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AbstractWe propose an extension of se
ant methods for nonlinear equations us-ing a population of previous iterates. Contrarily to 
lassi
al se
ant meth-ods, where exa
t interpolation is used, we prefer a least squares approa
hto 
alibrate the linear model. We propose an expli
it 
ontrol of the nu-meri
al stability of the method.We show that our approa
h 
an lead to an update formula. In that
ase, we prove the lo
al 
onvergen
e of the 
orresponding undamped quasi-Newton method. Finally, 
omputational 
omparisons with 
lassi
al quasi-Newton methods highlight a signi�
ant improvement in terms of robust-ness and number of fun
tion evaluations. We also present numeri
al testsshowing the robust behavior of our method in the presen
e of noise.

1 IntroductionWe 
onsider the standard problem of identifying the solution of a system ofnonlinear equations
F(x) = 0 (1)where F : R

n → R
n is a di�erentiable fun
tion. Sin
e Newton, this problemhas re
eived a tremendous amount of attention. Newton's method and itsmany variations are still intensively analyzed and used in pra
ti
e. The idea ofNewton-like methods is to repla
e the nonlinear fun
tion F by a linear model,whi
h approximates F in the neighborhood of the 
urrent iterate. The originalNewton method invokes Taylor's theorem and uses the gradient matrix (thetranspose of whi
h is 
alled the Ja
obian) to 
onstru
t the linear model. Whenthe Ja
obian is too expensive to evaluate, se
ant methods build the linear model

∗This resear
h is supported by SNF grants 205121-103598 and 205121-1035981

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147910419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


based on the se
ant equation. Be
ause se
ant methods exhibit a q-superlinearrate of 
onvergen
e, they have been intensively analyzed in the literature.The se
ant equation imposes that the linear model exa
tly mat
hes thenonlinear fun
tion F at two su

essive iterates. If the number of unknowns
n is stri
tly greater than 1, an in�nite number of linear models verify these
ant equation. Therefore, ea
h se
ant method derives a spe
i�
 update for-mula whi
h arbitrarily pi
ks one linear model among them. The most 
ommonstrategies are 
alled \least-
hange updates" and sele
t the linear model whi
hminimizes the di�eren
e between two su

essive models.In this paper, we provide a 
lass of algorithms generalizing these ideas.Instead of using only two su

essive iterates to determine this linear model,we maintain a \population" of previous iterates. This approa
h allows all theavailable information 
olle
ted through the iterations to be expli
itly used for
alibrating the model.An important feature of our method is that we do not impose an exa
t mat
hbetween the model and the fun
tion. Instead, we use a least squares approa
hto request that the model �ts the fun
tion \as well as possible". In this paper,we present the 
lass of algorithms based on our method (Se
tion 2.2) and provethat they are lo
ally 
onvergent (Se
tion 3). This 
lass of algorithms exhibitsa faster 
onvergen
e and a greater robustness than quasi-Newton methods formost numeri
al tests that we have performed (Se
tion 4) at a 
ost of substantiallinear algebra 
omputation. Therefore it is valuable when the 
ost of evaluating
F is high in 
omparison with the numeri
al algebra overhead.
2 Quasi-Newton methodsQuasi-Newton methods 
onsider at ea
h iteration the linear model

Lk(x; Bk) = F(xk) + Bk(x − xk) (2)whi
h approximates F(x) in the neighborhood of xk and 
omputes xk+1 as asolution of the linear system Lk(x; Bk) = 0. Consistently with most of the pub-li
ations on this topi
, quasi-Newton methods 
an be summarized as methodsbased on the following iterations:
xk+1 = xk − B−1

k F(xk), (3)followed by the 
omputation of Bk+1. The pure Newton method is obtainedwith Bk = J(xk) = ∇F(xk)T, the Ja
obian of F evaluated at xk, that is a
n × n matrix su
h that entry (i, j) is ∂Fi/∂xj. We refer the reader to Dennisand S
hnabel (1996) for an extensive analysis of Newton and quasi-Newtonmethods.
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2.1 Secant methodsBroyden (1965) proposes a quasi-Newton method based on the se
ant equa-tions, imposing the linear model Lk+1 to exa
tly mat
h the nonlinear fun
tionat iterates xk and xk+1, that is
Lk+1(xk; Bk+1) = F(xk),

Lk+1(xk+1, Bk+1) = F(xk+1).
(4)Subtra
ting these two equations and de�ning yk = F(xk+1) − F(xk) and sk =

xk+1 − xk we obtain the 
lassi
al se
ant equation:
Bk+1sk = yk. (5)Clearly, if the dimension n is stri
tly greater than 1, there is an in�nite num-ber of matri
es Bk+1 satisfying (5). An arbitrary de
ision must 
onsequently bemade. The \least-
hange se
ant update" strategy, proposed by Broyden (1965),
onsists in sele
ting among the matri
es verifying (5) the one minimizing vari-ations (in Frobenius norm) between two su

essive matri
es Bk and Bk+1. Itleads to the following update formula

Bk+1 = Bk +
(yk − Bksk) sT

k

sT
ksk

. (6)This method has been very su

essful, and has been widely adopted in the�eld. However, we believe that the idea of interpolating the linear model at onlytwo iterates and ignoring previous iterates 
ould be too restri
tive. Therefore,we propose to use more than two iterates to build the linear model.This idea has already been 
onsidered. Dennis and S
hnabel (1996) say that\Perhaps the most obvious strategy is to require the model to interpolate F(x)at other past points... One problem is that the dire
tions tend to be linearlydependent or 
lose to it, making the 
omputation of (the approximation matrix)a poorly posed numeri
al problem". Later, they write \In fa
t, multivariablegeneralizations of the se
ant method have been proposed ... but none of themseem robust enough for general use."There are few attempts to generalize this approa
h in the literature. A �rstgeneralization of the se
ant method is the sequential se
ant method proposedby Wolfe (1959) and dis
ussed by Ortega and Rheinboldt (1970). The idea isto impose exa
t interpolation of the linear model on n+ 1 iterates instead of 2:
Lk+1(xk+1−j; Bk+1) = F(xk+1−j), j = 0, 1, . . . , n. (7)or, equivalently,

Bk+1sk−j = yk−j, j = 0, 1, . . . , n − 1, (8)where si = xk+1 − xi, and yi = F(xk+1) − F(xi), for all i. If the ve
tors
sk, sk−1, . . . , sk−n+1 are linearly independent, there exists exa
tly one matrix
Bk+1 satisfying (8), whi
h is

