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Abstract

We propose an extension of secant methods for nonlinear equations us-
ing a population of previous iterates. Contrarily to classical secant meth-
ods, where exact interpolation is used, we prefer a least squares approach
to calibrate the linear model. We propose an explicit control of the nu-
merical stability of the method.

We show that our approach can lead to an update formula. In that
case, we prove the local convergence of the corresponding undamped quasi-
Newton method. Finally, computational comparisons with classical quasi-
Newton methods highlight a significant improvement in terms of robust-
ness and number of function evaluations. We also present numerical tests
showing the robust behavior of our method in the presence of noise.

1 Introduction

We consider the standard problem of identifying the solution of a system of

nonlinear equations
F(x) =0 (1)

where F : R™ — R™ is a differentiable function. Since Newton, this problem
has received a tremendous amount of attention. Newton’s method and its
many variations are still intensively analyzed and used in practice. The idea of
Newton-like methods is to replace the nonlinear function F by a linear model,
which approximates F in the neighborhood of the current iterate. The original
Newton method invokes Taylor’s theorem and uses the gradient matrix (the
transpose of which is called the Jacobian) to construct the linear model. When
the Jacobian is too expensive to evaluate, secant methods build the linear model
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based on the secant equation. Because secant methods exhibit a g-superlinear
rate of convergence, they have been intensively analyzed in the literature.

The secant equation imposes that the linear model exactly matches the
nonlinear function F at two successive iterates. If the number of unknowns
n is strictly greater than 1, an infinite number of linear models verify the
secant equation. Therefore, each secant method derives a specific update for-
mula which arbitrarily picks one linear model among them. The most common
strategies are called “least-change updates” and select the linear model which
minimizes the difference between two successive models.

In this paper, we provide a class of algorithms generalizing these ideas.
Instead of using only two successive iterates to determine this linear model,
we maintain a “population” of previous iterates. This approach allows all the
available information collected through the iterations to be explicitly used for
calibrating the model.

An important feature of our method is that we do not impose an exact match
between the model and the function. Instead, we use a least squares approach
to request that the model fits the function “as well as possible”. In this paper,
we present the class of algorithms based on our method (Section 2.2) and prove
that they are locally convergent (Section 3). This class of algorithms exhibits
a faster convergence and a greater robustness than quasi-Newton methods for
most numerical tests that we have performed (Section 4) at a cost of substantial
linear algebra computation. Therefore it is valuable when the cost of evaluating
F is high in comparison with the numerical algebra overhead.

2 Quasi-Newton methods
Quasi-Newton methods consider at each iteration the linear model
Li(%; By) = Flxx) + Brlx — xx) (2)

which approximates F(x) in the neighborhood of x; and computes x,,1 as a
solution of the linear system Ly (x;By) = 0. Consistently with most of the pub-
lications on this topic, quasi-Newton methods can be summarized as methods
based on the following iterations:

X1 = Xk — By 'F(xi), (3)

followed by the computation of By,;. The pure Newton method is obtained
with Bx = J(xx) = VF(xx)", the Jacobian of F evaluated at xj, that is a
n x n matrix such that entry (i,j) is 0F;/0x;. We refer the reader to Dennis
and Schnabel (1996) for an extensive analysis of Newton and quasi-Newton
methods.



2.1 Secant methods

Broyden (1965) proposes a quasi-Newton method based on the secant equa-
tions, imposing the linear model Ly to exactly match the nonlinear function
at iterates xy and xj1, that is

Lit1(xi; Brg1)
Licr1 (X1, Biey1)

= F(Xk)>

_ (4)
= F(xx41).

Subtracting these two equations and defining yx = F(xx+1) — F(xx) and sy =
Xk+1 — Xk We obtain the classical secant equation:

Byt1Sk = Yk (5)

Clearly, if the dimension n is strictly greater than 1, there is an infinite num-
ber of matrices By, satisfying (5). An arbitrary decision must consequently be
made. The “least-change secant update” strategy, proposed by Broyden (1965),
consists in selecting among the matrices verifying (5) the one minimizing vari-
ations (in Frobenius norm) between two successive matrices By and By q. It
leads to the following update formula
-
Bxi1 =By + —(yk_TBkSk) %k (6)
SkSk

This method has been very successful, and has been widely adopted in the
field. However, we believe that the idea of interpolating the linear model at only
two iterates and ignoring previous iterates could be too restrictive. Therefore,
we propose to use more than two iterates to build the linear model.

This idea has already been considered. Dennis and Schnabel (1996) say that
“Perhaps the most obvious strategy is to require the model to interpolate F(x)
at other past points... One problem is that the directions tend to be linearly
dependent or close to it, making the computation of (the approximation matrix)
a poorly posed numerical problem”. Later, they write “In fact, multivariable
generalizations of the secant method have been proposed ... but none of them
seem robust enough for general use.”

There are few attempts to generalize this approach in the literature. A first
generalization of the secant method is the sequential secant method proposed
by Wolfe (1959) and discussed by Ortega and Rheinboldt (1970). The idea is
to impose exact interpolation of the linear model on n+ 1 iterates instead of 2:

Licr1(Xep1—53 Brg1) = Flxkp1—5), 3=0,1,...,mn. (7)
or, equivalently,
Bk+15k—j:1;lkfj» j:O)])"')n_]) (8)

where s; = Xki1 — Xq, and yi; = F(xxy1) — F(xy), for all i. If the vectors
Sk, Sk—1,-+,Sk—n+1 are linearly independent, there exists exactly one matrix
By1 satisfying (8), which is

B = Yk+15£l1 (9)



where Yi 1 = (U, Yk—1,- -+ Yk—n+1) and Syp1 = (Sx,Sk-1,- -+, Skn+1)-
Quoting Ortega and Rheinboldt (1970) “...(sequantial methods) are prone

to unstable behavior and ... no satisfactory convergence results can be given”.
Nevertheless Gragg and Stewart (1976) propose a method which avoids in-
stabilities by working with orthogonal factorizations of the involved matrices.
Martinez (1979) gives three implementations of the idea proposed by Gragg
and Stewart (1976) and some numerical experiments.

