
BOOSTERS:
A Derivative-Free Algorithm Based on Radial

Basis Functions

R. OEUVRAY ∗

Rodrigue.Oeuvay@gmail.com
M. BIERLAIRE †

Michel.Bierlaire@epfl.ch

December 21, 2005

Abstract
Derivative-free optimization involves the methods used to minimize an expensive ob-
jective function when its derivatives are not available. We present here a trust-region al-
gorithm based on Radial Basis Functions (RBFs). The main originality of our approach
is the use of RBFs to build the trust-region models and our management of the interpo-
lation points based on Newton fundamental polynomials. Moreover the complexity of
our method is very attractive. We have tested the algorithm against the best state-of-the-
art methods (UOBYQA, NEWUOA, DFO). The tests on the problems from the CUTEr
collection show that BOOSTERS is performing very well on medium-size problems.
Moreover, it is able to solve problems of dimension 200, which is considered very large
in derivative-free optimization.

Key Words: Derivative-Free Optimization, Trust-Region Methods, Radial Basis
Functions, CUTEr

1 Introduction

We consider the following problem:

min
x∈Rn

f(x),

where f is a nonlinear smooth function that is expensive to compute in the sense that it
requires significant computational time to evaluate the function. We also assume that
the derivatives are not available. This is the case when f(x) is the result of some mea-
surements or of complex computer simulation, for which the source code is not avail-
able. We can classify derivative-free methods in two categories: direct search methods

∗This work was supported by the Swiss National Science Foundation grant 205320-103657
†Operations Research Group ROSO, Ecole Polytechnique Fédérale de Lausanne, Switzerland

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147910452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and model-based methods. Direct search methods explore the domain using system-
atic rules. Following the authors of [1], we classify them into three categories: pattern
search methods (see [2]), simplex search methods (see for example [3]) and methods
with adaptive sets of search directions (see [4] and [5]). These methods are not conve-
nient when the objective function is expensive because they require too many function
evaluations. The other alternative is the model-based approach. DFO (Derivative-Free
Optimization, see [6]) is a trust-region method building quadratic models that interpo-
late the objective function. UOBYQA (Unconstrained Optimization BY Quadratic Ap-
proximation, see [7]) is a derivative-free algorithm that constructs interpolant quadratic
models of the objective function as DFO. It is based on the Lagrange functions and the
parameters of the model are updated when an interpolation point is moved. Powell
[8] has also proposed a method called NEWUOA (NEW Unconstrained Optimization
Algorithm) that updates the quadratic model by minimizing the Frobenius norm of the
change of the hessian of the model. He considered in particular the case where the
quadratic models interpolate the function at m = 2n + 1 points. A consequence of
this choice is that the complexity of the algorithm is very attractive. An other type
of algorithm is a mix between direct-search methods and model-based methods. SMF
(Surrogate Management Framework, see [9]) is an algorithm based on a pattern search
and gives a general framework for generating and managing a sequence of approxima-
tions as surrogates for optimization. But when the objective function is expensive, the
number of function evaluations is often too important.
We have decided to develop a new algorithm called BOOSTERS (Bierlaire & Oeu-
vray Optimization STrategy Exploiting Radial Surrogates). The choice of developing
a new algorithm is mainly motivated by the fact that little attention has been paid to
non-polynomial models in the context of trust-region methods. To the best knowledge
of the authors, this algorithm is the first trust-region method based on RBFs developed
in a general context and not for a specific application. Moreover we have shown in
[10] that it converges to a first-order critical point. If the function f is globally convex,
it is a global minimum. If the function is not convex, which is common in practice,
the algorithm seeks a local minimum. This article is organized as follows. We first
introduce the concept of trust-region methods in Section 2. Then we define the concept
of radial functions in Section 3 and explain why they are interesting in the context of
optimization. Section 4 describes our new algorithm. We present in particular in this
section a method based on Newton fundamental polynomials of degree 1 to manage
the interpolation points set. This original procedure permits to control and improve the
geometry of the interpolation points if necessary. We finally present in Section 5 the
tests we have performed on standard optimization problems from CUTEr (see [11]).

2 Trust-region methods

In continuous optimization, there are roughly two techniques to force the global con-
vergence of algorithms: linesearch and trust-region methods. Linesearch algorithms
typically consider the iterate computed by the Newton or quasi-Newton method, and
check that the objective function has sufficiently decreased. If not, a shorter step in the
same direction is considered and tested again, until specific conditions (for example

2

Armijo’s conditions) are verified. Trust-region methods work as follow. At each iter-
ation k, they build a quadratic model mk around the current iterate xk. This model is
assumed to approximate the objective function sufficiently well in a region called trust
region. Taylor’s theorem guarantees that such a region exists, but does not provide its
size for a given level of adequacy. Therefore, the radius Δk of the trust region must be
updated at each iteration. A minimizer of the quadratic model within the trust region
is considered as a candidate for the next iterate. If the function reduction forecasted
by the model matches the actual reduction of the objective function sufficiently well,
the candidate is accepted and the trust-region radius is possibly increased. If not, the
candidate is rejected and the trust-region radius is decreased. The process starts again
until a certain convergence criterion is satisfied. More formally, the general framework
of the trust-region methods is given below and is taken from [12]. B(xk, Δk) denotes
a ball centered at xk and of radius Δk.

Step 0: Initialization. An initial point x0 and an initial trust-region radius Δ0

are given. The constants η1, η2, γ1, and γ2 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1.

