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We present estimation results of a fator analyti spei�ation ofa mixture of Multinomial Logit model, where the orrelation amongpaths is aptured both by a Path Size attribute and error omponents.The estimation is based on a GPS dataset olleted in the Swedishity of Borl�ange. The results show a signi�ant inrease in model �tfor the Error Component model ompared to a Path Size Logit model.Moreover, the orrelation parameters are signi�ant.
1 IntroductionThe route hoie problem onerns the hoie of route between an origin-destination pair on a given transportation mode in a transportation net-work. The problem is ritial in many ontexts, for example in intelligenttransport systems, GPS navigation and transportation planning. The eÆ-ieny of shortest path algorithms has been a strong motivation of manyresearhers to assume that travelers use the shortest (with regard to anyarbitrary generalized ost) route among all. Clearly, the poor behavioralrealism of the shortest path assumption motivates the use of more sophis-tiated models suh as disrete hoie models.Designed to foreast how individuals behave in a hoie ontext, disretehoie models (more spei�ally, random utility models) have motivated atremendous amount of researh in reent years (Ben-Akiva and Lerman,1985). In the spei� ontext of route hoie, the de�nition of the hoieset, and the signi�ant orrelation among alternatives are the two maindiÆulties (Ben-Akiva and Bierlaire, 2003).In this paper we disuss orrelation among alternatives in large hoiesets. First, we present in Setion 2 a literature review and then analyze thePath Size Logit model (Setion 3). In Setion 4 we introdue a new mod-eling approah based on the onept of subnetworks. Finally, we presentestimation results for real data of Error Component models based on sub-networks and ompare the results with a Path Size Logit model.
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2 Literature ReviewSeveral di�erent models have been proposed in the literature. The Multi-nomial Logit (MNL) model, is simple but restrited by the Independenefrom Irrelevant Alternatives (IIA) property, whih does not hold in the on-text of route hoie due to overlapping paths. E�orts have been made tooverome this restrition by making a deterministi orretion of the utilityfor overlapping paths. Casetta et al. (1996) were the �rst to propose suha deterministi orretion. They inluded an attribute, alled Commonal-ity Fator (CF), in the deterministi part of the utility obtaining a modelalled C-Logit. The utility Uin assoiated with path i by individual n is
Uin = Vin − βCFCFin + εin.The CFin value of a path i is diretly proportional to the overlap with otherpaths in the hoie set Cn. Casetta et al. (1996) present three di�erentformulations of the CF attribute. The �rst isCFin = ln ∑
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, (1)where Lij is the length of links ommon to paths i and j, Li and Lj are thelengths of paths i and j, and γ is a positive parameter (Casetta et al., 1996suggest the values 1 or 2). The other two formulations areCFin = ln∑
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) , (3)where the fration la
Li

is the proportional weight of link a for path i, hererepresented by their lengths. Γi is the set of all links of path i and δajequals 1 if link a is on path j and 0 otherwise. ∑
j∈Cn

δaj is therefore thenumber of paths in hoie set Cn sharing link a. Casetta et al. (1996)do not provide any guidane for whih CF formulation to use. They use3



formulation (2) when estimating models for heavy truk path hoie on theItalian national network.Casetta et al. (2002) present a route pereption model. It is a twostep model, where the probability that a path belongs to a hoie set ismodeled with a Binary Logit model, and the hoie of path is modeledwith a C-Logit model using formulation (1).Ramming (2001) disusses a fourth CF formulationCFin = ln(1 +
∑

j∈Cn,j6=i
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)
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Li − Lij

Lj − Lij

)