Multi-step quasi-Newton methods have been proposed by Moghrabi (1993),
Ford and Moghrabi (1997) and Ford (1999) in the context of nonlinear pro-
gramming. An interpolating path is built based on previous iterates, and used
to produce an alternative secant equation. Interestingly, the best numerical
results were obtained with no more than two steps.

We believe that the comments about the poor numerical stability of those
methods found in major reference texts such as Dennis and Schnabel (1996)
and Ortega and Rheinboldt (1970) have not encouraged researchers to pursue
these investigatations. We provide here a successful multi-iterates appoach
with robust convergence properties and exhibiting an excellent behavior on
numerical examples. The idea of using a least squares approach is similar
to an idea proposed in the physics litterature by Vanderbilt and Louie (1984),
which has inspired other authors in the same field (Johnson, 1988, Eyert, 1996).
Bierlaire and Crittin (forthcoming) have used a similar approach for solving
noisy large scale transportation problems.

2.2 Population-based approach

We propose a class of methods calibrating a linear model based on several
previous iterates. The difference with existing approaches is that we do not
impose the linear model to interpolate the function. Instead, we prefer to
identify the linear model which is as close as possible to the nonlinear function,
in the least squares sense.

At each iteration, we maintain a finite population of previous iterates. With-
out loss of generality, we present the method assuming that all previous iter-
ates xo, ..., Xxxt1 are considered. Our method belongs also to the quasi-Newton
framework defined by (3), where By is computed as follows.

T i 2 o pll?
Bit1 = arg?ﬂln Z Hwar]F(Xi) — Wy Lk+1(xi;I)H2 + H]r - Bk+]rHF (10)
i0

where Ly is defined by (2) and B%H € R™™ is an a priori approximation of
Byxi1. The role of the second term is to overcome the under-determination of
the least squares problem based on the first term and also control the numerical
stability of the method. The matrix I contains weights associated with the ar-
bitrary term B%H, and the weights w}ﬁq € R* are associated with the previous



iterates. Equation (10) can be written in matrix form as follows: By, =

Q 0 Q 0
I(Sk+l Ian)<O y k;n>—(Yk+l B%+])< 0 r)
nx

2
argmin

F

where Q € R¥"! is a diagonal matrix with weights w}ﬁq on the diagonal for
i=0,---,k. The normal equations of this least squares problem lead to the
following formula:

-1
Bk+] = B%—H + (Yk_H - B%_._]Sk.ﬂ) QZS{_H (ITT + Sk_HQZS—]I;_H) y (11)

where Y11 = (Yx, Yk—1,.-.,Yo) and Sy1 = (sx,Sx-1,...,50)-

The role of the a priori matrix Bgﬂ is to overcome the possible under-
determination of problem (10). For example, choosing B%H = By (similarly to
classical Broyden-like methods) exhibits good properties. In that case, (11) be-
comes an update formula, and local convergence can be proved (see Section 3).

The weights w}{H capture the relative importance of each iterate in the
population. Roughly speaking, they should be designed in the lines of the
assumptions of Taylor’s theorem, that is assigning more weight to points close
to xy41, and less weight to points which are faraway. The matrix I' captures
the importance of the arbitrary terms defined by B%H for the identification of
the linear model. The weights have to be finite, and I' must be such that

T+ Sk1Q2SE 4 (12)

is safely positive definite. To ensure this property we describe below three pos-
sible approaches for choosing ITT: the geometrical approach, based on specific
geometric properties of the population, the subspace decomposition approach,
decomposing R™ into the subspace spanned by the columns of Sy; and its
orthogonal complement, and the numerical approach, designed to guarantee
a numerically safe positive definiteness of (12).

The geometrical approach assumes that n 4+ 1 members of the population
form a simplex, so that the columns of Sy, span R™, and (12) is positive
definite with ITT = 0. In that case, (11) becomes

Bi1 = Vi1 Q2S04 (SkHQZS{H) : (13)

If there are exactly n + 1 iterates forming a simplex, the geometrical approach
is equivalent to the interpolation method proposed by Wolfe (1959), and (13) is
exactly (9), as Syy1 is square and non singular in that case. This approach have
not shown good numerical behavior in practice as mentioned in Section 2. Also,
it requires at least n + 1 iterates, and may not be appropriate for large-scale
problems.

The subspace decomposition approach is based on the QR decomposition
of Sx4+1. We denote by r the rank of Sy ¢, with r < n, and we have Sy = QR,
where

Q=(Q Q) (14)



with Qis (n x 1), Q2is (n xn—7), and Ris (n x k+ 1). The r columns of
Q1 form an orthogonal basis of the range of Sy.;. We define now I' such that

I'= ( Onxr QZ ) (15)

that is Q where Q has been replaced by a null matrix. With this construction
T+ Sk+1QZSI+] is invertible and Sy 1ITT = 0. In the case where Sy spans
the entire space then r = n, I' is a null matrix and (11) is equivalent to (13).

With the subspace decomposition approach, the changes of F predicted by
Byx41 in a direction orthogonal to the range of Sy, is the same as the one
predicted by the arbitrary matrix B%ﬂ' This idea is exactly the same as the
one used by Broyden (1965) to construct his so called Broyden’s Good method.