Compute f(x0) and set k = 0.

Step 1: Model definition. Define a model mk in B(xk, Δk).

Step 2: Step calculation. Compute a step sk that “sufficiently reduces the
model” mk and such that xk + sk ∈ B(xk, Δk).

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)
.

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Trust-region radius update. Set

Δk+1 ∈
⎧⎨⎩

[Δk, +∞), if ρk ≥ η2,
[γ2Δk, Δk], if ρk ∈ [η1, η2) ,
[γ1Δk, γ2Δk], if ρk < η1.

Increment k by 1 and go to Step 1.

The trust-region model is generally of the form

mk(x) = f(xk) + ∇f(xk)t(x − xk) +
1
2
(x − xk)Hk(x − xk),

where Hk is a symmetric approximation of the Hessian of f . When the derivatives
are not available, one builds an interpolation model. The main difference between
interpolation models and gradient-based models is that the former are considered as a
suitable approximation of the objective function only under some conditions. These

3

conditions depend mainly of the geometry of the points. If they are satisfied, we say
that the model is valid in the trust region. If not, a new point is generated to improve
the accuracy of the model. The class of algorithms based on interpolation models are
called conditional trust-region method. The term “conditional” just means that the
model is a convenient approximation of f only if some conditions are satisfied.

The general framework of trust-region methods guarantees the convergence to a
first or second-order critical point depending on the assumptions on the model and on
the objective function. A full analysis of trust-region methods can be found in [12].

In the context of derivative-free optimization, the most effective algorithms are
trust-region methods based on quadratic models that interpolate the objective function
f . These methods are based on quadratic models of the type

mk(x) = f(xk) + gt
k(x − xk) +

1
2
(x − xk)tHk(x − xk),

where Hk is a symmetric matrix to be determined. The vector gk and the matrix Hk

are determined by the interpolation conditions, that is

mk(yi) = f(yi), i = 1, . . . , m

where yi are the interpolation points at iteration k and y1 = xk.

3 Radial basis functions

Our derivative-free algorithm uses interpolation models based on RBFs. In the next
section, we give the most important results about the use of these functions in multi-
variate interpolation. Finally, we explain in Section 3.2 why we have chosen to build
trust-region models based on cubic RBFs.

3.1 Multivariate interpolation

RBFs constitute an efficient tool for solving the multivariate scattered data interpolation
problem. Duchon’s contributions (see [13]) initiated their development and ever since
they have been an active research field (see for example [14]). Numerous researchers
have focused on the properties of these functions and they have also been used in many
applications (see [15]).
The scattered data interpolation problem consists in finding a function that interpolates
another function at some given points. Interpolation functions based on radial func-
tions have some nice properties. The matrix of the system defined by the interpolation
constraints is non-singular under some weak conditions. Moreover the interpolation
function based on radial basis functions is optimal in the sense that it minimizes a
norm defined on a set of interpolation functions (see [16]).
The choice of a radial basis function mainly depends on the application. Hardy [15]
proposed a method employing multiquadric radial functions for a large variety of prob-
lems. Most of these applications are one, two or three dimensional. RBFs appear also
naturally in a number of applications since they are the solutions of variational prob-
lems. Cubic splines (see for example [17]) are the smoothest interpolation functions

4

in dimension one while the thin plate splines (see [13]) have the same property in di-
mension 2. Powell [18] uses linear radial and multiquadric functions for interpolation
of functions with many variables. The main reason of using these RBFs is that an it-
erative algorithm has been developed for these cases. Gutmann [19] has proposed a
RBFs method for global optimization. His framework is general and several RBFs can
a priori be used by his method. Käck [20] has developed a new algorithm for global
optimization based on RBFs, that can handle linear as well as nonlinear constraints.
Here, we are interested in multivariate interpolation based on RBFs. In order to inter-
polate a function f whose values on a set Y = {y1, . . . , ym} ⊂ R

n are known, we
consider a function of the form

s(x) =
m∑

i=1

λiφ(‖x − yi‖) + q(x),

where q is a low degree polynomial, λi, i = 1, . . . , m are the interpolant parameters to
be determined and φ is an application from R+ to R. RBFs can be classified using the
concept of conditionally positive definite functions. Let Ω be a subset of R

n and let us
denote by πd(Rn) or πd the set of n-variate polynomials of degree at most d. φ is said
to be conditionally positive definite of order p on Ω, p ∈ N, if for all m ∈ N and all
possible choices of sets

X = {x1, . . . , xm} ⊂ Ω

of m distinct points, the quadratic form induced by the m × m matrix A defined by

aij = φ(‖yi − yj‖), 1 ≤ i, j ≤ m

is positive definite on the subspace

Vp =

{ {
α ∈ R

m :
∑m

j=1 αjq(xj) = 0, ∀ q ∈ πp−1(Rn)
}

, p ≥ 1,

R
m, p = 0.