) (4)that is also analyzed by Hoogendoorn-Lanser et al. (2005).The lak of theoretial guidane for the C-Logit model was the moti-vation for Ben-Akiva and Bierlaire (1999a) to propose the Path Size Logit(PSL) model. The idea is similar to the C-Logit model. A orretion ofthe utility for overlapping paths is obtained by adding an attribute to thedeterministi part of the utility. In this ase, the Path Size (PS) attribute.The original PS formulation is derived from disrete hoie theory for ag-gregate alternatives (see hapter 9, Ben-Akiva and Lerman, 1985). Theutility is Uin = Vin + βPS lnPSin + εin where the PS attribute is de�ned asPSin =
∑
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. (5)Ben-Akiva and Bierlaire (1999b) present another version of this formulationinluding the length of the shortest path in the hoie set, L∗
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. (6)Ramming (2001) introdues a third PS formulation, alled GeneralizedPS PSin =
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where γ is a parameter greater or equal to zero. Note that when γ = 0the formulation orresponds to the original PS formulation (5). Ramming(2001) proposed this formulation in order to derease the impat of unre-alistially long paths in the hoie set. In the original PS formulation (5)the ontribution of a link is dereased by the number of paths that sharethe link. If there are very long paths that no traveler is likely to hoosesharing a link, then these long paths have a negative impat on the utilityof shorter, more reasonable paths.Ramming (2001) ompares the C-Logit and PSL models with the dif-ferent formulations but does not provide a theoretial omparison. Em-pirially he �nds an inappropriate sign of the estimated parameter βCFfor CF formulations (2) and (3). He also �nds that the PSL model withthe Generalized PS formulation (7) outperforms the C-Logit model withformulations (1) and (4).Note that the two CF formulations (2) and (3) are quite similar to oneanother and also to the original PS formulation (5). The di�erene liesin how the number of paths sharing a same link is taken into aount.For the original PS formulation, a link's ontribution to a path is reduedproportionally to the number of paths sharing the link. Whereas in CFformulation (2) the links ontribution is multiplied with the number ofpaths sharing it, and in formulation (3) it is multiplied with the naturallogarithm of the number of paths.Hoogendoorn-Lanser et al. (2005) (see also Hoogendoorn-Lanser, 2005)study how to de�ne overlap in multi-modal networks. Based on the onlu-sions of Ramming (2001), they do not further analyze the C-Logit modelsbut fous on PSL models. They investigate if the βPS parameter shouldbe estimated or set to one, and onlude that it should be estimated sinethe PS attribute an apture behavioral pereptions regarding overlappingpaths. Moreover, they ompare di�erent PS formulations in terms of model�t measures and �nds that the generalized formulation (7) with γ = 14shows best results. They also observe best model �t when overlap is ex-pressed in terms of number of legs1 ompared to time and distane.1A leg is a part of a route between two nodes in whih a single mode or servie type isused. 5



Given the shortomings of the MNL model, more omplex models havebeen proposed in the literature to expliitly apture path overlap withinthe error struture. However, rather few of these models have been appliedto real size networks and large hoie sets.Vovsha and Bekhor (1998) propose the Link-Nested Logit model, whihis a Cross-Nested Logit (CNL) formulation (see Bierlaire, forthoming, foran analysis of the CNL model) where eah link of the network orrespondsto a nest, and eah path to an alternative. Ramming (2001) estimatedthe Link-Nested Logit model on route hoie data olleted on the Bostonnetwork (34 thousand links). The large number of links makes it impossibleto estimate the nest-spei� oeÆients. He onludes that the PSL modelwith the generalized formulation (7) outperforms the Link-Nested Logitmodel.The Multinomial Probit model (Daganzo, 1977) has a exible modelstruture that permits an arbitrary ovariane struture spei�ation. Butnumerial integration tehniques must be used whih limits the applia-tion of the model to large-sale route hoie. Yai et al. (1997) propose aMultinomial Probit model with strutured ovariane matrix in the on-text of route hoie in the Tokyo rail network. The maximum number ofalternatives was however limited to four.An Error Component (EC) model is a Normal mixture of MNL (MMNL)model and was desribed namely by Boldu and Ben-Akiva (1991). Theutility funtion for individual n and alternative i is
Uin = Vin + ξin + νinwhere Vin are the deterministi utilities, ξin are normally distributed andapture orrelation between alternatives, and νin are independent and iden-tially distributed Extreme Value.The EC model an be ombined with a fator analyti spei�ationwhere some struture is expliitly spei�ed in the model to derease itsomplexity. Bekhor et al. (2002) estimate an EC model based on large-sale route hoie data olleted in Boston. The utility vetor Un (Jx1,where J is the number of paths) is de�ned by