Numerical problems may happen when the columns of Sy, are close to
linear dependence. These are the problems already mentioned in the introduc-
tion, and reported namely by Ortega and Rheinboldt (1970) and Dennis and
Schnabel (1996). Clearly, such problems do not occur when Sy has exactly
one column, which leads to the classical Broyden method.

The numerical approach is designed to address both the problem of over-
coming the under-determination, and of guaranteeing numerical stability. It is
directly inspired by the modified Cholesky factorization proposed by Schnabel
and Eskow (1991). The modified Cholesky factorization of a square matrix A
creates a matrix E such that A+E is safely positive definite, while computing its
Cholesky factorization. It may namely happen that A has full rank, but with
smallest eigenvalue very small with regard to machine precision. In that case,
E is non zero despite the fact that A is non singular. We apply this technique
with A = SkHQZSLL] and E = ITT. So, if the matrix SkHQZSLL] is safely pos-
itive definite, ITT = 0 and (11) reduces to (13). If not, the modified Cholesky
factorization guarantees that the role of the arbitrary term I' is minimal.

We now emphasize important advantages of our generalization combined
with the numerical approach. Firstly, contrarily to interpolation methods,
our least squares model allows to use more than p points to identify a model
in a subspace of dimension p (where p < n). This is very important when
the objective function is expensive to evaluate. Indeed, we make an efficient
use of all the available information about the function to calibrate the secant
model. It is namely advantageous compared to Broyden’s method, where only
two iterates are explicitly used to build the model, while previous iterates only
play an implicit role due to the “least-change” principle. Secondly, the nu-
merical approach proposed above controls the numerical stability of the model
construction process, when a sequence of iterates may be linearly dependent.
Finally, the fact that existing methods are special cases of our approach allows
to generalize the theoretical and practical properties already published in the
literature, and simplifies their extension to our context. We apply this princi-
ple to the local convergence analysis in section 3. The main drawback is the
increase in numerical linear algebra as the least squares problem (10) must be



solved at each iteration. Therefore, it is particularly appropriate for problems
where F is very expensive to compute.

We conclude this section by showing that our population-based update for-
mula is a generalization of Broyden update. Actually, the classical Broyden
update (6) is a special case of our update formula (11), if Bﬂﬂ = By, the popu-
lation contains just two iterates xy and xy,1, and the subspace decomposition
approach is used. The secant equation (5) completely defines the linear model
in the one-dimensional subspace spanned by sy = X171 — Xk, While an arbitrary
decision is made for the rest of the model. If we define w‘]jH =1 and I' is given
by (15) with v = 1, we can write (11) as

1
Bii1 = By + (Y — Bisi) sp (]TT + SkSD . (16)

The equivalence with (6) is due to the following equality

sp (ITT + sksD = s{T—, (17)
S$1Sk

obtained from the fact that s} ITT =0, by (15).

3 Local convergence analysis

We show that if IT'T is determined by the numerical approach described in Sec-

tion 2.2, then the undamped algorithm described in Section 3.1, where By is

defined by (11) in its update form (z.e. Bgﬂ = By), locally converges to a solu-

tion of (1) if the following assumptions are verified. Note that the assumptions

made on the problem are similar to those given by Broyden (1965).
Assumptions on the problem:

(P1) F:R™ — R™ is continuously differentiable in an open convex set D.

(P2) The system of equations has a solution, that is 3 x* € D such that F(x*) =
0.

(P3) J(x) is Lipschitz continuous at x* with constant Ky, that is

1T(x) = T(x")|| < Kupllx —x*|| ¥x € D. (18)
in the neighborhood D.
(P4) J(x*) is non-singular and there exists y > 0 such that ||J(x*)7"|| <.

Assumptions on the algorithm:

(A1) The algorithm is based on the iteration (3) with x¢ and B as initial guess.

(A2) By is generated by (11) with B%H = By.



(A3) TTT is computed using the numerical approach.
(A4) Vi <k, we have w}{H < My, for all k and some constant M, > 0.

(A5) The size of the population P is bounded above by Mp where Mp > 0 is
a constant.

The notation || - || is used for the 1, vector norm ||x|| = (xTx)% as well as for

the Frobenius matrix norm ||A||. The notation || - ||, is used for the 1, matrix
norm ||Al|[;. For the sake of simplification, we denote w}{H = wi, S = S41,
Y = Yy and I, ={0,1,...,p}. The proof uses some lemmas. Lemma 1 and
2 are classical results from the literature. Lemmas 3-5 are technical lemmas
related to our method. Their proofs are provided in the appendix.

Lemma 1 Let F : R™ — R™ be continuously differentiable in the open
conver D C R™, x € D, and let ] be Lipschitz continuous at x in the
neighborhood D with constant Kyy,. Then for any u,v € D,

v —x|[ + [[u—x|
2

[F(v) = F(u) = J(x) (v —u)|| < Kyp lv—ul. (19)

Proof. See, for example, Dennis and Schnabel, 1996. [

Lemma 2 Let A,C € R™™ and assume that A 1s invertible, with HA‘1 H <
w. If [A—CJ| < B and pu <1, then C s also invertible and

v
T—Bp

Proof. This lemma is known as the Banach Perturbation Lemma. (See, for
example, Ortega and Rheinboldt, 1970). [J

o 2

Lemma 3 If assumptions (A4)-(A5) are verified, then

ISQ*ST| < 2MpME, max [[x; —x*||?, (21)
i€l

Q23S < \/ZMpMi_gaX [lxi —x*||. (22)
W lk+1

where x* 1s solution of (1).

Lemma 4 If assumptions (P1),(P2) and (P3) are verified then:
1Y =T06¢)9)]| < v 2MpKaip max (Jxi—x"|1%) (23)
i€k

where x* 1s solution of (1).