Conditionally positive definite of order 0 means that the matrix A is positive definite
on R

m. The most prominent examples of conditional positive definite RBFs of order p
are

φ(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)�β/2�rβ , β > 0, β /∈ 2N, p ≥
β/2�,
(−1)k+1r2k log(r), k ∈ N, p ≥ k + 1,
(c2 + r2)β , β < 0, p ≥ 0,
(−1)�β�(c2 + r2)β , β > 0, β /∈ N, p ≥
β�,
e−αr2

, α > 0, p ≥ 0,
(1 − r)4(1 + 4r), p ≥ 0, n ≤ 3,

where
x� is the smallest integer equal to or larger than x. The main interest of the
concept of conditionally positive definite functions is the characterization of the non-
singularity of the interpolation matrix. Let φ be conditionally positive definite of order
p, p̂ be the dimension of πp−1(Rn), q1, . . . , qbp be a basis of this linear space, and let Q

5

be the matrix ⎛⎜⎝ q1(y1) q
bp(y1)

...
...

q1(ym) q
bp(ym)

⎞⎟⎠ .

It can be shown (see for example [21]) that the matrix(
A Q
Qt 0

)
is nonsingular if and only if y1, . . . , ym satisfy

q ∈ πp−1(Rn) and q(yi) = 0 i = 1, . . . , m =⇒ q = 0.

In this case {y1, . . . , ym} is said to be πp−1(Rn)-unisolvent or πp−1-unisolvent, and
there is a unique function s(x) of the form

s(x) =
m∑

j=1

λjφ(‖x − yj‖) + q(x), q ∈ πp−1(Rn)

which interpolates f at the points yi, i = 1, . . . , m. The coefficients are the solutions
of the linear system of equations(

A Q
Qt 0

)
λ =

(
f
0

)
,

where f t = (f(y1) . . . f(ym)) and λ is the vector of the model parameters and is of
dimension (m + p̂).

3.2 Choice of the trust-region model

Most derivative-free algorithms are based on quadratic models. Our idea is to use
more general models based on RBFs. In this context, we seek a function φ(‖x − xj‖)
as smooth as possible and we would like that the degree of the polynomial added to
the radial terms does not exceed one. Models with higher degree are interesting but not
attractive in our context since they require too many interpolation points. Consequently
our trust-region model will be of the form

mk(x) =
m∑

i=1

λiφ(‖x − xi‖) + c0 + ctx,

and will ideally belong to C2(Rn). The fact that the model is twice differentiable is
important for the convergence theory of our method (see [10]). The following lemma
characterizes the differentiability of the model.

Lemma 1 Let 0 < b ≤ +∞, Ω = {x ∈ R
n| ‖x‖ < b}, u : Ω → R and φ : [0, b) → R

such that u(x) = φ(‖x‖) ∀x ∈ Ω. Then

u ∈ C2(Ω) ⇐⇒ φ ∈ C2([0, b)) and φ′(0) = 0.

6

This result in well-known in PDE theory. Table 1 shows the C2-differentiability con-
ditions for different radial functions.

φ(r) order C2

rβ , β > 0, β /∈ 2N
β/2� β ≥ 1
r2k log(r), k ∈ N k + 1 k > 1
(c2 + r2)β , β < 0 0 always

(c2 + r2)β , β > 0, β /∈ 2N
β� always
φ(r) = e−αr2

, α > 0 0 always

Table 1: Analysis of the differentiability of the main RBFs

It can be seen that there are several possible choices of φ. The radial function of
type rβ is the only one without parameters, except the exponent, which belongs to
C2(Rn). Moreover, if 2 < β < 4, then φ is of order 2 meaning that the interpolation
system is non-singular if the interpolation set is π1-unisolvent. This is equivalent to
the existence of (n + 1) affinely independent points in the interpolation set. Note that
cubic splines, corresponding to the choice of β = 3 in dimension 1, are the smoothest
interpolation functions (see for example [17]). As a consequence of the discussion
above, we have chosen to use trust-region models of type

mk(x) =
m∑

i=1

λi‖x − xi‖3 + c0 + ctx.

If the number of interpolation points is m, then the model has (m+n+1) parameters,
m for the radial terms and (n + 1) for the linear function. But when the number of
points is (n + 1), the solution of the interpolation system is just a linear function since
all the parameters λi, i = 1, . . . , n + 1 are zero. Consequently the simplest nonlinear
model is based on (n + 2) interpolation points and has (2n + 3) parameters.

4 Algorithm description

The algorithm is a trust-region method using interpolation models based on RBFs. In
this context, the main issues are:

• the concept of validity,

• the building of the model,

• the trust-region subproblem.

These points are treated in detail in this section. It is organized as follows. We begin in
Section 4.1 by giving a rigorous definition to the concept of validity. In the next section,
we present the general framework of our new algorithm. In Section 4.3 we explain how
to check this property and to improve the accuracy of the model when it is necessary.
The trust-region subproblem consists in minimizing the model within the trust region.

7

We explain in Section 4.4 how to get a minimizer or a point that sufficiently decreases
the model in order to guarantee the convergence to a critical point.

4.1 The concept of validity

The existence and the unicity of our model is guaranteed if there are (n + 1) affinely
independent points in the interpolation set (see Section 3.2). A useful tool to measure
the affine independence of points is based on Newton fundamental polynomials of
order 1. This approach is explained in [12] in a more general context involving NFPs of
degree d ≥ 1. NFPs of order 1 are defined as follows. We assume that the interpolation
set contains (n + 1) points yi, i = 1, . . . , n + 1. The point y1 is associated with

the constant function N
[0]
1 (x) = 1 and each point yi+1 is associated with a single

polynomial N [1]
i (x), i = 1, . . . , n of degree 1 satisfying the conditions

N
[1]
i (yj+1) = δij , j = 0, . . . , n, i = 1, . . . , n.