Un = Vn + εn = Vn + FnTζn + νn, (8)6



where Vn (Jx1) is the vetor of deterministi utilities, Fn (JxM) is thelink-path inidene matrix (M is the number of links), T (MxM) is thelink fators variane matrix, and ζn (Mx1) is the vetor of i.i.d. normalvariables with zero mean and unit variane. Bekhor et al. (2002) assumethat link-spei� fators are i.i.d. normal and that variane is proportionalto link length so that T = σ diag (√l1,
√

l2, . . . ,
√

lM

) where σ is the onlyparameter to be estimated. The ovariane matrix an then be de�ned asfollows:
FnTTTFT
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where Li,j is length by whih path i overlaps with path j.MMNL models have been used in several studies on real size networkswith Stated Preferenes data. The size of the hoie set is then limited. Han(2001) (see also Han et al., 2001) use a MMNL model to investigate tasteheterogeneity aross drivers and the possible orrelation between repeatedhoies. Paag et al. (2002) and Nielsen et al. (2002) use a MMNL modelwith both a random oeÆient and error omponent struture to estimateroute hoie models for the harbor tunnel projet in Copenhagen.The Paired Combinatorial Logit model, developed by Chu (1989), hasbeen adapted to the route hoie problem by Prashker and Bekhor (1998).Reently, the Link-Based Path-Multilevel Logit model has spei�ally beendeveloped for the route hoie problem by Marzano and Papola (2004).These models have been used for small-sale route hoie analysis on testnetworks.
3 Deterministic Correction of CorrelationIn this setion, we disuss the Path Size Logit model in detail. We showthat the original PS formulation (5) should be used for orreting utilitiesof overlapping paths. This is the formulation that both shows intuitiveresults and has a theoretial motivation. We start by deriving the original7



PS formulation from the theory on aggregation of alternatives (Ben-Akivaand Lerman, 1985).A nested struture is assumed where eah nest orresponds to an aggre-gate alternative grouping elemental alternatives. In a route hoie ontextthe elemental alternatives orrespond to the paths and the aggregate al-ternatives to the links. For the derivation of the original PS formulationwe are interested in the hoie of elemental alternative (route hoie) aswell as the size of the aggregate alternatives, where the size of an aggregatealternative, a link, equals the number of paths using the link.We denote by Cn the set of paths onsidered by individual n, and wede�ne subsets, Can ⊆ Cn, a = 1, . . . , M, where Can is the set of paths usinglink a, and M is the number of links. The utilityUin individual n assoiateswith path i is Uin = Vin + εin where Vin represents the deterministi partof the utility and εin the random part. The link utility Uan is de�ned by
Uan = maxj∈Can

(Vjn+εjn), a = 1, . . . , M. Uan an also be expressed as thesum of its expetation Van and its random term εan, that is, Uan = Van+εanwhere Van = E[maxj∈Can
(Vjn + εjn)]. The average deterministi utility ofpaths using link a is de�ned by Van = 1

Ma

∑
j∈Can

Vjn where Ma is thenumber of paths using link a (the size of link a). That is, Ma =
∑

j∈Cn
δaj,where δaj is the link-path inidene variable that equals one if link a is onpath j and zero otherwise.Aording to the theory, if we assume that the size of Can is large for alllinks, that the path utilities using a link have equal means and the randomterms εin are i.i.d., then the utility individual n assoiates with link a isde�ned by

Uan = Van +
1

µ
lnMa + εan,where µ is a positive sale parameter.The original PS formulation, orreting the path utility Uin, is based onthe de�nition of the link utility Uan. Aordingly, the positive orretionfor the size of an aggregate alternative, results in a negative orretion ofthe utility of an elemental alternative. Moreover, there is no orretion ofan elemental alternative whih belongs to a nest with size one. The sizeorretion for an elemental alternative an therefore be de�ned as 1

µ
ln 1

Ma
.8



The ontribution of a link a is then 1
µ
ln 1∑

j∈Cn
δaj

where δaj is the link-path inidene variable. Furthermore, we assume that the size of a path isproportional to the length of its links. If la denotes the length of link aand Li the length of path i, we have derived the original PS formulationPSin =
∑

a∈Γi

la

Li

1
∑

j∈Cn

δaj

.Inluding a PS orretion in the utility Uin gives
Uin = Vin + βPS lnPSin + εin, i ∈ Cn,where βPS = 1