Lemma 5 If assumption (A3) s verified, then

<

H(rrT+SQZST) - z % (24)

where T > 0.

The parameter T in Lemma 5 controls the way we perturb SQ2ST. It guarantees
that the smallest eigenvalue of (ITT + SQ?ST) is strictly greater than T and,
therefore, safely positive in a finite arithmetic context if T is properly chosen.
Schnabel and Eskow (1991) suggest to choose T = (macheps);’ where macheps
is the machine epsilon.

Theorem 6 Let assumptions (P1) to (P4) hold for the problem and as-
sumptions (A1) to (A5) hold for the algorithm. Then there ezists two
non-negative constants x1 and «y such that for each xi and By:

B —10) | < (14 camaxier., [xi—x"[17) [Bi= (")

3 (25)
+  oapmaXier,, [[xi —x*[|”.
Proof. From the update formula (11), and defining
Ti = I—-SQ2ST(MT4+5Q2sT)!
T, = (Y=J(x*S)Q2ST(ITT 4+ s02sT)~!
we obtain
IBir —J(x*)|| = [[Be—TJ(x*) + [(J(x*)S — J(x*)S) + (Y — BxS) Q2ST(ITT + sQ2ST) 7|
< | TalllIBx = T(x™)|| + || T2]|-
From Lemmas 3 and 5 we obtain
Tl < [T+ SQST|I(ITT +sQ?sT) )| (26)
< 14 o max ||x; —x*||% (27)
i€k
with 5
X = \/—MPMZ > 0.
We conclude the proof using Lemmas 3, 4 and 5 to show that:
Tl < (Y =TBA)S) Q2SI 4+ 5Q2sT) 7| (28)
< w max ||x1—x 13, (29)
i€l
with 5
o = Y KpMpM2, > 0
O



Theorem 7 Let assumptions (P1) to (P3) hold for the problem and as-
sumptions (A1) to (A5) hold for the algorithm. Then for each r €]0,1],
there exists e(r) and 6(v) such that for

IIxo — x| < e(r) (30)

and
[Bo—TJ(x")|| < &(r) (31)

the sequence Xyx+1 = Xk — B?F(xk) 15 well defined and converges q-linearly
to x* with q-factor at most r. Furthermore, the sequences {||By||}, and
{IIBi"lI}, are uniformly bounded.

Proof. The structure of the demonstration is similar to the proof of The-
orem 3.2 in Broyden et al. (1973). We have purposedly skipped some identical
technical details.

First choose ¢(r) = ¢ and &(r) = 0 such that

Y(147) (Kype +28) <7 (32)

and

2ot ) E <5 (33)
R B

We invoke Lemma 2 with 1t =y and 3 = 26 to prove that By is non-singular

and
1Byl < v(1+7). (34)

Note that assumption 26y < 1 for Lemma 2 is directly deduced from (32).
The improvement after the first iteration, that is

(X1 =[] < rlxo =7 (35)

is independent of the specific update formula and, therefore, is proven in Broy-
den et al. (1973).

The result for iteration k is proven with an induction argument based on
the following recurrence assumptions:

26 (36)
T{xm — x| (37)

B —J7|

[Xmr — x|

IN A

forallm=1,..., k—1.
We first prove that ||By — J*|| < 26 using Theorem 6. From (25) we deduce
B =T = B — T(x7)

2 3
< oy max ||xi —x"[|7||Bm — J(x¥)|| + a2 max |[[x; — x|
i€l i€l

< 0(1T2(m+1]€226_|_“21‘3(111—0—])63. (38)

10



Summing both sides of (38) for m ranging from 0 to k — 1, we deduce that

2

£ 3
—JxM)| < —J(x* 1-_+)7_12
B =T < Bo 1(x)||+<2°<15+°‘21—r>1_rz

< 23, (40)

(39)

where (40) derives from (31) and (33).

The fact that By is invertible and HB]:] || <v(1+r) is again a direct appli-
cation of the Banach Perturbation Lemma 2. Following again Broyden et al.
(1973), we can now obtain (37) for m =k, concluding the induction proof. [J

3.1 Undamped and damped quasi-Newton methods

All the algorithms presented in Section 2.1 and 2.2 are based on the following
structure.

e Given F: R™ — R™, xo € R™ and By € R™™
e While stopping criteria is not verified:

— Find s solving Byxs = —F(xy),
— Evaluate F(xyx,1) where xi, 1 = xx + s,

— Compute Byy;.

This general algorithm is often called undamped quasi-Newton method, :.e.
without any step control or globalization methods. It allows to compare dif-
ferent type of algorithms, in term of number of function evaluations, and their
robustness without introducing a bias due to the step control or the globaliza-
tion method. Consequently, the algorithms differ only by the method used to
compute Byq.

The main drawback of undamped methods is that we cannot ensure con-
vergence from remote starting points. Moreover, Newton-like methods without
any control on the step lengths may encounter several other sources of failure.
For instance, the components of the unknown vector (x) or the function vector
(F) or the Jacobian approximate (By) may become arbitrarily large.

Globalization strategies can be grouped into two distinct frameworks: line-
search and trust-region. Linesearch approaches are applied to a merit function
based on F, used to measure progress toward a solution of F(x) = 0 (see for in-
stance Nocedal and Wright, 1999). Trust-region methods and filter-trust-region
methods (see Gould et al., 2005) can be used to solve the associated nonlinear
least squares problem:

min 3 [Fx)3 (a1)
The main disadvantage of the second type of globalization is that the iterates
can be stucked in a local minimum of (41), which is not a solution of F(x) = 0.