Bk+1 = Yk+1S
−1
k+1 (9)3



where Yk+1 = (yk, yk−1, . . . , yk−n+1) and Sk+1 = (sk, sk−1, . . . , sk−n+1).Quoting Ortega and Rheinboldt (1970) \...(sequantial methods) are proneto unstable behavior and ... no satisfa
tory 
onvergen
e results 
an be given".Nevertheless Gragg and Stewart (1976) propose a method whi
h avoids in-stabilities by working with orthogonal fa
torizations of the involved matri
es.Martinez (1979) gives three implementations of the idea proposed by Graggand Stewart (1976) and some numeri
al experiments.Multi-step quasi-Newton methods have been proposed by Moghrabi (1993),Ford and Moghrabi (1997) and Ford (1999) in the 
ontext of nonlinear pro-gramming. An interpolating path is built based on previous iterates, and usedto produ
e an alternative se
ant equation. Interestingly, the best numeri
alresults were obtained with no more than two steps.We believe that the 
omments about the poor numeri
al stability of thosemethods found in major referen
e texts su
h as Dennis and S
hnabel (1996)and Ortega and Rheinboldt (1970) have not en
ouraged resear
hers to pursuethese investigatations. We provide here a su

essful multi-iterates appoa
hwith robust 
onvergen
e properties and exhibiting an ex
ellent behavior onnumeri
al examples. The idea of using a least squares approa
h is similarto an idea proposed in the physi
s litterature by Vanderbilt and Louie (1984),whi
h has inspired other authors in the same �eld (Johnson, 1988, Eyert, 1996).Bierlaire and Crittin (forth
oming) have used a similar approa
h for solvingnoisy large s
ale transportation problems.
2.2 Population-based approachWe propose a 
lass of methods 
alibrating a linear model based on severalprevious iterates. The di�eren
e with existing approa
hes is that we do notimpose the linear model to interpolate the fun
tion. Instead, we prefer toidentify the linear model whi
h is as 
lose as possible to the nonlinear fun
tion,in the least squares sense.At ea
h iteration, we maintain a �nite population of previous iterates. With-out loss of generality, we present the method assuming that all previous iter-ates x0, . . . , xk+1 are 
onsidered. Our method belongs also to the quasi-Newtonframework de�ned by (3), where Bk+1 is 
omputed as follows.
Bk+1 = argmin

J

(

k∑

i=0

∥

∥

∥
ωi

k+1F(xi) − ωi
k+1Lk+1(xi; J)

∥

∥

∥

2

2
+
∥

∥

∥
JΓ − B0

k+1Γ
∥

∥

∥

2

F

) (10)where Lk+1 is de�ned by (2) and B0
k+1 ∈ R

n×n is an a priori approximation of
Bk+1. The role of the se
ond term is to over
ome the under-determination ofthe least squares problem based on the �rst term and also 
ontrol the numeri
alstability of the method. The matrix Γ 
ontains weights asso
iated with the ar-bitrary term B0

k+1, and the weights ωi
k+1 ∈ R

+ are asso
iated with the previous4



iterates. Equation (10) 
an be written in matrix form as follows: Bk+1 =argmin
J

∥

∥

∥

∥

J
(

Sk+1 In×n

)

(

Ω 0k×n

0n×k Γ

)

−
(

Yk+1 B0
k+1

)

(

Ω 0

0 Γ

)
∥

∥

∥

∥

2

Fwhere Ω ∈ R
k+1 is a diagonal matrix with weights ωi

k+1 on the diagonal for
i = 0, · · · , k. The normal equations of this least squares problem lead to thefollowing formula:

Bk+1 = B0
k+1 +

(

Yk+1 − B0
k+1Sk+1

)

Ω2ST
k+1

(

ΓΓT + Sk+1Ω
2ST

k+1

)−1

, (11)where Yk+1 = (yk, yk−1, . . . , y0) and Sk+1 = (sk, sk−1, . . . , s0).The role of the a priori matrix B0
k+1 is to over
ome the possible under-determination of problem (10). For example, 
hoosing B0

k+1 = Bk (similarly to
lassi
al Broyden-like methods) exhibits good properties. In that 
ase, (11) be-
omes an update formula, and lo
al 
onvergen
e 
an be proved (see Se
tion 3).The weights ωi
k+1 
apture the relative importan
e of ea
h iterate in thepopulation. Roughly speaking, they should be designed in the lines of theassumptions of Taylor's theorem, that is assigning more weight to points 
loseto xk+1, and less weight to points whi
h are faraway. The matrix Γ 
apturesthe importan
e of the arbitrary terms de�ned by B0

k+1 for the identi�
ation ofthe linear model. The weights have to be �nite, and Γ must be su
h that
ΓΓT + Sk+1Ω

2ST
k+1 (12)is safely positive de�nite. To ensure this property we des
ribe below three pos-sible approa
hes for 
hoosing ΓΓT: the geometri
al approa
h, based on spe
i�
geometri
 properties of the population, the subspa
e de
omposition approa
h,de
omposing R

n into the subspa
e spanned by the 
olumns of Sk+1 and itsorthogonal 
omplement, and the numeri
al approa
h, designed to guaranteea numeri
ally safe positive de�niteness of (12).The geometri
al approa
h assumes that n + 1 members of the populationform a simplex, so that the 
olumns of Sk+1 span R
n, and (12) is positivede�nite with ΓΓT = 0. In that 
ase, (11) be
omes

Bk+1 = Yk+1Ω
2ST

k+1

(

Sk+1Ω
2ST

k+1

)−1

. (13)If there are exa
tly n + 1 iterates forming a simplex, the geometri
al approa
his equivalent to the interpolation method proposed by Wolfe (1959), and (13) isexa
tly (9), as Sk+1 is square and non singular in that 
ase. This approa
h havenot shown good numeri
al behavior in pra
ti
e as mentioned in Se
tion 2. Also,it requires at least n + 1 iterates, and may not be appropriate for large-s
aleproblems.The subspa
e de
omposition approa
h is based on the QR de
ompositionof Sk+1. We denote by r the rank of Sk+1, with r ≤ n, and we have Sk+1 = QR,where
Q =

(

Q1 Q2

) (14)5



with Q1 is (n × r), Q2 is (n × n − r), and R is (n × k + 1). The r 
olumns of
Q1 form an orthogonal basis of the range of Sk+1. We de�ne now Γ su
h that

Γ =
(

0n×r Q2

) (15)that is Q where Q1 has been repla
ed by a null matrix. With this 
onstru
tion
ΓΓT + Sk+1Ω