These polynomials are called Newton fundamental polynomials of degree 1 and the
values N

[1]
i (yi+1) are called interpolation pivots. The procedure that computes these

polynomials (see [12], page 325) may be considered as a version of the Gram-Schmidt
orthogonalization procedure with respect to the inner product

< p, q >=
∑
y∈Y

p(y)q(y), p, q ∈ π1(Rn),

where Y is the interpolation set. One can show that Y is poised (see for example [12])
if and only if all the interpolation pivots are nonzero. We can now define the concept
of validity. We say that the model is valid in B(xk, Δk) if there are (n + 1) points in
{x | ‖x − xk‖ ≤ C1Δk} whose pivots are larger than a certain threshold θ1. C1 is a
constant larger or equal to 1 that measures the proximity of the points to the current
iterate. A typical value of this constant is 2. Moreover, if we do not find (n + 1) points
in Y with a pivot larger than θ0(θ0 << θ1), then we consider that Y is not poised and
that the geometry of the points is too bad to compute the model. In this situation, we
generate as many points as necessary to obtain a better geometry of the points. We also
generate a new point when the model is not valid and when an unsuccessful iteration
occurs. This procedure is also based on NFPs. We first select the point with the worst
interpolation pivot and then we generate a new point by maximizing its corresponding
NFP within the trust region. The maximum number of points in the interpolation set is
fixed to a user-defined constant L1 depending on the size of the problems and on the
processing power which is available. Typically, for small problems, L1 = n(n + 1)/2
may be approriate, while smaller values must be used when n is larger. Concrete
examples for the choice of L1 are discussed in Section 5.1.

4.2 The framework of the algorithm

Conditional algorithms have been developed to deal with models that can be consid-
ered as a suitable approximation of the objective function only under some conditions.

8

These models are typically interpolation models and are said to be valid if the geometry
of the interpolation points satisfies some conditions. When an unsuccessful iteration
occurs and if the model is not valid, then the geometry of the points is improved instead
of reducing the trust-region radius. The general framework of the algorithm is given
below.

Step 0: Initialization. A set of points containing (n + 1) affinely independent
points is given. For instance, a simplex centered at a starting point x0 can be
generated, where x0 is provided by the user. An initial radius Δ0 and a maximum
radius Δmax are also given. Moreover the real constants α, μ, ε, η1, η2, γ1, γ2 are
also given and satisfy the conditionsα ∈ (0, 1), μ > 0, ε > 0, 0 < η1 ≤ η2 < 1
and 0 < γ1 < 1 < γ2. We also have a constant integer L1 which determines the
maximum number of points of the interpolation set. Set k = 0, ρ−1 = η1.

Step 1: Validity/Improvement step. Determine if the model is valid. If it is not
the case and if ρk−1 < η1, generate a new point to improve the model.

Step 2: Computation of the model. Compute the parameters of the interpola-
tion model.

Step 3: Final criticality test. If ‖∇mk(xk)‖ ≤ ε, test if the model is valid in
B(xk, δk) for some δk ∈ (0, μ‖∇mk(xk)‖). If ‖∇mk(xk)‖ ≤ ε but the model
is not valid, add as many points as necessary to ensure that the model is valid in
B(xk, αμ‖∇mk(xk)‖) and return to Step 3.

Step 4: Selection of the next iterate.

– Generate a minimizer xk + sk of the trust-region model.

– Compute f(xk + sk) and

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)
.

If ρk ≥ η1, set xk+1 = xk + sk and the iteration is said to be successful.
Otherwise, set xk+1 = xk.

Step 5: Update of the trust-region radius.

– The trust-region for the next iteration is given by

Δk+1 ∈
⎧⎨⎩

min[γ2Δk, Δmax], if ρk ≥ η2,
γ1Δk, if ρk < η1 and the model is valid,
Δk, otherwise.

– Increment k by 1 and go to Step 1.

The only difference with the framework described in Section 2 is that we have
added two new steps. One is the “Validity/Improvement step” and is explained in
detail in the next section and the second one is the “Final criticality test” where the
stopping condition is tested. The implicit loop in the Step 3 may be viewed as a model
improvement inner iteration, with the aim of ensuring that∇mk(xk) is not too different
from the gradient of the objective function (see [10] for more details).

9

4.3 Validity and improvement of the model

The validity/improvement procedure is composed of 4 steps. In Step 0, we initialize
the basis of the NFPs. Then we check the validity of the model (Step 1). If it is valid,
then we stop the procedure. No improvement is required. Otherwise we make sure that
the interpolation set is poised (Step 2). If it is not the case, then we generate as many
points as necessary to obtain a geometry that makes possible the computation of the
model parameters. In the last step (Step 3), we generate a new point if ρk < η1 and if
the model is not valid. In practice, the value of θ0 is relatively small in comparison to
θ1 and the generation of new points in Step 2 is quite rare. But if it is the case, then
the model may become valid. It is the reason why we check the existence of a pivot
smaller than θ1 in Step 3 meaning that the model is not valid.

Initialization step

This step initializes the basis of the polynomials of degree at most 1 with the canonical
basis of π1(Rn). It also initializes the set Ytemp containing the points selected by the
algorithm and the set I corresponding to the indices of the NFPs which have not yet
been associated with a point.

Step 0: Initialization. Set the N
[l]
i , i = 0, 1, l = 1, . . . , n, to the canonical basis

of π1(Rn). Set Ytemp = {∅} and I = {1, . . . , n}.