11



As we want to keep solving the original problem F(x) = 0, we adopt in this
paper the linesearch approach.

When integrating a linesearch strategy to the previous undamped quasi-
Newton framework, we obtain the following structure.

e Given F:R™ — R™ xo € R™ and By € R™X™

e While stopping criteria is not verified:

Find s solving Bys = —F(xy);

Determine a step length oy > 0;

Evaluate F(xyx.1) where xi11 = xx + oxs;

Compute By, 1.

This general method is called damped quasi-Newton method. In the follow-
ing, we describe how we determine the step oy at each iteration of the algorithm
using the classical sum-of-squares merit function

n

1 2| 2
mxy) = EHF(Xk)Hz =3 ; Fi(xi)
to measure progress toward a solution of the system F. We choose a step o
satisfying the following Armijo-type condition with € (0,1):

m(xx + oes) < mxi) + o BVm(xi) s, (42)
Note that 3 is a parameter which defines the quality of the decrease we want to
obtain. Condition (42) is valid only if the quasi-Newton direction s is a descent
direction for m in xy, that is:

Vm(xk)Ts < 0. (43)

If condition (43) holds, we find a step o satisfying (42) using a backtracking
strategy. Unfortunately, we do not have the guarantee that our quasi-Newton
direction s = —B?F(xk) is a descent direction for m, unless By is close enough
to the real Jacobian at Xy, J(xx) = VF(xx)", and Vm(x)"s is bounded be-
low. Consequently, we use the following sequential procedure to find a descent
direction for the merit function in the current iterate xy:

e Check whether the quasi-Newton direction s = —B?F(xk) is a descent
direction for m in xy;

e If not, compute using the modified Cholesky factorization (see Schnabel
and Eskow, 1999) an auxiliary direction §

—(B{By + 1) "B{F(xx)

where T > 0 and I is the identity matrix in dimension n. According
to Nocedal and Wright (1999), we can always choose T to ensure that
Vm(xyx)Ts is bounded below.

12



e Check whether the quasi-Newton direction § is a descent direction for m
in xy;

e If not, do the following:

— Update the current approximation of the Jacobian By with a new
point close to xy to get Bz. More precisely, we take a step of length
le — 4 in the direction s. The goal is to try to get a good local
approximation of J(xy);

— Compute the direction s™ = —(B}) 7 F(x);
and restart the process with s™.

Note that we compute the directional derivative of the merit function m in

a direction s, Vm(x)'s, using a finite differences procedure.

4 Numerical Results

4.1 General behavior

We present here an analysis of the performance of our method, in comparison to
classical algorithms. All algorithms and test functions have been implemented
with the package Octave (Eaton, 1997) and computations have been done on a
desktop equipped with 3GHz CPU in double precision. The machine epsilon is
about 2.2e-16.

The numerical experiments were carried out on a set of 43 test functions.
For 37 of them, we consider five instances of dimension n = 6,10, 20,50, 100. We
obtain a total of 191 problems. This set is composed of the four standard nonlin-
ear systems of equations proposed by Dennis and Schnabel (1996) (that is, Ez-
tended Rosenbrock Function, Extended Powell Singular Function, Trigono-
metric Function, Helical Valley Function), three functions from Broyden
(1965), five functions proposed by Kelley (2003) in his book on Newton’s
method (that is, Arctangent Function, a Stmple Two-dimensional Function,
Chandrasekhar H-equation, Ornstein -Zernike Equations, Right Precondi-
tioned Convection-Diffusion Equation), three linear systems of equations (see
Appendix), the test functions given by Spedicato and Huang (1997) and some
test functions of the collection proposed by Moré et al. (1981). For each prob-
lem, we have used the starting point proposed in the original paper. Note that
the results include all these problems.

The algorithms are based on both the damped and undamped quasi-Newton
framework given in Section 3.1 with the following characteristics: the initial
Jacobian approximation By is the same for all algorithms and equal to the
identity matrix. The stopping criterion is a composition of three conditions:
small residual, that is ||F(xx)||/||[F(xo)|| < 10e—6, maximum number of iterations
(k > 200 for problems of size n < 20 and k > 500 for problems of size n > 20),

13



and divergence, diagnosed if |F(xy)|| > 10e10 or if a descent direction has not
been found after several updates of the approximate Jacobian in the linesearch
procedure (meaning that we have not been able to find a sufficiently good
approximation of the Jacobian).

We consider four quasi-Newton methods:

1. Broyden’s Good Method (BGM), using the update (6).

2. Broyden's Bad Method (BBM), also proposed by Broyden (1965). It is
based on the following secant equation:

Sk = B;}r]yk. (44)

and directly computes the inverse of By:

(s — By i) up

B!, =B+
K+1 k Ulyk

(45)

Broyden (1965) describes this method as “bad”, that is numerically un-
stable. However, we have decided to include it in our tests for the sake of
completeness. Moreover, as discussed below, it does not always deserve
its name.

3. The Hybrid Method (HMM) proposed by Martinez (1982). At each it-
eration, the algorithm decides to apply either BGM or BBM. Martinez
(2000) observes a systematic improvement of the Hybrid approach with
respect to each individual approach. As discussed below, we reach similar
conclusions.

4. Our population-based approach, called Generalized Secant Method (GSM),
defined by (11) in its update form with BY,; = By using the numerical

approach described in Section 2.2, with T = (macheps)% and a maximum
of p = max(n, 10) previous iterates in the population. Indeed, including
all previous iterates, as proposed in the theoretical analysis, may generate
memory management problems, and anyway does not significantly affect
the behavior of the algorithm. The weights are defined as

. 1
wll<+l = |

_ Viel 46
X1 — x4 s (46)

The measure of performance is the number of function evaluations to reach
convergence. Indeed we are interested in applying the method on computation-
nally expensive systems, where the running time is dominated by the function
evaluations. We are presenting the results following the performance profiles
analysis method proposed by Dolan and Moré (2002).