2ST
k+1 is invertible and Sk+1ΓΓ

T = 0. In the 
ase where Sk+1 spansthe entire spa
e then r = n, Γ is a null matrix and (11) is equivalent to (13).With the subspa
e de
omposition approa
h, the 
hanges of F predi
ted by
Bk+1 in a dire
tion orthogonal to the range of Sk+1 is the same as the onepredi
ted by the arbitrary matrix B0

k+1. This idea is exa
tly the same as theone used by Broyden (1965) to 
onstru
t his so 
alled Broyden's Good method.Numeri
al problems may happen when the 
olumns of Sk+1 are 
lose tolinear dependen
e. These are the problems already mentioned in the introdu
-tion, and reported namely by Ortega and Rheinboldt (1970) and Dennis andS
hnabel (1996). Clearly, su
h problems do not o

ur when Sk+1 has exa
tlyone 
olumn, whi
h leads to the 
lassi
al Broyden method.The numeri
al approa
h is designed to address both the problem of over-
oming the under-determination, and of guaranteeing numeri
al stability. It isdire
tly inspired by the modi�ed Cholesky fa
torization proposed by S
hnabeland Eskow (1991). The modi�ed Cholesky fa
torization of a square matrix A
reates a matrix E su
h that A+E is safely positive de�nite, while 
omputing itsCholesky fa
torization. It may namely happen that A has full rank, but withsmallest eigenvalue very small with regard to ma
hine pre
ision. In that 
ase,
E is non zero despite the fa
t that A is non singular. We apply this te
hniquewith A = Sk+1Ω

2ST
k+1 and E = ΓΓT. So, if the matrix Sk+1Ω

2ST
k+1 is safely pos-itive de�nite, ΓΓT = 0 and (11) redu
es to (13). If not, the modi�ed Choleskyfa
torization guarantees that the role of the arbitrary term Γ is minimal.We now emphasize important advantages of our generalization 
ombinedwith the numeri
al approa
h. Firstly, 
ontrarily to interpolation methods,our least squares model allows to use more than p points to identify a modelin a subspa
e of dimension p (where p ≤ n). This is very important whenthe obje
tive fun
tion is expensive to evaluate. Indeed, we make an eÆ
ientuse of all the available information about the fun
tion to 
alibrate the se
antmodel. It is namely advantageous 
ompared to Broyden's method, where onlytwo iterates are expli
itly used to build the model, while previous iterates onlyplay an impli
it role due to the \least-
hange" prin
iple. Se
ondly, the nu-meri
al approa
h proposed above 
ontrols the numeri
al stability of the model
onstru
tion pro
ess, when a sequen
e of iterates may be linearly dependent.Finally, the fa
t that existing methods are spe
ial 
ases of our approa
h allowsto generalize the theoreti
al and pra
ti
al properties already published in theliterature, and simpli�es their extension to our 
ontext. We apply this prin
i-ple to the lo
al 
onvergen
e analysis in se
tion 3. The main drawba
k is thein
rease in numeri
al linear algebra as the least squares problem (10) must be6



solved at ea
h iteration. Therefore, it is parti
ularly appropriate for problemswhere F is very expensive to 
ompute.We 
on
lude this se
tion by showing that our population-based update for-mula is a generalization of Broyden update. A
tually, the 
lassi
al Broydenupdate (6) is a spe
ial 
ase of our update formula (11), if B0
k+1 = Bk, the popu-lation 
ontains just two iterates xk and xk+1, and the subspa
e de
ompositionapproa
h is used. The se
ant equation (5) 
ompletely de�nes the linear modelin the one-dimensional subspa
e spanned by sk = xk+1−xk, while an arbitraryde
ision is made for the rest of the model. If we de�ne ωk

k+1 = 1 and Γ is givenby (15) with r = 1, we 
an write (11) as
Bk+1 = Bk + (yk − Bksk) sT

k

(

ΓΓT + sksT
k

)−1

. (16)The equivalen
e with (6) is due to the following equality
sT
k

(

ΓΓT + sksT
k

)−1

= sT
k

1

sT
ksk

, (17)obtained from the fa
t that sT
kΓΓT = 0, by (15).

3 Local convergence analysisWe show that if ΓΓT is determined by the numeri
al approa
h des
ribed in Se
-tion 2.2, then the undamped algorithm des
ribed in Se
tion 3.1, where Bk+1 isde�ned by (11) in its update form (i.e. B0
k+1 = Bk), lo
ally 
onverges to a solu-tion of (1) if the following assumptions are veri�ed. Note that the assumptionsmade on the problem are similar to those given by Broyden (1965).

Assumptions on the problem:(P1) F : R
n → R

n is 
ontinuously di�erentiable in an open 
onvex set D.(P2) The system of equations has a solution, that is ∃ x∗ ∈ D su
h that F(x∗) =

0.(P3) J(x) is Lips
hitz 
ontinuous at x∗ with 
onstant Klip, that is
‖J(x) − J(x∗)‖ ≤ Klip‖x − x∗‖ ∀x ∈ D. (18)in the neighborhood D.(P4) J(x∗) is non-singular and there exists γ > 0 su
h that ‖J(x∗)−1‖ < γ.

Assumptions on the algorithm:(A1) The algorithm is based on the iteration (3) with x0 and B0 as initial guess.(A2) Bk is generated by (11) with B0
k+1 = Bk.7



(A3) ΓΓT is 
omputed using the numeri
al approa
h.(A4) ∀i ≤ k, we have ωi
k+1 ≤ Mω for all k and some 
onstant Mω > 0.(A5) The size of the population P is bounded above by MP where MP > 0 isa 
onstant.The notation ‖ · ‖ is used for the l2 ve
tor norm ‖x‖ = (xTx)

1
2 as well as forthe Frobenius matrix norm ‖A‖. The notation ‖ · ‖2 is used for the l2 matrixnorm ‖A‖2. For the sake of simpli�
ation, we denote ωi

k+1 = ωi, S = Sk+1,
Y = Yk+1 and Ip = {0, 1, . . . , p}. The proof uses some lemmas. Lemma 1 and2 are 
lassi
al results from the literature. Lemmas 3{5 are te
hni
al lemmasrelated to our method. Their proofs are provided in the appendix.
Lemma 1 Let F : R

n −→ R
n be 
ontinuously di�erentiable in the open
onvex D ⊂ R

n, x ∈ D, and let J be Lips
hitz 
ontinuous at x in theneighborhood D with 
onstant Klip. Then for any u, v ∈ D,

‖F(v) − F(u) − J(x)(v − u)‖ ≤ Klip

‖v − x‖ + ‖u − x‖
2

‖v − u‖ . (19)
Proof. See, for example, Dennis and S
hnabel, 1996. �

Lemma 2 Let A,C ∈ R
n×n and assume that A is invertible, with ∥∥A−1

∥

∥ ≤
µ. If ‖A − C‖ ≤ β and βµ < 1, then C is also invertible and

∥

∥

∥
C−1

∥

∥

∥
≤ µ

1 − βµ
. (20)

Proof. This lemma is known as the Bana
h Perturbation Lemma. (See, forexample, Ortega and Rheinboldt, 1970). �

Lemma 3 If assumptions (A4)-(A5) are veri�ed, then
‖SΩ2ST‖ ≤ 2MPM2

ω max
i∈Ik+1

‖xi − x∗‖2, (21)
‖Ω2ST‖ ≤

√

2MPM2
ω max

i∈Ik+1

‖xi − x∗‖. (22)where x∗ is solution of (1).
Lemma 4 If assumptions (P1),(P2) and (P3) are veri�ed then:

‖(Y − J(x∗)S)‖ ≤
√

2MPKlip max
i∈Ik+1

(

‖xi − x∗‖2
) (23)where x∗ is solution of (1).
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Lemma 5 If assumption (A3) is veri�ed, then
∥

∥

∥

∥

(

ΓΓT + SΩ2ST
)−1

∥

∥

∥

∥

2

≤ 1

τ
(24)where τ > 0.The parameter τ in Lemma 5 
ontrols the way we perturb SΩ2ST. It guaranteesthat the smallest eigenvalue of (ΓΓT + SΩ2ST

) is stri
tly greater than τ and,therefore, safely positive in a �nite arithmeti
 
ontext if τ is properly 
hosen.S
hnabel and Eskow (1991) suggest to 
hoose τ = (ma
heps) 1
3 where ma
hepsis the ma
hine epsilon.

Theorem 6 Let assumptions (P1) to (P4) hold for the problem and as-sumptions (A1) to (A5) hold for the algorithm. Then there exists twonon-negative 
onstants α1 and α2 su
h that for ea
h xk and Bk:
‖Bk+1 − J(x∗)‖ ≤

(

1 + α1maxi∈Ik+1
‖xi − x∗‖2

)

‖Bk − J(x∗)‖
+ α2maxi∈Ik+1

‖xi − x∗‖3 .
(25)

Proof. From the update formula (11), and de�ning
T1 = I − SΩ2ST(ΓΓT + SΩ2ST)−1

T2 = (Y − J(x∗)S)Ω2ST(ΓΓT + SΩ2ST)−1,we obtain
‖Bk+1 − J(x∗)‖ = ‖Bk − J(x∗) + [(J(x∗)S − J(x∗)S) + (Y − BkS)]Ω2ST(ΓΓT + SΩ2ST)−1‖

≤ ‖T1‖‖Bk − J(x∗)‖ + ‖T2‖.From Lemmas 3 and 5 we obtain
‖T1‖ ≤ ‖I‖ + ‖SΩ2ST‖‖(ΓΓT + SΩ2ST)−1‖ (26)

≤ 1 + α1 max
i∈Ik+1

‖xi − x∗‖2, (27)with
α1 =

2
√

n

τ
MPM2

ω > 0.We 
on
lude the proof using Lemmas 3, 4 and 5 to show that:
‖T2‖ ≤ ‖(Y − J(x∗)S)‖‖Ω2ST‖‖(ΓΓT + SΩ2ST)−1‖ (28)

≤ α2 max
i∈Ik+1

‖xi − x∗‖3, (29)with
α2 =

2
√

n

τ
KlipMPM2

ω > 0.
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Theorem 7 Let assumptions (P1) to (P3) hold for the problem and as-sumptions (A1) to (A5) hold for the algorithm. Then for ea
h r ∈]0, 1[,there exists ε(r) and δ(r) su
h that for
‖x0 − x∗‖ ≤ ε(r) (30)and

‖B0 − J(x∗)‖ ≤ δ(r) (31)the sequen
e xk+1 = xk − B−1
k F(xk) is well de�ned and 
onverges q-linearlyto x∗ with q-fa
tor at most r. Furthermore, the sequen
es {‖Bk‖}k and

{
‖B−1

k ‖
}

k
are uniformly bounded.

Proof. The stru
ture of the demonstration is similar to the proof of The-orem 3.2 in Broyden et al. (1973). We have purposedly skipped some identi
alte
hni
al details.First 
hoose ε(r) = ε and δ(r) = δ su
h that
γ(1 + r) (Klipε + 2δ) ≤ r (32)and

(

2α1 + α2

ε

1 − r

)

ε2

1 − r2
≤ δ. (33)We invoke Lemma 2 with µ = γ and β = 2δ to prove that B0 is non-singularand

‖B−1
0 ‖ < γ(1 + r). (34)Note that assumption 2δγ < 1 for Lemma 2 is dire
tly dedu
ed from (32).The improvement after the �rst iteration, that is

‖x1 − x∗‖ ≤ r‖x0 − x∗‖ (35)is independent of the spe
i�
 update formula and, therefore, is proven in Broy-den et al. (1973).The result for iteration k is proven with an indu
tion argument based onthe following re
urren
e assumptions:
‖Bm − J∗‖ ≤ 2δ (36)

‖xm+1 − x∗‖ ≤ r‖xm − x∗‖ (37)for all m = 1, . . . , k − 1.We �rst prove that ‖Bk − J∗‖ ≤ 2δ using Theorem 6. From (25) we dedu
e
‖Bm+1 − J(x∗)‖ − ‖Bm − J(x∗)‖

≤ α1 max
i∈Im+1

‖xi − x∗‖2‖Bm − J(x∗)‖ + α2 max
i∈Im+1

‖xi − x∗‖3

≤ α1r
2(m+1)ε22δ + α2r

3(m+1)ε3. (38)10



Summing both sides of (38) for m ranging from 0 to k − 1, we dedu
e that
‖Bk − J(x∗)‖ ≤ ‖B0 − J(x∗)‖ +

(

2α1δ + α2

ε

1 − r

)

ε2

1 − r2
(39)

≤ 2δ, (40)where (40) derives from (31) and (33).The fa
t that Bk is invertible and ‖B−1
k ‖ ≤ γ(1 + r) is again a dire
t appli-
ation of the Bana
h Perturbation Lemma 2. Following again Broyden et al.(1973), we 
an now obtain (37) for m = k, 
on
luding the indu
tion proof. �

3.1 Undamped and damped quasi-Newton methodsAll the algorithms presented in Se
tion 2.1 and 2.2 are based on the followingstru
ture.� Given F : R
n → R

n, x0 ∈ R
n and B0 ∈ R

n×n� While stopping 
riteria is not veri�ed:
– Find s solving Bks = −F(xk),
– Evaluate F(xk+1) where xk+1 = xk + s,
– Compute Bk+1.This general algorithm is often 
alled undamped quasi-Newton method, i.e.without any step 
ontrol or globalization methods. It allows to 
ompare dif-ferent type of algorithms, in term of number of fun
tion evaluations, and theirrobustness without introdu
ing a bias due to the step 
ontrol or the globaliza-tion method. Consequently, the algorithms di�er only by the method used to
ompute Bk+1.The main drawba
k of undamped methods is that we 
annot ensure 
on-vergen
e from remote starting points. Moreover, Newton-like methods withoutany 
ontrol on the step lengths may en
ounter several other sour
es of failure.For instan
e, the 
omponents of the unknown ve
tor (x) or the fun
tion ve
tor(F) or the Ja
obian approximate (Bk) may be
ome arbitrarily large.Globalization strategies 
an be grouped into two distin
t frameworks: line-sear
h and trust-region. Linesear
h approa
hes are applied to a merit fun
tionbased on F, used to measure progress toward a solution of F(x) = 0 (see for in-stan
e No
edal and Wright, 1999). Trust-region methods and �lter-trust-regionmethods (see Gould et al., 2005) 
an be used to solve the asso
iated nonlinearleast squares problem: min

x∈Rn

1

2
‖F(x)‖2

2 (41)The main disadvantage of the se
ond type of globalization is that the iterates
an be stu
ked in a lo
al minimum of (41), whi
h is not a solution of F(x) = 0.11



