics of attribute call and association end expressions.

In this paper, we define and motivate a criterion for the semantic preservation
of UML/OCL refactoring rules. Our criterion requires to extend a refactoring rule
by a mapping between the semantic domains (states) of source and target model.
We argue that our running example MoveAttribute preserves the semantics
according to our criterion. Our proof refers to the three graphical definitions of
the refactoring rule (class diagram, OCL, object diagram) as well as to a novel,
graphical formalization of the relevant parts of OCL’s semantics.

As future work, we plan to apply our approach also on pure OCL refactoring
rules (i.e. rules where the structure of complicated OCL expressions is simplified
but the underlying class diagram remains the same, see [11]).

References

1. Dave Astels. Refactoring with UML. In International Conference eXtreme Pro-
gramming and Flexible Processes in Software Engineering, pages 67–70, 2002.
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A Metamodels

This appendix contains the relevant parts of the metamodels for UML1.5 (in-
cluding object diagrams) and OCL2.0.

ModelElement

name : Name

Feature Classifier

StructuralFeature

Attribute

0..n
0..1

+owner

{ordered}
+feature

1 +type

n
+typedFeature

ModelElement

Classifier

AssociationEnd

multiplicity : Multiplicity

Association

Class

1
n+association

+participant
1

+connection
{ordered}
2..*

+association

Fig. 7. UML - Core Backbone and Relationships

ModelElement
(from Core)

AttributeLink Instance

Object

Attribute
(from Core)

Classifier
(from Core)

DataValue

+value

1

* 1

0..*
+slot

*1
+attribute

*

1..*

+classifier

ModelElement
(from Core)

Link LinkEnd

Association
(from Core)

AssociationEnd
(from Core)

Instance
1 2..*

{ordered}
+connection

*
+linkEnd

1
*

+associationEnd

2..*1

{ordered}
+connection

*1 +association

1
+instance

Fig. 8. UML - CommonBehavior Instances and Links

Attribute
(from Core)

OclExpression

AttributeCallExp

ModelPropertyCallExp

NavigationCallExp

AssociationEndCallExp
AssociationEnd

(from Core)

0..1
+appliedProperty

0..n 1
+referredAttribute

1

1 0..n

0..1

+navigationSource

+source

+referredAssociationEnd

Classifier
(from Core)

+typeInstance
(from CommonBehavior)

+eval
0..1

Fig. 9. OCL - ModelPropertyCallExp