If f, q is the performance index (the number of function evaluations in our
case) of algorithm a on problem p, then the performance ratio is defined by

fp.a
—__pa a7
Tp.a ming{f, o}’ (47)

14



if algorithm a has converged for problem p, and 1, o = Tr.i1 otherwise, where
Train must be strictly larger than any performance ratio (47). For any given
threshold t, the overall performance of algorithm a is given by
1
Pa(mm) = —@q(m) (48)
Np
where n,, is the number of problems considered, and ®(7r) is the number of
problems for which v, <7
In particular, the value po(1) gives the probability that algorithm a wins
over all other algorithms. The value lim_,,_, pa(7) gives the probability that
algorithm a solves a problem and, consequently, provides a measure of the
robustness of each method.

1

0.8

06

Probability ( r <= Pi )

BROYDEN GOOD METHOD ———
BROYDEN BAD METHOD -------
HYBRID METHOD --------

GSM METHPD

2 4 6 8 10 12

Figure 1: Performance Profile

We first analyze the performance profile of all algorithms described above
without globalization strategy on all problems. The performance profile is
reported on Figure 1. A zoom on 7t between 1 and 5 is provided in Figure 2.

The results are very satisfactory for our method. Indeed, we observe that
GSM is the most efficient and the most robust algorithm among the challenged
quasi-Newton methods.

We also confirm results by Martinez (2000) showing that the Hybrid method
is more reliable than BGM and BBM. Indeed, it converges on almost 50% of
the problems, while each Broyden method converges only on less than 40% of
the cases. Moreover, HMM wins more often than BGM and BBM does, and
is also more robust, as its performance profile grows faster than the profile for
BGM and BBM. The relative robustness of BGM and BBM is comparable.
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Figure 2: Performance Profile on (1,5)

Even if GSM is the most reliable algorithm, note that it only converges
on 55% of the 191 runs. We now present the performance profile for all algo-
rithms in their damped version, that is making use of the linesearch strategy
presented in Section 3.1, on Figure 3. A zoom for 7t between 1 and 3 is provided
in Figure 4. Firstly we observe that the globalization technique significantly
improves the robustness of all four presented algorithms as expected. Secondly
and most importantly, GSM remains the best algorithm in terms of efficiency
and robustness. More precisely, GSM is the best algorithm on more than 60%
of the problems and is able to solve more than 80% of the 191 considered prob-
lems. From Figure 4, we note also that when GSM is not the best method, it
converges within a factor of 2 of the best algorithm for most problems.

The performance profile analysis depends on the number of methods that are
being compared. Therefore, we like to present a comparison between BGM and
GSM only, as BGM is probably the most widely used method. The significant
improvement provided by our method over Broyden’s method is illustrated by
Figure 5 considering the undamped version of both algorithms. Figure 6 shows
the superiority of GSM as well, when both algorithms are globalized using the
linesearch strategy.

In this paper, in the context of solving systems of nonlinear equations,
we focused on quasi-Newton methods which do not use information about the
derivative of the system to be solved. We have already shown that GSM is a very
competitive derivative-free algorithm. To conclude our numerical experiments,
we like to compare our method with an algorithm using derivative information.

We consider a method belonging to the family of inexact Newton methods
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Figure 3: Performance Profile with linesearch

which identify a direction dy satisfying the inexact Newton condition:

[F(xic) + T 0a) dicl| < Ml Flxae) | (49)

for some 1 € [0,1). The most conventional inexact Newton method uses it-
erative techniques to compute the Newton step dy using (49) as a stopping
criterion. Among these iteratives techniques, Krylov-based linear solvers are
generally chosen. Newton-Krylov methods need to estimate Jacobian-vector
products using finite differences approximations in the appropriate Krylov sub-
space.

We now challenge GSM against the Newton-Krylov method presented by
Kelley (2003). The considered version of this method uses the iterative linear
GMRES (proposed by Saad and Schultz, 1986) and a parabolic linesearch via
three interpolation points. Similarly to the Newton-Krylov algorithm, we allow
GSM to use a finite differences approximation of the initial Jacobian. From
Figure 7, we observe that GSM is competitive with Newton-Krylov both in
terms of efficiency and robustness. This result is very satisfactory as Newton-
Krylov methods have been proven to be very efficient methods to solve systems
of nonlinear equations.

4.2 Behavior in presence of noise

In practice the evaluation of systems of nonlinear equations often returns a
result that is affected by noise, in particular if the evaluation is the outcome
of simulator runs. For example Bierlaire and Crittin (forthcoming) describe
such a problem in the context of transportation applications. Therefore, we
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conclude this section by an empirical analysis of the behavior of our method
in the presence of noise in the function. Indeed, we speculate that the use of a
larger sample of iterates within a least squares framework smooths the impact
of noise on the method.

We consider a random function described by:

G(x) = Fs(x) + ¢ (x) (50)

where F; : R™ — R™ is deterministic and ¢(x) is a random perturbation. We
want to identify x such that F4(x) = 0, but we are not able to compute F4(x)
accurately.

We consider two types of random noise:

1. Similarly to Choi and Kelley (2000), we first assume that the noise de-
creases near the solution, more precisely:

b(x) ~ N(0, o®||x —x*||) and G(xo) = Fs(xo) = 0. (51)
In this case, the noise is named proportional.
2. We then assume that the noise is constant, more precisely:
d(x) ~ N(0, o). (52)
In this case, the noise is named absolute.