Validity step

The purpose of this procedure is to determine the “good points” in the region defined
by {x | ‖x − xk‖ ≤ C1Δk}. A good point means that its pivot is larger than θ1.
This procedure is also used to test the validity of the model in B(xk, δk) for the “Final
criticality test” step by replacing the domain {x | ‖x− xk‖ ≤ C1Δk} by B(xk, δk) in
the following step. The procedure works as follows.

Step 1: Validity of the model. Loop over the polynomials.

– Select the current iterate xk, and update the set YTemp = YTemp ∪ {xk};
– update the Newton polynomials by

N
[1]
i (x) = N

[1]
i (x) − N

[1]
i (xk), i = 1, · · · , n;

– for i = 1, . . . , n

∗ select some yki ∈ Y \ YTemp such that yki ∈ {x | ‖x − xk‖ ≤ C1Δk}
and such that |N [1]

i (yki)| is maximal;

∗ If this point exists and if |N [1]
i (yki)| is larger than θ1, then

· update the set by YTemp = YTemp ∪ {yki} and I = I \ {i} ;
· normalize the current polynomial:

N
[1]
i (x) = N

[1]
i (x)/N [1]

i (yki); (1)

10

· update the Newton polynomials:

N
[1]
j (x) = N

[1]
j (x) − N

[1]
j (yki)N

[1]
i (x) (2)

for j �= i, j = 1, · · · , n.

– If |YTemp| < (n + 1), then go to Step 2. Else stop.

Poisedness step

This procedure determines if the interpolation set is poised. If not, we generate as
many points as necessary to obtain a better geometry. These points are determined by
maximizing the NFPs in the trust region. The procedure is described below.

Step 2: Poisedness. Loop over the polynomials.

– While |I| > 0

∗ select i ∈ I;

∗ select some yi1 ∈ Y \ YTemp such that |N [1]
i (yi1)| is maximum;

∗ determine j ∈ I that maximizes |N [1]
j (yi1)|;

∗ If |N [1]
j (yi1)| is strictly smaller than θ0, then

· generate a new point yk1 :

yk1 = max
x∈B(xk,Δk)

|N [1]
i (x)|;

· compute f(yk1) and update Y ;

else i = j and k1 = i1.

∗ update YTemp = YTemp ∪ {yk1} and I = I \ {i}.
∗ normalize the current polynomial: N

[1]
i (x) = N

[1]
i (x)/N [1]

i (yk1);
∗ update the Newton polynomials:

N
[1]
j (x) = N

[1]
j (x) − N

[1]
j (yk1)N

[1]
i (x)

for j �= i, j = 1, · · · , n;

– go to Step 3.

The update of the interpolation set works as follows. If |Y | < L1 (the parameter
determining the maximum number of interpolation points), then we simply add the new
point. However, if |Y | = L1, the addition of the new point is immediately followed
by the removal of the oldest point in the set. This step is quite similar to the step that
checks the validity of the model. The main difference is that after selecting a point,
we re-optimize the process by determining the best NFP still available for that point.
A bad point for a certain NFP may be a good one for another choice of polynomial.
The absence of this phase of re-optimization may cause troubles in our management of
the interpolation point. The risk is that the value of the pivots does not reflect enough

11

the geometry of the points and that the maximization of the NFP having the worst
interpolation point does not necessarily generate the best point for the geometry.Note
that steps 1 and 2 should not be merged. Indeed it is important to first select the good
points to check the validity of the model before testing the poisedness to avoid the
pathological case described before.

Improvement step

After an unsuccessful iteration and when the model is not valid, we generate a new
point by maximizing the NFPs corresponding to the smallest pivot. This is explained
in the improvement step below.

Step 3: Improvement. Let N
[1]
i (x) be the polynomial with the smallest inter-

polation pivot. If this value is strictly smaller than θ1, then

– generate a new point yk1 :

yk1 = max
x∈B(xk,Δk)

N
[1]
i (x);

– compute f(yk1) and update Y .

Our management of the interpolation points is independent of the scaling of the ob-
jective function. But the concept of validity defined as before shows its limits when the
problem is ill-conditioned. This happens namely when a problem involves variables
with different order of magnitude. This means that the objective function is highly
sensitive to small changes in certain components of the vector x and insensitive to such
changes in other components. In this situation, the contours of the objective function
near the minimizer tend towards highly eccentric ellipses. Spherical trust regions are
not appropriate to the case of poorly scaled functions. We can trust our model mk to
be reasonably accurate only over short distances along highly sensitive function direc-
tions, while it is reliable over longer distances along the less sensitive directions. From
these remarks it follows that our management of the interpolation points is not very
convenient for ill-conditioned problems.

The complexity of the Gram-Schmidt orthogonalization algorithm is O(n3) and a
direct consequence is that the complexity of the “Validity/improvement procedure” is
O(mn2), where m = |Y |.