µ
.Two questions regarding the original PS formulation that are disussedin the literature an be answered based on how the PS formulation is de-rived. First, whether βPS should be �xed to one or estimated. Seond, towhih extent the PS attribute an apture orrelation.Ben-Akiva and Bierlaire (1999b) do not inlude a βPS in their utilityspei�ation. Ramming (2001) argues that aording to disrete hoie the-ory, βPS should be �xed to one. However, his βPS estimate is signi�antlydi�erent from both zero and one. Hoogendoorn-Lanser et al. (2005) suggestthat the PS attribute an have a behavioral interpretation and thereforeargues that βPS should be estimated. They also get better empirial resultswhen estimating βPS. When deriving the original PS formulation, we showthat βPS = 1

µ
where µ is a positive sale parameter. βPS should therefore beestimated and be stritly positive in order to be onsistent with the theory.Both Ramming (2001) and Hoogendoorn-Lanser et al. (2005) onludethat the PS attribute only orrets the utility for a part of the orrelation.When deriving the PS attribute the error terms of paths using a same linkare assumed to be i.i.d. The ross-nested struture and the orrelation dueto paths using more than one link is therefore negleted. This explains thePS attribute's limited apaity of apturing orrelation.Ben-Akiva and Bierlaire (1999b) present an alternative PS formulation(6) inluding the length of the shortest path in the hoie set L*

Cn
. The9



orrelation of the utility lnPSin an be written as follows:lnPSin = − lnLi − lnL∗
Cn

+ ln∑
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∑
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.Note that, inluding L*
Cn

adds a onstant lnL∗
Cn

to all path utilities in thehoie set whih does not hange their relative utility.The Generalized PS formulation (7) was introdued by Ramming (2001)in order to derease the inuene of unrealistially long paths on the utilityof shorter paths in the hoie set. The formulation is however diÆult tointerpret for γ > 0. (Note that γ = 0 orresponds to the original PSformulation.)In order to analyze the inuene of the γ parameter, we write lnPSinas follows: lnPSin = −(γ + 1) lnLi + ln∑

a∈Γi
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∑
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. (9)Independently of the value of the γ parameter, this formulation yields azero orretion when path i has no overlap with any other path in thehoie set. However, it is theoretially diÆult to give an interpretation aswell as a motivation of the γ parameter, espeially for large values. Indeedwhen γ → +∞, if we assume that Li > 1 ∀ i ∈ Cn, the limits of the twoterms in equation (9) arelim
γ→+∞

−(γ + 1) lnLi = −∞ lim
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= +∞.This result an be explained by the fat that the sum in the denominatorof formulation (7) is omposed of terms (Li

Lj

)γ where Li

Lj
an be greateror equal to one, or less than one depending on the lengths Li and Lj.Sine Ramming (2001) onsidered an example with only two orrelatedalternatives this e�et was not illustrated in his thesis. Here we onsider10
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L4 = 12Figure 1: Example for Deterministi Corretion Formulationinstead an example with three orrelated alternatives (shown in Figure 1)where the length of path 3, L3, varies with the length of link 4, l4.In Figure 2 we ompare the values of the original PS formulation (5),

γ = 0 (thin lines), with the generalized formulation (7) using a high valueof γ (thik lines) as a funtion of l4. Only the PS values for the orrelatedalternatives are shown.The original PS formulation penalizes path 2 the most and path 4 theleast, whih is intuitive sine the orrelated part (link 2) has a higherproportion of the total length for path 2 than path 4. Moreover, path 3is penalized proportionally to the length of link 4. For a high value of γthe results are ounter intuitive sine path 2 is not penalized at all, exeptwhen the length of path 3 is lose to the length of path 2 (shortest path).In this ase, the orretion is highly unstable with respet to variations of
l4. We now onsider a hoie set where two alternatives have almost thesame length and one of those alternatives is the shortest path, that is
L1 = 10.0, L2 = 10.0,L3 = 10.1 and L4 = 12. A ase whih is ommonin pratie. In Figure 3 we show the PS values for this ase as γ varies.First of all, note that the ordering of the paths hanges. Path 4 is more11