As we want to keep solving the original problem F(x) = 0, we adopt in thispaper the linesear
h approa
h.When integrating a linesear
h strategy to the previous undamped quasi-Newton framework, we obtain the following stru
ture.� Given F : R
n → R

n, x0 ∈ R
n and B0 ∈ R

n×n� While stopping 
riteria is not veri�ed:
– Find s solving Bks = −F(xk);
– Determine a step length αk > 0;
– Evaluate F(xk+1) where xk+1 = xk + αks;
– Compute Bk+1.This general method is 
alled damped quasi-Newton method. In the follow-ing, we des
ribe how we determine the step αk at ea
h iteration of the algorithmusing the 
lassi
al sum-of-squares merit fun
tion

m(xk) =
1

2
‖F(xk)‖2

2 =
1

2

n∑

i=1

F2
i(xk)to measure progress toward a solution of the system F. We 
hoose a step αksatisfying the following Armijo-type 
ondition with β ∈ (0, 1):

m(xk + αks) ≤ m(xk) + αkβ∇m(xk)Ts. (42)Note that β is a parameter whi
h de�nes the quality of the de
rease we want toobtain. Condition (42) is valid only if the quasi-Newton dire
tion s is a des
entdire
tion for m in xk, that is:
∇m(xk)Ts < 0. (43)If 
ondition (43) holds, we �nd a step αk satisfying (42) using a ba
ktra
kingstrategy. Unfortunately, we do not have the guarantee that our quasi-Newtondire
tion s = −B−1

k F(xk) is a des
ent dire
tion for m, unless Bk is 
lose enoughto the real Ja
obian at xk, J(xk) = ∇F(xk)T, and ∇m(xk)Ts is bounded be-low. Consequently, we use the following sequential pro
edure to �nd a des
entdire
tion for the merit fun
tion in the 
urrent iterate xk:� Che
k whether the quasi-Newton dire
tion s = −B−1
k F(xk) is a des
entdire
tion for m in xk;� If not, 
ompute using the modi�ed Cholesky fa
torization (see S
hnabeland Eskow, 1999) an auxiliary dire
tion �s

−(BT
kBk + τI)−1BT

kF(xk)where τ > 0 and I is the identity matrix in dimension n. A

ordingto No
edal and Wright (1999), we 
an always 
hoose τ to ensure that
∇m(xk)Ts is bounded below. 12



� Che
k whether the quasi-Newton dire
tion �s is a des
ent dire
tion for min xk;� If not, do the following:
– Update the 
urrent approximation of the Ja
obian Bk with a newpoint 
lose to xk to get B+

k . More pre
isely, we take a step of length
1e − 4 in the dire
tion s. The goal is to try to get a good lo
alapproximation of J(xk);

– Compute the dire
tion s+ = −(B+
k)−1F(xk);and restart the pro
ess with s+.Note that we 
ompute the dire
tional derivative of the merit fun
tion m ina dire
tion s, ∇m(x)Ts, using a �nite di�eren
es pro
edure.

4 Numerical Results

4.1 General behaviorWe present here an analysis of the performan
e of our method, in 
omparison to
lassi
al algorithms. All algorithms and test fun
tions have been implementedwith the pa
kage O
tave (Eaton, 1997) and 
omputations have been done on adesktop equipped with 3GHz CPU in double pre
ision. The ma
hine epsilon isabout 2.2e-16.The numeri
al experiments were 
arried out on a set of 43 test fun
tions.For 37 of them, we 
onsider �ve instan
es of dimension n = 6, 10, 20, 50, 100. Weobtain a total of 191 problems. This set is 
omposed of the four standard nonlin-ear systems of equations proposed by Dennis and S
hnabel (1996) (that is, Ex-tended Rosenbro
k Fun
tion, Extended Powell Singular Fun
tion, Trigono-metri
 Fun
tion, Heli
al Valley Fun
tion), three fun
tions from Broyden(1965), �ve fun
tions proposed by Kelley (2003) in his book on Newton'smethod (that is, Ar
tangent Fun
tion, a Simple Two-dimensional Fun
tion,Chandrasekhar H-equation, Ornstein -Zernike Equations, Right Pre
ondi-tioned Conve
tion-Di�usion Equation), three linear systems of equations (seeAppendix), the test fun
tions given by Spedi
ato and Huang (1997) and sometest fun
tions of the 
olle
tion proposed by Mor�e et al. (1981). For ea
h prob-lem, we have used the starting point proposed in the original paper. Note thatthe results in
lude all these problems.The algorithms are based on both the damped and undamped quasi-Newtonframework given in Se
tion 3.1 with the following 
hara
teristi
s: the initialJa
obian approximation B0 is the same for all algorithms and equal to theidentity matrix. The stopping 
riterion is a 
omposition of three 
onditions:small residual, that is ‖F(xk)‖/‖F(x0)‖ ≤ 10e−6, maximum number of iterations(k ≥ 200 for problems of size n ≤ 20 and k ≥ 500 for problems of size n > 20),13



and divergen
e, diagnosed if ‖F(xk)‖ ≥ 10e10 or if a des
ent dire
tion has notbeen found after several updates of the approximate Ja
obian in the linesear
hpro
edure (meaning that we have not been able to �nd a suÆ
iently goodapproximation of the Ja
obian).We 
onsider four quasi-Newton methods:1. Broyden's Good Method (BGM), using the update (6).2. Broyden's Bad Method (BBM), also proposed by Broyden (1965). It isbased on the following se
ant equation:
sk = B−1

k+1yk. (44)and dire
tly 
omputes the inverse of Bk:
B−1

k+1 = B−1
k +

(

sk − B−1
k yk

)

yT
k

yT
kyk

. (45)Broyden (1965) des
ribes this method as \bad", that is numeri
ally un-stable. However, we have de
ided to in
lude it in our tests for the sake of
ompleteness. Moreover, as dis
ussed below, it does not always deserveits name.3. The Hybrid Method (HMM) proposed by Martinez (1982). At ea
h it-eration, the algorithm de
ides to apply either BGM or BBM. Martinez(2000) observes a systemati
 improvement of the Hybrid approa
h withrespe
t to ea
h individual approa
h. As dis
ussed below, we rea
h similar
on
lusions.4. Our population-based approa
h, 
alled Generalized Se
ant Method (GSM),de�ned by (11) in its update form with B0
k+1 = Bk using the numeri
alapproa
h des
ribed in Se
tion 2.2, with τ = (ma
heps) 1