4.4 The trust-region subproblem

The trust-region subproblem is at the core of trust-region methods. For an overview
of this topic, see [12]. This subproblem consists in finding the minimizer of the trust-
region model. In fact it is not necessary to find the minimizer of the trust-region model
in order to apply the convergence theory of trust-region methods. The key point is to
make sure that the total decrease is at least a fraction of that obtained at the Cauchy
point (see [12], page 131). In practice, one can compute the approximate Cauchy

12

point using the well-known Armijo linesearch (see [22]) or to compute a minimizer of
the trust-region subproblem. The approximate Cauchy point is obtained quite easily
but the decrease of the objective function is often not very satisfying. The key point in
derivative-free optimization is to know how much time we can spend in the algorithm as
compared to the time spent to evaluate the objective function. If this time is negligible,
then we can afford to compute a minimizer of the trust-region subproblem but if it
is not the case, we should prefer to compute the approximate Cauchy point. In our
applications, we have tested both methods depending on the cost of evaluating the
objective function but also on the size of the problem. An iteration in the algorithm
has a complexity of O(n3). This is not negligible for problem whose dimension is
larger than 50. In this situation the use of the linesearch instead of computing an exact
minimizer could be an interesting alternative if the cost of evaluating the objective
function is not very high. In the tests we have performed (see Section 5), we have
used two different strategies: for large problems of size 200, we have computed the
approximate Cauchy point (see Section 4.4.1) while we have determined a minimizer
of the trust-region subproblem by using CFSQP (see Section 4.4.2) when the size of
the problems was smaller.

4.4.1 The approximate Cauchy point

The idea behind the concept of the approximate Cauchy point is to use a backtracking
linesearch along the direction given by the gradient of the model. More precisely, we
determine the smallest integer j such that the point zj defined by

zj = xk − αj
1

Δk

‖∇mk(xk)‖∇mk(xk)

satisfies the conditions

mk(zj) ≤ mk(xk) + β1∇mk(xk)(zj − xk),

where α1 ∈ (0, 1) and β1 ∈ (0, 1
2) are given constants.

4.4.2 CFSQP

CFSQP [23] is the acronym of C code for Feasible Sequential Quadratic Programming.
It is a set of C functions for the minimization of a smooth objective function subject to
nonlinear equality and inequality constraints, linear equality and inequality constraints,
and simple bounds on the variables. It is based on SQP methods, modified in order to
generate feasible iterates if necessary.

5 Numerical results

We have compared the performances of the following derivative-free algorithms: BOOST-
ERS, DFO, UOBYQA and NEWUOA. We have taken the implementations in Fortran
distributed by the authors. All these methods are trust-region methods and the stopping
criterion for all of them is based on the size of the trust region. We first begin by briefly

13

explaining the concept of performance profiles. They were introduced in [24] and pro-
vide an effective tool to compare solver performance on a collection of problems. The
performance profile of a solver is an empirical (cumulative) distribution function for a
performance metric. Dolan and Moré [24] use the ratio of the solver resource time for a
given solver versus the best time of all the solvers. But in derivative-free optimization,
the performance is generally measured by the number of function evaluations until con-
vergence. This is the reason why the CPU time is generally not provided in the tests
we have performed.

The performance profile for a method is the cumulative distribution function for a
given performance metric. If fp,a is the performance metric of algorithm a on problem
p (the number of function evaluations in our case), then the performance ratio is defined
by

rp,a =
fp,a

mina{fp,a} , (3)

if algorithm a has converged for problem p, and rp,a = rfail otherwise, where rfail must
be strictly larger than any performance ratio (3). For any given threshold π, the overall
performance of algorithm a is given by

ρa(π) =
1
np

Φa(π) (4)

where np is the number of problems considered, and Φa(π) is the number of problems
for which rp,a ≤ π.

In particular, the value ρa(1) gives the probability that algorithm a wins over all
other algorithms. The value limπ→rfailρa(π) gives the probability that algorithm a
solves a problem and, consequently, provides a measure of the robustness of each
method.

We have tested the algorithms on the unconstrained problems of CUTEr with the
characteristics that the objective function is not a polynomial function of order 2 or
less and not a sum of squares. It is clear that our method is not a judicious choice
for such objective functions where the use of methods based on quadratic models is
recommended. The test set contains problems with a fixed or a variable dimension. We
have 18 problems with a fixed dimension smaller than 20 and one can parametrize the
size of 39 other functions. This makes a total of 57 problems.

5.1 Tests of different variants

We have tested several variants of our method depending on the maximum number L1

of interpolation points. Table 2 gives the variants we have tested.
As mentioned in Section 3.2, the minimum number of interpolation points with

non null radial terms is (n + 2). The value (2n + 1) corresponds to the number of
interpolation points in NEWUOA while n(n+1)/2 is the number of parameters in a full
quadratic model. The variant V4 is motivated by the fact that in very small dimension
(<5) it is absolutely not prohibitive to put more points in the interpolation set than the
limit imposed by the use of quadratic models. For example a full quadratic model

14

Variant L1

V1 n + 2
V2 2n + 1
V3

n(n+1)
2

V4 max
{

n(n+1)
2 , 15

}
Table 2: List of the variants we have tested. The value L1 corresponds to the maximum
number of interpolation points.

has 6 parameters in dimension 2 but a model based on RBFs can easily integrate 15
interpolation points. We have tested these variants on problems of dimension smaller
than 20. It is also important to note that when the number of interpolation points is
O(n2), then the complexity of an iteration in BOOSTERS grows from O(n3) to O(n6).
The problems are divided in four classes depending on their size. The distribution of
the dimension of the problems is given in Table 3.

dimension 2 − 5 6 − 10 11 − 15 16 − 20
nbr of problems 16 14 14 13

Table 3: Distribution of the dimension of the problems.