penalized than path 3 for γ < 170 and then the order is inverted. Seond,even though path 3 is only 1% longer than path 2, its PS value dereasesas γ inreases.
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Figure 2: PS values (γ = 0 and γ = 3000) for orrelated alternatives inexample 1 as a funtion of l4We onlude that the generalized formulationmay produe ounter intu-itive results and the original PS formulation should therefore be preferred.Moreover it has a theoretial support. However, as pointed out earlier, thePS attribute an only apture part of the orrelation. It is preferable to usea model that aounts expliitly for orrelation within the error struture,but without onsiderably inreasing the omplexity. For this purpose, wepropose to use subnetworks whih are disussed in the next setion.12
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4 SubnetworksWe are proposing a modeling approah whih is designed to be both be-haviorally realisti and onvenient for the analyst. We de�ne a subnetworkomponent as a sequene of links orresponding to a part of the networkwhih an be easily labeled, and is behavioral meaningful in atual routedesriptions (Champs-Elys�ees in Paris, Fifth Avenue in New York, MassPike in Boston, et.) The analyst de�nes subnetwork omponents eitherby arbitrarily seleting motorways and main roads in the network hierar-hy, or by onduting simple interviews to identify the most frequently usednames when people desribe itineraries. Note that the atual relevane of agiven subnetwork omponent an be tested after model estimation, so thatvarious hypotheses an be tried.We hypothesize that paths sharing a subnetwork omponent are orre-lated, even if they are not physially overlapping. We propose to expliitlyapture this orrelation within a fator analyti spei�ation of a EC model.The model spei�ation is ombined with a PS attribute that aounts forthe topologial orrelation on the omplete network. The LK model spei-�ation builds on the model presented by Bekhor et al. (2002). We de�nethe utility as
Un = βTXn + FnTζn + νn (10)where Fn (JxQ) is the fator loadings matrix (J is the number of paths and Qis the number of subnetwork omponents), T(QxQ) = diag (σ1, σ2, . . . , σQ)(σq is the ovariane parameter assoiated with subnetwork omponent q,to be estimated), ζn (Qx1) is a vetor of i.i.d. N(0,1) variates, and ν(Jx1) isa vetor of i.i.d. Extreme Value distributed variates. An element (fn)iq of

Fn equals √lniq where lniq is the length by whih path i in hoie set Cnoverlaps with subnetwork omponent q.We illustrate the model spei�ation with a small example presentedin Figure 4. We onsider one origin-destination pair, three paths and asubnetwork omposed of two subnetwork omponents (Sa and Sb). Path 1uses both subnetwork omponents whereas path 2 only uses Sa and path 3only Sb. Path 1 is assumed to be orrelated with both path 2 and path 3even though path 1 and path 2 do not physially overlap. The path utilities14



for this example are onsequently
U1 = βTX1 +

√

l1aσaζa +
√

l1bσbζb + ν1

U2 = βTX2 +
√

l2aσaζa + ν2

U3 = βTX3 +
√

l3bσbζb + ν3,where ζa and ζb are distributed N(0,1), liq is the length path i uses sub-network omponent q. σa and σb are the ovariane parameters to beestimated.The variane-ovariane matrix of ζ for this example is
FTTTFT =
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Figure 4: Example of a Subnetwork

4.1 Empirical ResultsThe estimation results presented in this setion are based on a GPS dataset olleted during a traÆ safety study in the Swedish ity of Borl�ange.Nearly 200 vehiles were equipped with a GPS devie and the vehileswere monitored within a radius of about 25 km around the ity enter.15



Sine the data set was not originally olleted for route hoie analysis, anextensive amount of data proessing has been performed in order to leanthe data and obtain oherent routes. The data proessing for obtaining datafor route hoie analysis was mainly performed by the ompany GeoStatsin Atlanta. Data of 24 vehiles and a total of 16 035 observations areavailable for route hoie analysis. (See Axhausen et al., 2003, Sh�onfelderand Samaga, 2003 and Sh�onfelder et al., 2002 for more details on theBorl�ange GPS data set.) For the model estimations we onsider a totalof 2 978 observations orresponding to 2 244 observed simple routes of 24vehiles and 2 179 origin-destination pairs. Note that we make a distintionbetween observations and observed routes sine a same route an have beenobserved several times.Borl�ange is situated in the middle of Sweden and has about 47 000 in-habitants. The road network ontains 3 077 nodes and 7 459 unidiretionallinks. We have de�ned a subnetwork based on the main roads for travers-ing the ity enter. Two of the Swedish national roads (\riksv�ag") traverseBorl�ange. The subnetwork is omposed of these national roads (referredto as R.50 and R.70) and we have de�ned two subnetwork omponents foreah national road (north and south diretions). In addition, we have de-�ned one subnetwork omponent for the road segment in the ity enterwhere R.50 and R.70 overlap (alled R.C.). The Borl�ange route networkand the subnetwork are shown in Figure 5. In Table 1 we report for eahsubnetwork omponent its length and the number of observations that usethe omponent. Table 1 also reports the weighted number Nq, de�ned by
Nq =