3 and a maximumof p = max(n, 10) previous iterates in the population. Indeed, in
ludingall previous iterates, as proposed in the theoreti
al analysis, may generatememory management problems, and anyway does not signi�
antly a�e
tthe behavior of the algorithm. The weights are de�ned as
ωi

k+1 =
1

‖xk+1 − xi‖2
∀i ∈ Ip (46)The measure of performan
e is the number of fun
tion evaluations to rea
h
onvergen
e. Indeed we are interested in applying the method on 
omputation-nally expensive systems, where the running time is dominated by the fun
tionevaluations. We are presenting the results following the performan
e pro�lesanalysis method proposed by Dolan and Mor�e (2002).If fp,a is the performan
e index (the number of fun
tion evaluations in our
ase) of algorithm a on problem p, then the performan
e ratio is de�ned by

rp,a =
fp,amina{fp,a}

, (47)14



if algorithm a has 
onverged for problem p, and rp,a = rfail otherwise, where
rfail must be stri
tly larger than any performan
e ratio (47). For any giventhreshold π, the overall performan
e of algorithm a is given by

ρa(π) =
1

np

Φa(π) (48)where np is the number of problems 
onsidered, and Φa(π) is the number ofproblems for whi
h rp,a ≤ π.In parti
ular, the value ρa(1) gives the probability that algorithm a winsover all other algorithms. The value limπ→rfail ρa(π) gives the probability thatalgorithm a solves a problem and, 
onsequently, provides a measure of therobustness of ea
h method.

Figure 1: Performan
e Pro�leWe �rst analyze the performan
e pro�le of all algorithms des
ribed abovewithout globalization strategy on all problems. The performan
e pro�le isreported on Figure 1. A zoom on π between 1 and 5 is provided in Figure 2.The results are very satisfa
tory for our method. Indeed, we observe thatGSM is the most eÆ
ient and the most robust algorithm among the 
hallengedquasi-Newton methods.We also 
on�rm results by Martinez (2000) showing that the Hybrid methodis more reliable than BGM and BBM. Indeed, it 
onverges on almost 50% ofthe problems, while ea
h Broyden method 
onverges only on less than 40% ofthe 
ases. Moreover, HMM wins more often than BGM and BBM does, andis also more robust, as its performan
e pro�le grows faster than the pro�le forBGM and BBM. The relative robustness of BGM and BBM is 
omparable.15



Figure 2: Performan
e Pro�le on (1,5)Even if GSM is the most reliable algorithm, note that it only 
onvergeson 55% of the 191 runs. We now present the performan
e pro�le for all algo-rithms in their damped version, that is making use of the linesear
h strategypresented in Se
tion 3.1, on Figure 3. A zoom for π between 1 and 3 is providedin Figure 4. Firstly we observe that the globalization te
hnique signi�
antlyimproves the robustness of all four presented algorithms as expe
ted. Se
ondlyand most importantly, GSM remains the best algorithm in terms of eÆ
ien
yand robustness. More pre
isely, GSM is the best algorithm on more than 60%of the problems and is able to solve more than 80% of the 191 
onsidered prob-lems. From Figure 4, we note also that when GSM is not the best method, it
onverges within a fa
tor of 2 of the best algorithm for most problems.The performan
e pro�le analysis depends on the number of methods that arebeing 
ompared. Therefore, we like to present a 
omparison between BGM andGSM only, as BGM is probably the most widely used method. The signi�
antimprovement provided by our method over Broyden's method is illustrated byFigure 5 
onsidering the undamped version of both algorithms. Figure 6 showsthe superiority of GSM as well, when both algorithms are globalized using thelinesear
h strategy.In this paper, in the 
ontext of solving systems of nonlinear equations,we fo
used on quasi-Newton methods whi
h do not use information about thederivative of the system to be solved. We have already shown that GSM is a very
ompetitive derivative-free algorithm. To 
on
lude our numeri
al experiments,we like to 
ompare our method with an algorithm using derivative information.We 
onsider a method belonging to the family of inexa
t Newton methods16



Figure 3: Performan
e Pro�le with linesear
hwhi
h identify a dire
tion dk satisfying the inexa
t Newton 
ondition:
‖F(xk) + J(xk)dk‖ ≤ ηk‖F(xk)‖ (49)for some ηk ∈ [0, 1). The most 
onventional inexa
t Newton method uses it-erative te
hniques to 
ompute the Newton step dk using (49) as a stopping
riterion. Among these iteratives te
hniques, Krylov-based linear solvers aregenerally 
hosen. Newton-Krylov methods need to estimate Ja
obian-ve
torprodu
ts using �nite di�eren
es approximations in the appropriate Krylov sub-spa
e.We now 
hallenge GSM against the Newton-Krylov method presented byKelley (2003). The 
onsidered version of this method uses the iterative linearGMRES (proposed by Saad and S
hultz, 1986) and a paraboli
 linesear
h viathree interpolation points. Similarly to the Newton-Krylov algorithm, we allowGSM to use a �nite di�eren
es approximation of the initial Ja
obian. FromFigure 7, we observe that GSM is 
ompetitive with Newton-Krylov both interms of eÆ
ien
y and robustness. This result is very satisfa
tory as Newton-Krylov methods have been proven to be very eÆ
ient methods to solve systemsof nonlinear equations.

4.2 Behavior in presence of noiseIn pra
ti
e the evaluation of systems of nonlinear equations often returns aresult that is a�e
ted by noise, in parti
ular if the evaluation is the out
omeof simulator runs. For example Bierlaire and Crittin (forth
oming) des
ribesu
h a problem in the 
ontext of transportation appli
ations. Therefore, we17
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e Pro�le on (1,3) with linesear
h
on
lude this se
tion by an empiri
al analysis of the behavior of our methodin the presen
e of noise in the fun
tion. Indeed, we spe
ulate that the use of alarger sample of iterates within a least squares framework smooths the impa
tof noise on the method.We 
onsider a random fun
tion des
ribed by:

G(x) = Fs(x) + φ(x) (50)where Fs : R
n → R

n is deterministi
 and φ(x) is a random perturbation. Wewant to identify x su
h that Fs(x) = 0, but we are not able to 
ompute Fs(x)a

urately.We 
onsider two types of random noise:1. Similarly to Choi and Kelley (2000), we �rst assume that the noise de-
reases near the solution, more pre
isely:
φ(x) ∼ N(0, α2‖x − x∗‖2) and G(x0) = Fs(x0) = 0. (51)In this 
ase, the noise is named proportional.2. We then assume that the noise is 
onstant, more pre
isely:

φ(x) ∼ N(0, α2). (52)In this 
ase, the noise is named absolute.We have sele
ted two problems where the behavior of BGM and GSM intheir undamped version are almost similar in the deterministi
 
ase. Please18



Figure 5: Performan
e pro�le { Broyden's Good Method and GSM {note that we do not perform tests using the damped quasi-Newton frameworkas the underlying globalization strategy makes use of �nite di�eren
es, whi
h isnot 
ompatible with the sto
hasti
ity present in the problems 
onsidered in thissubse
tion. For ea
h fun
tion and ea
h type of noise the results are presentedfor 4 levels of sto
hasti
ity, i.e. for four di�erent values of the parameter αde�ned in equations (51) and (52). We plot the relative nonlinear residual,that is ‖G(xk)‖/‖G(x0)‖, against the number of fun
tion evaluations.First we 
onsider a problem given by Spedi
ato and Huang (1997) andfully des
ribed in Se
tion 6.4 in the Appendix. The results obtained withthe proportional noise are presented in Figure 8. Figure 8(a) illustrates thedeterministi
 
ase, with φ(x) = 0, where BGM is slightly better than GSM.When a noise with small varian
e (α = 0.001, Figure 8(b)) is present, GSMde
reases the value of the residual pretty qui
kly, while the des
ent rate ofBGM is mu
h slower. When the varian
e of the noise in
reases (α = 0.01 inFigure 8(
), and α = 1 in Figure 8(d)), the BGM is trapped in higher values ofthe residual, while GSM a
hieves a signi�
ant de
rease. The results obtainedwith the absolute noise are presented in Figure 9. The values of α are thesame as above. The behavior of the two methods is almost the same as for theproportional noise. GSM rea
hes a lower level than BGM of the residual forsmall (α = 0.001, Figure 9(b)) and medium (α = 0.01, Figure 9(
)) varian
es.When the varian
e is higher (α = 1, Figure 9(d)) none of the two methods isable to signi�
antly de
rease the relative residual.The same tests have been a

omplished with the Extended Rosenbro
kFun
tion given by Dennis and S
hnabel (1996) and fully des
ribed in Se
tion 6.5in the Appendix. Figure 10 reports the behavior of GSM and BGM applied to19



Figure 6: Performan
e pro�le with linesear
h { Broyden's Good Method andGSM {this problem perturbated with a proportional noise. Figure 10(a) reports therelative residual of the smooth system (α = 0). In the presen
e of the smallnoise (α = 0.0001, Figure 10(b)) both methods 
onverge but BGM needs morethan twi
e the number of iterations needed by GSM. When the noise in
reases(α = 0.01, Figure 10(
)) BGM is totally disrupted and diverges, while GSM still
onverges in less than 20 iterations. With the higher value of the noise (α = 1,Figure 10(
)) both methods are stalled, but GSM a
hieves lower values for therelative residual. Figure 11 reports the behavior of GSM and BGM appliedto this problem perturbated with absolute noise. Again Figure 11(a) reportsthe relative residual of the smooth system (α = 0). For small (α = 0.0001,Figure 11(b)) and medium (α = 0.01, Figure 11(
)) value of the noise bothmethods rea
h the same value of relative residual with GSM using 
learly lessevaluations of F than BGM. With a larger noise (α = 1, Figure 11(
)), as forthe proportional 
ase, BGM is stalled at a higher value than GSM.We have performed the same analysis on other problems, and observed asimilar behavior, that is a systemati
ally better robustness of GSM 
omparedto the 
lassi
 BGM when solving a noisy system of equations.In summary, our method is more robust than BGM in the sense that it 
ansolve noisy problems that BGM 
annot. When both fail, GSM exhibits betterde
reases, whi
h may be advantageous in pra
ti
e.
20



Figure 7: Performan
e pro�le { GSM and Newton-Krylov {
4.3 Large-scale problemsThe main drawba
k of our approa
h is the relatively high 
ost in numeri
al lin-ear algebra. Therefore it is parti
ularly appropriate for medium-s
ale problemswhere F is very expensive to 
ompute. Bierlaire and Crittin (forth
oming) pro-pose an instan
e of this 
lass of methods, designed to solve very large-s
ale sys-tems of nonlinear equations without any assumption about the stru
ture of theproblem. The numeri
al experiments on standard large-s
ale problems showsimilar results: the algorithm outperforms 
lassi
al large-s
ale quasi-Newtonmethods in terms of eÆ
ien
y and robustness, its numeri
al performan
es aresimilar to the Newton-Krylov methods, and it is robust in presen
e of noise.The 
omplexity (both in time and memory) is linear in the size of theproblem. Therefore, we were able to solve very large instan
es of a problemgiven by Spedi
ato and Huang (1997). The algorithm has been able to 
onvergeon a problem of size 2'000'000 in four hours and 158 iterations.We are strongly interested in globalizing the large-s
ale version of our method.However, it requires future resear
h to adapt our linesear
h framework and toget an eÆ
ient globalization strategy in term of 
omputational time.
5 Conclusion and perspectivesWe have proposed a new 
lass of generalized se
ant methods, based on the useof more than two iterates to identify the se
ant model. Contrarily to previousattempts for multi-iterate se
ant methods, the key ideas of this paper are (i)to use a least squares approa
h instead of an interpolation method to derive21
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(d) Large varian
e noiseFigure 8: Behavior with proportional sto
hasti
itythe se
ant model, and (ii) to expli
itly 
ontrol the numeri
al stability of themethod.A spe
i�
 sub-
lass of this family of methods provides an update formula.We have proven the lo
al 
onvergen
e of an undamped quasi-Newton methodbased on this update formula. Moreover, we have performed extensive numer-i
al experiments with several algorithms. The results show that our methodprodu
es signi�
ant improvement in term of robustness and number of fun
tionevaluations 
ompared to 
lassi
al methods. We have also shown that the glob-alization strategy presented in this paper signi�
antly improves the robustnessof quasi-Newton methods. Eventually, we have provided preliminary eviden
esthat our method is more robust in the presen
e of noise in the fun
tion.A theoreti
al analysis of a globally 
onvergent version of our method mustalso be performed. We also 
onje
ture that the lo
al 
onvergen
e rate is super-linear. And most importantly, the general behavior of the algorithm for solvingnoisy fun
tions requires further analysis.There are several variants of our methods that we plan to analyze in thefuture. Firstly, following Broyden's idea to derive BBM from (44), an updateformula for B−1
k+1 
an easily be derived in the 
ontext of our method:

B−1
k+1 = B−1

k +
(

ΓΓT + Yk+1Ω
2YT

k+1

)−1

YT
k+1Ω

2
(

Sk+1 − B−1
k Yk+1

)