We have selected two problems where the behavior of BGM and GSM in
their undamped version are almost similar in the deterministic case. Please
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Figure 5: Performance profile — Broyden’s Good Method and GSM -

note that we do not perform tests using the damped quasi-Newton framework
as the underlying globalization strategy makes use of finite differences, which is
not compatible with the stochasticity present in the problems considered in this
subsection. For each function and each type of noise the results are presented
for 4 levels of stochasticity, ¢.e. for four different values of the parameter o
defined in equations (51) and (52). We plot the relative nonlinear residual,
that is ||G(xx)||/||G(xo)], against the number of function evaluations.

First we consider a problem given by Spedicato and Huang (1997) and
fully described in Section 6.4 in the Appendix. The results obtained with
the proportional noise are presented in Figure 8. Figure 8(a) illustrates the
deterministic case, with ¢(x) = 0, where BGM is slightly better than GSM.
When a noise with small variance (« = 0.001, Figure 8(b)) is present, GSM
decreases the value of the residual pretty quickly, while the descent rate of
BGM is much slower. When the variance of the noise increases (« = 0.01 in
Figure 8(c), and « = 1 in Figure 8(d)), the BGM is trapped in higher values of
the residual, while GSM achieves a significant decrease. The results obtained
with the absolute noise are presented in Figure 9. The values of « are the
same as above. The behavior of the two methods is almost the same as for the
proportional noise. GSM reaches a lower level than BGM of the residual for
small (x = 0.001, Figure 9(b)) and medium («x = 0.01, Figure 9(c)) variances.
When the variance is higher (« = 1, Figure 9(d)) none of the two methods is
able to significantly decrease the relative residual.

The same tests have been accomplished with the Extended Rosenbrock
Function given by Dennis and Schnabel (1996) and fully described in Section 6.5
in the Appendix. Figure 10 reports the behavior of GSM and BGM applied to
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this problem perturbated with a proportional noise. Figure 10(a) reports the
relative residual of the smooth system (o = 0). In the presence of the small
noise (o = 0.0001, Figure 10(b)) both methods converge but BGM needs more
than twice the number of iterations needed by GSM. When the noise increases
(e = 0.01, Figure 10(c)) BGM is totally disrupted and diverges, while GSM still
converges in less than 20 iterations. With the higher value of the noise («x =1,
Figure 10(c)) both methods are stalled, but GSM achieves lower values for the
relative residual. Figure 11 reports the behavior of GSM and BGM applied
to this problem perturbated with absolute noise. Again Figure 11(a) reports
the relative residual of the smooth system (« = 0). For small (« = 0.0001,
Figure 11(b)) and medium (o = 0.01, Figure 11(c)) value of the noise both
methods reach the same value of relative residual with GSM using clearly less
evaluations of F than BGM. With a larger noise (« = 1, Figure 11(c)), as for
the proportional case, BGM is stalled at a higher value than GSM.

We have performed the same analysis on other problems, and observed a
similar behavior, that is a systematically better robustness of GSM compared
to the classic BGM when solving a noisy system of equations.

In summary, our method is more robust than BGM in the sense that it can
solve noisy problems that BGM cannot. When both fail, GSM exhibits better
decreases, which may be advantageous in practice.
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4.3 Large-scale problems

The main drawback of our approach is the relatively high cost in numerical lin-
ear algebra. Therefore it is particularly appropriate for medium-scale problems
where F is very expensive to compute. Bierlaire and Crittin (forthcoming) pro-
pose an instance of this class of methods, designed to solve very large-scale sys-
tems of nonlinear equations without any assumption about the structure of the
problem. The numerical experiments on standard large-scale problems show
similar results: the algorithm outperforms classical large-scale quasi-Newton
methods in terms of efficiency and robustness, its numerical performances are
similar to the Newton-Krylov methods, and it is robust in presence of noise.

The complexity (both in time and memory) is linear in the size of the
problem. Therefore, we were able to solve very large instances of a problem
given by Spedicato and Huang (1997). The algorithm has been able to converge
on a problem of size 2’000°000 in four hours and 158 iterations.

We are strongly interested in globalizing the large-scale version of our method.
However, it requires future research to adapt our linesearch framework and to
get an efficient globalization strategy in term of computational time.

5 Conclusion and perspectives

We have proposed a new class of generalized secant methods, based on the use
of more than two iterates to identify the secant model. Contrarily to previous
attempts for multi-iterate secant methods, the key ideas of this paper are (i)
to use a least squares approach instead of an interpolation method to derive
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Figure 8: Behavior with proportional stochasticity

the secant model, and (ii) to explicitly control the numerical stability of the
method.

A specific sub-class of this family of methods provides an update formula.
We have proven the local convergence of an undamped quasi-Newton method
based on this update formula. Moreover, we have performed extensive numer-
ical experiments with several algorithms. The results show that our method
produces significant improvement in term of robustness and number of function
evaluations compared to classical methods. We have also shown that the glob-
alization strategy presented in this paper significantly improves the robustness
of quasi-Newton methods. Eventually, we have provided preliminary evidences
that our method is more robust in the presence of noise in the function.

A theoretical analysis of a globally convergent version of our method must
also be performed. We also conjecture that the local convergence rate is super-
linear. And most importantly, the general behavior of the algorithm for solving
noisy functions requires further analysis.