∑
o∈O

loq

Lq
, where loq is the ommon length between the route orre-sponding to observation o and subnetwork omponent q, Lq is the lengthof q, and O is the set of all observations.For the hoie set generation we have used a link elimination approah(Azevedo et al., 1993). This algorithm omputes the shortest path andadds it to the hoie set. One link at a time is then removed from theoriginal shortest path, and a new shortest path in the modi�ed network isomputed and added to the hoie set, if it is not already present.The main drawbak of the link elimination approah is that it gener-ates similar routes. When one link is removed, there exists often a short16



R.50 S R.50 N R.70 S R.70 N R.C.Component length [m℄ 5255 4966 11362 7028 1733Nb. of Observations 173 153 261 366 209Weighted Nb. of 36 88 65 73 116Observations (Nq)Table 1: Statistis on Observations of Subnetwork Components

Figure 5: Overview of Borl�ange Road Network and Subnetwork De�nition17



deviation using roads next to the removed link. In order to address thisdrawbak we have used two generalized osts for the shortest path ompu-tation. In addition to estimated travel time, we have also used link lengthdivided by the number of lanes. For eah origin-destination pair, the linkelimination algorithm is therefore applied to two shortest paths.The observed routes that were not found by the hoie set generationalgorithm were added afterwards. The algorithm found all the observedroutes for 80% of the origin-destinations pairs. However, for 20% of theorigin-destination pairs, none of the observed routes were identi�ed, whihorresponds to 23% of the observed routes. Typially, this is the ase whenthe observed routes make long detours ompared to the shortest path, forexample, in order to avoid the ity enter. These results are onsistent withthe �ndings of Ramming (2001) who at best found 84% of the observedroutes by ombining all the hoie set generation algorithms that he hadtested. The number of paths in the hoie sets varies between 2 and 43where a majority of the hoie sets (93%) inlude less than 15 paths.
4.1.1 Model SpecificationWe ompare a PSL model with three di�erent spei�ations of a EC modelbased on the subnetwork de�ned previously. One EC model (EC1) is spei-�ed with a simpli�ed orrelation struture where the ovariane parametersare assumed to be equal. The seond and third EC models (EC2 and EC3)are spei�ed with one ovariane parameter per subnetwork omponent.Even though the number of individuals is small, we provide a model(EC3) where we take into aount that we have panel data. We assumethat the pereption of orrelated alternatives on the subnetwork is indi-vidual spei� and that the taste is onstant over hoie situations. Therandom parameters in the orrelation struture are therefore spei�ed tobe invariant aross the observations of a given individual.All models are spei�ed with the same linear in parameters formulationof the deterministi part of the utility funtion. The deterministi part Vi
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for alternative i is
Vi = βPS ln(PSi) + βEstimatedTimeEstimatedTimei+