. (53)22



0.0001

0.01

1

100

10000

20 40 60 80 100 120

R
el

at
iv

e 
N

on
lin

ea
r 

R
es

id
ua

l

Number of Evaluations of F

Broyden Good
GSM

(a) Without noise 0.0001

0.01

1

100

10000

20 40 60 80 100 120

R
el

at
iv

e 
N

on
lin

ea
r 

R
es

id
ua

l

Number of Evaluations of F

Broyden Good
GSM

(b) Small varian
e noise
0.0001

0.01

1

100

10000

20 40 60 80 100 120

R
el

at
iv

e 
N

on
lin

ea
r 

R
es

id
ua

l

Number of Evaluations of F

Broyden Good
GSM

(
) Medium varian
e noise 0.0001

0.01

1

100

10000

20 40 60 80 100 120

R
el

at
iv

e 
N

on
lin

ea
r 

R
es

id
ua

l

Number of Evaluations of F

Broyden Good
GSM

(d) Large varian
e noiseFigure 9: Behavior with absolute sto
hasti
ityFrom preliminary tests that we have performed, the \Good" and \Bad" versionsof our method 
ompare in a similar way as BGM and BBM. Se
ondly, non-update instan
es of our 
lass of methods 
an be 
onsidered. In that 
ase, thearbitrary matrix B0
k+1 in (10) may be di�erent from Bk. Choosing a matrixindependent from k allows to use iterative s
heme designed to solve large-s
ale least squares. In that 
ase, 
hoosing a matrix independent from k wouldallow to apply Kalman �ltering (Kalman, 1960) to in
rementally solve (10) and,
onsequently, improve the numeri
al eÆ
ien
y of the method. For large s
aleproblems, an iterative s
heme su
h as LSQR (Paige and Saunders, 1982) 
anbe 
onsidered. LSQR 
an also improve the eÆ
ien
y of Kalman �lter for thein
remental algorithm (see Bierlaire and Crittin, 2004).Finally, the ideas proposed in this paper 
an be tailored to optimizationproblems.
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(d) Large varian
e noiseFigure 10: Behavior with proportional sto
hasti
ity
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6 Appendix

6.1 Proof of Lemma 3

‖SΩ2ST‖ ≤ ‖SΩ‖2 (54)
≤

k∑

i=0

‖ωisi‖2 (55)
≤ (k + 1)max

i∈Ik

(|ωi|‖si‖)2 (56)
≤ (k + 1)max

i∈Ik

(|ωi|‖xk+1 − ~x + ~x − xi‖)2 (57)
≤ 2(k + 1)max

i∈Ik

|ωi|
2 max

i∈Ik+1

‖xi − ~x‖2 (58)
≤ 2MPM2

ω max
i∈Ik+1

‖xi − ~x‖2 (59)for all ~x ∈ R
n×n, in parti
ular with ~x = x∗ whi
h proves (21).

‖Ω2ST‖2 ≤
k∑

i=0

‖ω2
isi‖2 (60)

≤ (k + 1)max
i∈Ik

(

|ωi|
2‖si‖

)2 (61)
≤ (k + 1)max

i∈Ik

|ωi|
4max

i∈Ik

‖xk+1 − ~x + ~x − xi‖2 (62)
≤ 2(k + 1)max

i∈Ik

|ωi|
4 max

i∈Ik+1

‖xi − ~x‖2 (63)for all ~x ∈ R
n×n. We obtain (22) with ~x = x∗:

‖Ω2ST‖ ≤
√

2MPM2
ω max

i∈Ik+1

‖xi − x∗‖ (64)
6.2 Proof of Lemma 4Writing expli
itly a 
olumn of the matrix A = Y − J(x∗)S

a·j = F(xk+1) − F(xi) − J(x∗)(xk+1 − xk−j+1) (65)with a·j de�ning the 
olumn j of A = (aij).Using (65) and Lemma 1 we 
an write:
‖Y − J(x∗)S‖2

≤
k+1∑

j=1

‖a·j‖2

≤ (k + 1)max
i∈Ik

‖F(xk+1) − F(xi) − J(x∗)(xk+1 − xi)‖2

≤ (k + 1)K2
lipmax

i∈Ik

(

‖xi−x∗‖−‖xk+1−x∗‖
2

‖xk+1 − xi‖
)2

≤ 2(k + 1)K2
lip max

i∈Ik+1

‖xi − x∗‖2 max
i∈Ik+1

‖xi − x∗‖226



Taking the square root on both sides:
‖Y − J(x∗)S‖ ≤

√

2MPKlip max
i∈Ik+1

‖xi − x∗‖2 (66)
6.3 Proof of the Lemma 5Let A ∈ R

n×n, we denote by λm(A) and λM(A) its smallest and largest eigen-values, respe
tively. So we 
an write using the de�nition of the l2 norm:
‖(ΓΓT + SΩ2ST)−1‖2 = λM((ΓΓT + SΩ2ST)−1) (67)

=
1

λm(ΓΓT + SΩ2ST)
. (68)From assumption (A3), Γ2 is 
omputed using the modi�ed Cholesky fa
toriza-tion, proposed by S
hnabel and Eskow (1991), with parameter τ. Therefore,

λm(ΓΓT + SΩ2ST) ≥ τ, (69)whi
h 
on
ludes the proof.
6.4 Description of the problem analyzed in Figures 8 and 9The 
onsidered problem is the following system of equations:

fi = xi −

∑4
j=1 x3

j + 1

8
i = 1, . . . , 4 (70)with initial point x0 = (1.5, . . . , 1.5). The solution of this system is x∗ =

(0.20432, . . . , 0.20432).
6.5 Description of the problem analyzed in Figures 10 and 11The 
onsidered problem is the following system of equations of dimension n,where n is a positive multiple of 2.For i = 1, . . . , n/2

{
f2i−1 = 10(x2i − x2

2i−1)

f2i = 1 − x2i−1

(71)with initial point x0 = (−1.2, 1, . . . ,−1.2, 1). The solution of this system is
x∗ = (1, . . . , 1).
6.6 Linear problems in the tests setWe have tested three linear problems of the form Ax = b. They have beendesigned to 
hallenge the tested algorithms.1. For the �rst, the matrix A is the Hilbert matrix, and ve
tor b is 
omposedof all ones. 27



2. The se
ond problem is based on the matrix A su
h that aij = j if i +

j = n + 1, and aij = 0 otherwise. All entries of the right-hand side bare -10. Its stru
ture is designed so that the identitiy matrix is a poorapproximation.3. The third problem is based on a Vandermond matrix A(v) with v =

(−1,−2, . . . ,−n). All entries of the right-hand side b are -1.The starting point for all those problems is x = (1, . . . , 1)T .
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