The starting point is taken from CUTEr. The maximum number of function evalua-
tions is fixed to 5000 and the stopping criterion is the size of the trust region (Δmin =1.0e-
04). The performance metric is the number of function evaluations until convergence
is reached. We consider that an algorithm has converged if the relative error in x is
less than 1% or if the absolute value is less than 10−2 if the solution is 0. If the exact
solution is not known, then we consider the value provided by the best algorithm as
the solution and the same criteria as before apply. The performance profiles of the four
variants of BOOSTERS are given in Figure 1.

We see that the more points, the better the result. The variant V4 is about 1 time out
of 2 the best and its performance profile converges the most quickly.

We have compared the best variant (V4) of BOOSTERS with its competitors on the
same test set as in the preceding paragraph. The performance profiles of the algorithms
are given in Figure 2. NEWUOA is not only the algorithm with the lowest complexity
(with BOOSTERS) but has also the best results for these tests. It is the best algorithm
about 3 times out of 10 and its performance profile converges the most quickly. DFO
is quite effective but it is also the less robust algorithm in the sense that it has failed to
converge in about 35 % of the tests. The performances of UOBYQA and BOOSTERS
are quite similar even though the second algorithm seems a little better. BOOSTERS
is the best algorithm about one time out of four and is at the second place in terms of
robustness.

15

BOOSTERS-V1
BOOSTERS-V3
BOOSTERS-V4
BOOSTERS-V2

Legend

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

Figure 1: Performance profiles of the four variants of BOOSTERS.

5.2 BOOSTERS versus NEWUOA

At some iterations, DFO has to recompute all the parameters of the trust-region model,
meaning that the complexity of an iteration is O(n6) in the worst case (when all the
parameters are recomputed) while it is O(n4) in UOBYQA. NEWUOA and BOOST-
ERS are much better with a complexity of only O(n3) (only in the worst case for
NEWUOA, otherwise O(n2)) when the number of interpolation points is linear in n.
This makes a strong difference. On a problem of dimension 50, DFO needs more than
9 hours on our PC (Dell computer, 1000 MHz, 256 MB of RAM, Linux) to compute
the 500 first iterations while NEWUOA, the fastest algorithm, only needs a few sec-
onds. Indeed, the direct competitor of NEWUOA is the variant of BOOSTERS based
on (2n + 1) interpolation points. These two algorithms are quite similar: they build
models that interpolate the objective function at (2n + 1) different points and have the
same complexity. We have compared both solvers on problems with a medium dimen-
sion (between 20 and 81). The distribution of the dimensions is given in Table 4 and
the performance profiles are given in Figure 3.

The performance profile of BOOSTERS is significantly better than NEWUOA.
This result is quite surprising since the tests performed on problems in small dimension
(≤ 20) have shown that NEWUOA was the best algorithm. The larger the size is, the
more effective BOOSTERS seems. The problems of CUTEr with a variable dimension
seem less hard than the small problems with a fixed dimension. Indeed the scaling of

16

BOOSTERS-V4
DFO
UOBYQA
NEWUOA

Legend

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

Figure 2: Performance profiles of the algorithms.

dimension 20 40 60 80 − 81
nbr of problems 10 10 12 7

Table 4: Distribution of the dimension of the problems.

small problems is often not good and the management of the interpolation points in
BOOSTERS is not very convenient in this situation as explained in Section 4.1.

5.3 Large problems

In derivative-free optimization, problems with more than hundred variables are difficult
to handle. But our method based on (n+2) interpolation points can easily tackle these
problems. In this situation, the trust-region models have (2n + 3) parameters, (n + 2)
for the radial terms and (n + 1) for the linear function. The resolution of the system
to determine the parameters of the model only requires to solve two linear systems
of dimension (n + 1) and (n + 2). The computational time is only twice the time
necessary to compute a linear model while the number of parameters is much larger.
To the best knowledge of the authors, the largest problem ever tested by NEWUOA is
in dimension 160. We have tested here our variant on some problems of dimension 200.
Our objective was to solve these problems in less than 10000 function evaluations. This

17

BOOSTERS
NEWUOA

Legend

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2 4 6 8 10

Figure 3: Performance profiles of the algorithms.

number is relatively low in comparison to the size of the problems. The framework of
the algorithm imposes to have a valid model before decreasing the trust-region radius
and it sometimes requires a lot of function evaluations. Table 5 gives the value of the
objective function f after 10000 function evaluations while Figure 4 plots the logarithm
of the value of f in function of the number of evaluations for the DIXMAAN[A-D]
problems. In view of these results, we can consider that the algorithm has converged
in all cases. For information, the resolution takes more than 3 hours per problem on a
Dell computer (1000 MHz, 256 MB of RAM, Linux).

5.4 Global analysis of the results

We have tested the algorithms on the problems of CUTEr. On small problems, the per-
formance of BOOSTERS is similar to these of the other algorithms. The solver with
the best complexity is NEWUOA and its direct competitor is the variant of BOOST-
ERS based on (2n + 1) interpolation points. The tests we have performed show that
our method surpasses NEWUOA for medium-size problems. Finally, we have solved
large problems of dimension 200. The tested variant of BOOSTERS is based on the
minimum number of interpolation points necessary to calibrate our model based on
RBFs, namely (n + 2) points.

18

Problem Size f(x∗) Solution
ARWHEAD 200 +1.232293e-05 0.0
DIXMAANA 201 +1.000054e+00 1.0
DIXMAANB 201 +1.000326e+00 1.0
DIXMAANC 201 +1.002541e+00 1.0
DIXMAAND 201 +1.013138e+00 1.0

Table 5: Tests performed on large problems with BOOSTERS. The column entitled
f(x∗) corresponds to the value of the objective function after 10000 function evalua-
tions.