βNbSpeedBumpsNbSpeedBumpsi + βNbLeftTurnsNbLeftTurnsi+
βAvgLinkLengthAvgLinkLengthi.In addition to lassial attributes suh as estimated travel time, number ofspeed bumps and number of left turns in unontrolled rossings, we haveinluded average link length whih is intended to apture an attrationfor routes with few rossings. The estimated travel time is omputed foreah link in the network based on its length and an average speed. Wehave used one average speed for eah speed limit that orresponds to theobserved average speed. Statistis on all attributes inluded in the modelspei�ations are given in Table 2.A PS attribute, de�ned by the original formulation (5) based on length,is inluded in all models in order to apture the topologial orrelationamong alternatives. PS based on length and estimated travel time showssimilar results, length was therefore preferred sine it is known with er-tainty. A high orrelation among the routes is expeted sine a link elimina-tion approah has been used for generating the hoie sets. In Figure 6 weshow the PS values for all routes and all hoie sets. The generated routesare shown with blak bars and the observed routes with gray bars. A ma-jority of the routes have a high overlap (low PS values). Only 5% of theroutes have no overlap (PS value that equals 1). Note however that almost50% of the routes that have no overlap are observed routes. This an beexplained by the poor performane of the hoie set generation algorithmdisussed in the previous setion. Namely, for 20% of the origin-destinationpairs, none of the observed routes were found by the algorithm. These ob-served routes are therefore expeted to have a low overlap with the otherroutes in the hoie set.We deal with heterosedastiity by speifying di�erent sale parametersfor di�erent individuals. After systemati testing of various spei�ations,nine individuals have one sale parameter eah whih are estimated signi�-antly di�erent from one. For the remaining individuals the sale parameter19
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Figure 6: Number of routes for PS valuesis �xed to one.
4.1.2 Model EstimationThe parameter estimates are given in Table 3. We have provided a saledparameter estimate in order to failitate the omparison of di�erent mod-els. The saling is based on the estimated travel time parameter in thePSL model. The magnitude of the saled estimate for this parameter isonsequently the same for all the models.We start by omparing the models PSL, EC1 and EC2. The parameterestimates shown in Table 3 related to average link length, estimated traveltime, number of left turns and number of speed bumps are all signi�antlydi�erent from zero. Moreover, the parameter values as well as the robustt-test statistis are very stable when omparing the di�erent models.The PS parameter estimate, βPS, is negative and signi�antly di�erentfrom zero and fromminus one in models PSL, EC1 and EC2. As disussed in20



Attribute Min Average MaxEstimated Travel Time [min℄ 0.5 4.2 37.5Number of Left Turns 0 3.2 27Average Link Length [m℄ 11 198.7 2947Number of Speed Bumps 0 0.3 5ln(PS) -3.7 -0.9 0Table 2: Statistis on AttributesSetion 3 a negative value of βPS is not onsistent with hoie theory sine itorresponds to a sale parameter and onsequently should be positive. Thenegative estimate suggests that the PS attribute aptures an attrativenessfor overlapping paths. An inrease in magnitude and signi�ane of thesaled βPS estimates an be noted when omparing EC1 with PSL and EC2with EC1. More preisely, when the orrelation struture on the subnetworkis expliitly aptured by the error terms, the value of βPS inreases inmagnitude and signi�ane. Based on these results, we draw the onlusionthat the PS attribute as an ambiguous interpretation. On the one hand,it negatively orrets the utility for the independene assumption on therandom terms. On the other hand, it has a behavioral interpretation.Namely, it aptures an attrativeness for overlapping paths, for example,beause they provide de possibility of route swithing (this has also beensuggested by Hoogendoorn-Lanser et al., 2005 in the ontext of multi-modalroute hoie). Another possible explanation for the negative βPS estimateis based on the hoie set de�nition. A majority of the observed paths havea high overlap with other paths in the hoie set (see Figure 6). Hene, theutility is inreased for overlapping paths.Based on the log-likelihood values reported in Table 4, and the χ2-testsshown in Table 5, the PSL model an be rejeted when ompared with EC1and EC2. Moreover, EC2 is signi�antly better than EC1. The hypothesisof equal ovariane parameters for all subnetwork omponents an thereforebe rejeted although not as strongly as the PSL model.The estimate of σR50S in model EC2 (see Table 3) is not signi�antlydi�erent from zero. This an be explained by the limited number of obser-21



vations using this subnetwork omponent. As shown in Table 1, there are173 observations that use R.50 S but sine the number of weighted obser-vations is only 36, the length by whih they overlap with the subnetworkomponent is relatively short.Considering the signi�ant improvement in model �t for the EC1 andEC2 models ompared to the PSL model, as well as the signi�ant o-variane parameter estimates, we onlude that the spei�ation based onsubnetwork aptures an important orrelation struture.Finally, we ompare EC2 with EC3 where EC3 explores the panel datastruture of the observations. Referring to the saled parameter estimatesin Table 3 for average link length, estimated travel time, number of leftturns and number of speed bumps, the value of the estimates are verystable. On the ontrary, the value βPS dereases in magnitude, breaking atrend where it has been inreasing in magnitude for the models EC1 andEC2 ompared to the PSL model. It is possible that the EC3 model betteraptures individuals' pereption of overlapping paths than EC1 and EC2.The behavioral aspet that the PS attribute aptures in models EC1 andEC2 is therefore aptured within the model struture of EC3. This wouldexplain the dereased magnitude of the βPS value.All the ovariane parameter estimates, exept for σR50S, are signi�antin the EC3 model. The assumption that the pereption of orrelated al-ternatives on the subnetwork is individual spei� and that the taste isonstant over hoie situations seems to orrespond to the observations.Due to the small number of individuals there is a systemati loss insigni�ane for all parameters in EC3 ompared to EC2. In spite of this,there is a remarkable inrease in model �t (see Table 4) ompared to EC2.
5 ConclusionIn this paper we justify the use of the original PS formulation among thedeterministi orretions of the IIA assumption on the random terms in aMNL model. This is the formulation that both has a theoretial supportand shows intuitive results for the orretion of the independene assump-tion on the random terms. Moreover, we have presented estimation results22