There are several variants of our methods that we plan to analyze in the
future. Firstly, following Broyden’s idea to derive BBM from (44), an update
formula for B;JL] can easily be derived in the context of our method:

1
Byl =By + (ITT + Yk+1Q2YE+1> Y02 (5k+1 - B[1Yk+1) . (53)
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From preliminary tests that we have performed, the “Good” and “Bad” versions
of our method compare in a similar way as BGM and BBM. Secondly, non-
update instances of our class of methods can be considered. In that case, the
arbitrary matrix BY,; in (10) may be different from By. Choosing a matrix
independent from k allows to use iterative scheme designed to solve large-
scale least squares. In that case, choosing a matrix independent from k would
allow to apply Kalman filtering (Kalman, 1960) to incrementally solve (10) and,
consequently, improve the numerical efficiency of the method. For large scale
problems, an iterative scheme such as LSQR (Paige and Saunders, 1982) can
be considered. LSQR can also improve the efficiency of Kalman filter for the
incremental algorithm (see Bierlaire and Crittin, 2004).

Finally, the ideas proposed in this paper can be tailored to optimization
problems.

23



Relative Nonlinear Residual

Relative Nonlinear Residual

10000

0.0001

10000

100

0.0001

Broyden Good
GSM

L L
20 40 60 80 100 120
Number of Evaluations of F

(a) Without noise

Broyden Good
asM

20 40 60 80 100 120

Number of Evaluations of F

(c) Medium variance noise

Relative Nonlinear Residual

Relative Nonlinear Residual

10000

100

0.0001

10000

100

0.0001

Broyden Good
GSM

L L L L
20 40 60 80 100 120
Number of Evaluations of F

(b) Small variance noise

Broyden Good
asM

20 40 60 80 100 120
Number of Evaluations of F

(d) Large variance noise

Figure 10: Behavior with proportional stochasticity

24



Relative Nonlinear Residual

Relative Nonlinear Residual

10000 -

0.0001 -

10000

100

0.0001 -

Broyden Good
GSM

L
20 40 60 80
Number of Evaluations of F

(a) Without noise

L
100

Broyden Good
asM

20 40 60 80
Number of Evaluations of F

100

(c) Medium variance noise

Relative Nonlinear Residual

Relative Nonlinear Residual

10000 -

100

0.0001

Broyden Good
GSM

5 ™ /i
20 40 60 80 100 120
Number of Evaluations of F

(b) Small variance noise

10000 -

0.0001 -

Broyden Good
asM

20 40 60 80 100 120

Number of Evaluations of F

(d) Large variance noise

Figure 11: Behavior with absolute stochasticity

25



6 Appendix

6.1 Proof of Lemma 3

IsQs™| < |sq|?
k
< ) llwssi?
i=0
< (k+ Dmax (Jwifsi])?
iely
< (k+ 1) max (il — % + % — xq)?
i€y
< 2(k+ 1)max |w;* max [x; — &|?
iEIk iGIkJrl
<

ZMpMi .max HX;L — )2”2
i€k

for all X € R™™, in particular with X = x* which proves (21).

k
2¢Ty 2 2 2
[Q°SH= < ZHwiSiH
1=0
2 2
< (k+1)max (Iwil ||si\|>
i€l
< (k+ 1)max|wi|4max\|xk+1 — %+ %—xq|?
i€y iely
<

2(k + 1) max |w;/* max IIxi — in
el i€lx41
for all X € R™™. We obtain (22) with X = x*:
1Q%sT]| < V2MpME, max |x; — x|
LSS |

6.2 Proof of Lemma 4

Writing explicitly a column of the matrix A =Y — J(x*)S

aj = F(xit1) — F(xi) = J(x™) (Xpe1 — Xpe—j+1)
with a.; defining the column j of A = (ay;).
Using (65) and Lemma 1 we can write:

Y —J(x*)S||?
K1 )
< Z1 sl
J:
< (k + 1)1335 [F(xs1) — Flxi) — T(x*) (a1 — x4

2
2 i =" | = e 1 =x]]
= (k+1)Kuprig§§( e gy — i)
< 2(k+1)KZ  max [[x; —x*||? max [[x; —x*|?
k+1 i€l

Up ie1
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Taking the square root on both sides:

Y —T(x")S|| < v/2MpKyip max lxi — x*||? (66)
1Clk+

6.3 Proof of the Lemma 5

Let A € R™™, we denote by A (A) and Apm(A) its smallest and largest eigen-
values, respectively. So we can write using the definition of the 1, norm:

1T +8Q2ST) M, = Am((ITT+8Q2sT) ) (67)
1

= . 68

Am(ITT + SQ2ST) (68)

From assumption (A3), I'? is computed using the modified Cholesky factoriza-
tion, proposed by Schnabel and Eskow (1991), with parameter t. Therefore,

An(ITT+5028T) > 1, (69)
which concludes the proof.

6.4 Description of the problem analyzed in Figures 8 and 9

The considered problem is the following system of equations:

4 .3
xy 41
with initial point xog = (1.5,...,1.5). The solution of this system is x* =

(0.20432,...,0.20432).

6.5 Description of the problem analyzed in Figures 10 and 11

The considered problem is the following system of equations of dimension n,
where n is a positive multiple of 2.
Fori=1,...,n/2

{ fi1 = 10(x2i—x3;_4) (71)
fai = T—x2
with initial point xo = (—1.2,1,...,—1.2,1). The solution of this system is

x*=(1,...,1).

6.6 Linear problems in the tests set

We have tested three linear problems of the form Ax = b. They have been
designed to challenge the tested algorithms.

1. For the first, the matrix A is the Hilbert matrix, and vector b is composed
of all ones.
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2. The second problem is based on the matrix A such that ay = j if i +
j =n+1, and aj; = 0 otherwise. All entries of the right-hand side b
are -10. Its structure is designed so that the identitiy matrix is a poor
approximation.

3. The third problem is based on a Vandermond matrix A(v) with v =
(—1,—2,...,—n). All entries of the right-hand side b are -1.

The starting point for all those problems is x = (1,...,1)".
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