DIXMAANC
DIXMAANA
DIXMAAND
DIXMAANB

Legend

0

1

2

3

4

2000 4000 6000 8000 10000

Figure 4: Plot of the logarithm of f in function of the number of evaluations for the
DIXMAAN[A-D] problems.

19

6 Conclusion

We have developed a new derivative-free algorithm based on RBFs. The main original-
ity of our approach is the use of RBFs and the management of the interpolation points
based on Newton fundamental polynomials. The complexity of the algorithm is very
attractive in comparison with its best competitors, namely UOBYQA, NEWUOA and
DFO. Moreover the results of the tests we have performed on CUTEr are excellent.

Our method is a powerful tool when the objective function is a non-linear non-
polynomial function. In addition, we have shown in [25] and [10] that the method
is also well designed for problems where the objective function is noisy or only an
approximation of an unknown function.

References

[1] Robert Michael Lewis, Virginia Torczon, and Michael W. Trosset. Direct search
methods: Then and now. Journal of Computational and Applied Mathematics,
124:191–207, 2000.

[2] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on
Optimization, 7(1):1–25, 1997.

[3] J. A. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.

[4] H.H. Rosenbrock. An automatic method for finding the greatest or least value of
a function. The Computer Journal, 3:175–184, 1960.

[5] M. J. D. Powell. An efficient method for finding the minimum of a function of
several variables without calculating derivatives. Computer Journal, 17:155–162,
1964.

[6] A. R. Conn and Ph. L. Toint. An algorithm using quadratic interpolation for
unconstrained derivative free optimization. In G. Di Pillo and F. Gianessi, edi-
tors, Nonlinear Optimization and Applications, pages 27–47. Plenum Publishing,
1996. Also available as Report 95/6, Dept of Mathematics, FUNDP, Namur, Bel-
gium.

[7] M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic approxima-
tion. Technical Report DAMTP NA14, Department of Applied Mathematics and
Theoretical Physics, Cambridge University, Cambridge, UK, 2000.

[8] M. J. D. Powell. The NEWUOA software for unconstrained optimization with-
out derivatives. Technical Report DAMTP NA2004/08, Department of Applied
Mathematics and Theoretical Physics, Cambridge University, Cambridge CB3
9EW, UK, 2004.

[9] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W
Trosset. A rigourous framework for optimization of expensive functions by sur-
rogates. Structural Optimization, 17(1):1–13, 1999.

20

[10] R. Oeuvray. Trust-Region Methods Based on Radial Basis Functions with Ap-
plication to Biomedical Imaging. PhD thesis, Ecole Polytechnique Fédérale de
Lausanne, 2005.

[11] N. I. M. Gould, D. Orban, and Ph. L. Toint. General CUTEr documentation.
Technical Report TR/PA/02/13, CERFACS, 2002.

[12] A. R. Conn, N. I. M. Gould, and Ph. Toint. Trust region methods. MPS–SIAM
Series on Optimization. SIAM, 2000.

[13] J. Duchon. Splines minimizing rotation-invariate semi-norms in sobolev spaces.
Constructive Theory of Functions of Several Variables, pages 85–100., 1979.

[14] M.D. Buhmann. Multivariate Approximation and Apllications, chapter Approxi-
mation and interpolation with radial functions, pages 25–43. Cambridge, 2001.

[15] R.L. Hardy. Computers and Mathematics with Applications, volume 19, chapter
Theory and applications of the multiquadric-biharmonicmethod, pages 163–208.
Pergamon Press plc, 1990.

[16] R. Schaback. Approximations: From CAGD to Wavelets, chapter Comparison of
radial basis function interpolants, pages 293–305. World Scientific, 1993.

[17] M. J. D. Powell. Approximation Theory and Methods. Cambridge University
Press, Cambridge, UK, 1981.

[18] M. J. D. Powell. Radial basis function for interpolation to function of many
variables. Technical Report DAMTP NA11, Department of Applied Mathematics
and Theoretical Physics, Cambridge University, Cambridge, UK, 2001.

[19] H.-M. Gutmann. A radial basis function method for global optimization. Techni-
cal Report DAMTP NA22, Department of Applied Mathematics and Theoretical
Physics, Cambridge University, Cambridge, UK, 1999.

[20] J.-E. Käck. Constrained global optimization with radial basis functions. Technical
report, Department of Mathematics and Physics, Mälardalen University, 2004.

[21] R. Schaback and H. Wendland. Characterization and construction of radial basis
functions. In N. Dyn, D. Leviatan, D. Levin, and A. Pinkus, editors, Multivariate
Approximation and Applications, pages 1–24. Cambridge University Press, 2001.

[22] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimiza-
tion and nonlinear equations. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, Pa., 1996.

[23] C.T. Lawrence, J.L. Zhou, and A. Tits. User’s guide for CFSQP version 2.5: A
C code for solving (large scale) constrained nonlinear (minimax) optimization
problems, generating iterates satisfying all inequality constraints. Technical Re-
port TR-94-16r1, Institute for Systems Research, University of Maryland, College
Park, MD 20742, 1997, 1997.

21

[24] E. D. Dolan and J. J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, Serie A, 91:201–213, 2002.

[25] R. Oeuvray and M. Bierlaire. A new derivative-free algorithm for the medical
image registration problem. International Journal of Modelling and Simulation,
to appear.

22