Parameters PSL EC1 EC2 EC3

Path Size -0.28 -0.49 -0.53 -0.32Saled estimate -0.28 -0.45 -0.48 -0.31(Std. Err.) Rob. t-test (0.07) -4.05 (0.09) -5.61 (0.09) -5.91 (0.19) -1.65
Avg. Link Length 4.15 4.98 5.06 4.754.15 4.58 4.61 4.53(0.55) 7.58 (0.60) 8.32 (0.61) 8.28 (1.21) 3.92
Estimated Time -0.40 -0.43 -0.44 -0.42-0.40 -0.40 -0.40 -0.40(0.05) -7.85 (0.06) -7.47 (0.06) -7.51 (0.10) -4.37
Nb. Left Turns -0.32 -0.33 -0.33 -0.33-0.32 -0.30 -0.30 -0.31(0.02) -15.73 (0.02) -15.62 (0.02) -15.59 (0.04) -9.16
Nb. Speed Bumps -0.23 -0.22 -0.23 -0.22-0.23 -0.20 -0.21 -0.21(0.07) -3.52 (0.07) -3.14 (0.07) -3.14 (0.19) -1.11
σ 1.441.32(0.19) 7.57
σR50N 1.07 1.780.97 1.70(0.32) 3.28 (0.67) 2.66
σR50S -0.27 -0.69-0.24 -0.66(0.69) -0.39 (0.60) -1.16
σR70N -2.04 0.65-1.85 0.62(0.39) -5.16 (0.26) 2.55
σR70S -1.52 -0.83-1.39 -0.79(0.22) -7.08 (0.20) -4.07
σRC 2.02 1.191.83 1.14(0.66) 3.05 (0.32) 3.75Table 3: Estimation Results
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Model Nb. σ Nb. Estimated Final AdjustedEstimates Parameters L-L Rho-SquarePSL - 13 -4174.72 0.154EC1 1 14 -4142.40 0.161EC2 5 18 -4136.92 0.161EC3 5 18 -4109.73 0.1661000 pseudo-random draws for Maximum Simulated Likelihood estimation2978 observationsNull Log-Likelihood: -4951.11BIOGEME (roso.ep.h/biogeme) has been used for all model estimations(Bierlaire, 2003, Bierlaire, 2005).Table 4: Model Fit MeasuresModel 1 Model 2 Test Threshold (95%)PSL EC1 64.64 3.84PSL EC2 75.60 11.07EC1 EC2 10.96 9.49Table 5: χ2-testthat suggest a behavioral interpretation of the Path Size attribute. Namely,overlap an be attrative for travelers sine it provides the possibility ofswithing between di�erent routes.We propose a novel modeling approah based on subnetworks designedto enhane the performane of simple models, suh as the Path Size Logitmodel. Estimation results show that this approah is signi�antly betterthan a simple Path Size Logit model. A subnetwork is a set of subnetworkomponents. Alternatives are assumed to be orrelated if they use thesame subnetwork omponent even if they do not physially overlap. Thisorrelation is aptured within a fator analyti spei�ation of an ErrorComponent model ombined with a Path Size attribute. The estimationresults are promising and the estimates of the ovariane parameters sug-gest that the spei�ation aptures an important orrelation struture.We believe that this approah will open new perspetives for large-saleroute hoie modeling. It is a exible approah where the trade-o� betweenomplexity and behavioral realism an be ontrolled by the analyst withthe de�nition of the subnetwork. Clearly, more analysis is required to assess24



the sensitivity of the results with regard to the de�nition of the subnetwork.Moreover, additional validity tests on other datasets would be desirable.
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