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The distinct element method was originally designed to handle spherical particles. Here, this method is gen-
eralized to a wider range of particle shapes calledspherosimplices. A contact detection method is given as
well which uses weighted Delaunay triangulations to detect contacts occurring in a population of particles with
such shapes. Finally, a set of numerical experiments is performed indicating that the overall contact detection
complexity is linear in the number of particles.

1 INTRODUCTION

The distinct element method (DEM) is widely used
to perform granular media simulations. The two key
elements this requires are an adequate model for inter-
particulate contact forces and an efficient contact de-
tection method. Although this method originally han-
dles granular media composed of spherical particles,
making it possible to process non-spherical particles
has turned out to be of utmost importance. Indeed
it is such grains that one finds in nature and many
important phenomena cannot be reproduced just us-
ing spherical grains. Here, we propose a generaliza-
tion of the distinct element method to a wide range of
non-spherical particles. In the following, we describe
some of the shapes this generalization will be able to
work with and explain how the contact force mod-
els should be handled. Then, we address the question
of detecting contacts between pairs of such particles,
by generalizing the method described in (Ferrez and
Liebling 2002) which relies on the properties of the
weighted Delaunay triangulations to detect contacts
in the spherical particles case.

2 PARTICLE SHAPES AND CONTACT MODEL-
ING

From here on, a particleP will be the Minkowski sum
of a simplexs (either a point, a line segment, a tri-
angle or a tetrahedron) with a ball of radiusr cen-
tered at the origin. We says is the skeleton ofP and
r its radius. Those particles, shown on figure 1 will
appropriately be calledspherosimplices, or depending
on their skeletonsspherosegments(also called sphero-
cylinders (Pournin et al. 2005)),spherotrianglesand

Figure 1: The three non-sphericalspherosimplicesused to
model particle shapes, together with their skeletons.

spherotetrahedra.
These shapes are special cases of more general

structures (not necessarily convexspheropolyhedra)
which we can also treat, and which we will dis-
cuss elsewhere. Two particlesP andQ are in contact
whenever they overlap, that is ifP ∩Q 6= ∅. The over-
lapping betweenP andQ models the deformation at
the contact point.

In the original distinct element method, that is
whenP andQ are spheres, the amount of overlap-
ping at the contact point is quantified by thenormal
overlapξn as :

ξn = rP + rQ − ‖sQ − sP‖, (1)

wheresP andsQ are the centers ofP andQ respec-
tively andrP andrQ are their radii (see figure 2). A
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Figure 2:Geometrical modeling of a contact between spherical
particlesP andQ in the usual DEM framework with the contact
forcef applied by particleP on particleQ.

unit vectorun normal to the contact area can be de-
fined asun =

sQ−sP

‖sQ−sP ‖
. A forcef is applied on the par-

ticles at contact point accordingly to the third New-
ton law (that isf = fP→Q =−fQ→P ) and its normal
componentfn = f .un will be given as a function of
ξn and its time derivativėξn. The most popular model
for this contact force, first introduced in (Cundall and
Strack 1979) reads :

fn = knξn + cnξ̇n (2)

The parameterskn andcn depend on the geometrical
and mechanical properties of the contacting spheres
(Pournin et al. 2002). Other expressions forfn have
been proposed in (Walton and Braun 1986; Pournin
et al. 2002). The pointxC on eitherP andQ to which
the total contact force is effectively applied is the in-
tersection of segment[sP , sQ] with the planeC con-
taining the circular intersection of the boundaries of
P and Q. A tangential overlapξ⊥ accounting for
the tangential deformation at sticky contacts can be
defined as well by integrating the tangential relative
speed ofP andQ at the contact pointxC . The tan-
gential componentf⊥ = f − fnun of the contact
force can therefore be modeled fromξ⊥ the same
way fn has been fromξn. This tangential force can
be bounded according to Coulombian friction law in
order to account for slippery contacts.

Now, if P andQ are not necessarily spherical, let
xP andxQ be the points insP andsQ respectively so
that ‖xQ − xP‖ is minimal (see figure 3). Of course
there may be several such pairs in degenerate cases,
for example whensP and sQ are two parallel tri-
angles, but thenxP (resp.xQ) should be chosen as
the barycenter of the possible points onsP (resp.sQ)
which provides an easy, yet intuitive solution. A nor-
mal overlap, a unit vector normal to the contact area
and a contact point can be defined in this general case
by replacingsP andsQ by xP andxQ in the spheri-
cal case definitions of those quantities. This actually

ξ

sQ

n

SQ

sP SP

xQ

xC

xP

rQ

rP

Q

P

Figure 3: Geometrical modeling of a contact between non-
spherical particlesP and Q (here, a spherotriangle and a
spherosegment). According to the model,xP andxQ are points
in sP andsQ so that‖xQ − xP ‖ is minimal and the contact be-
tweenP andQ has sameξn, un andxC as the imaginary contact
between spheresSP andSQ.

amounts to considering that the contact betweenP
andQ actually occurs between the sphereSP of ra-
diusrP centered at pointxP and the sphereSQ of ra-
diusrQ centered at pointxQ.

The contact pointxC (to which the contact force is
applied) will therefore be the intersection of segment
[xP , xQ] with the planeC containing the circular inter-
section of the boundaries ofSP andSQ, the overlapξn

will read :

ξn = rP + rQ − ‖xQ − xP‖, (3)

and un will read un =
xQ−xP

‖xQ−xP ‖
. The normal com-

ponent of the contact force should then be computed
from ξn according to (2) or to any other contact force
model. Besides, the knowledge ofxC allows the com-
putation ofξ⊥ by integration of the tangential relative
speed ofP andQ at pointxC andf⊥ will be found
from ξ⊥ following an appropriate force model. Once
the forces and their application points are known, the
velocities, spins and trajectories of the particles are
obtained by integration of the usual motion equations.
This requires that the inertia matrix of every parti-
cle be known. While those matrices have analytical
expressions for all spherosimplices, we do not repro-
duce them here.

3 A TRIANGULATION-BASED CONTACT DE-
TECTION METHOD

When simulating large populations of particles, an ef-
ficient contact detection method is required. Indeed,
the quadratic complexity of testing all possible pairs
of particles for contact quickly becomes prohibitive
when the number of particles increases. This section
focuses on adapting to our particular non-spherical
shapes the triangulation-based method introduced in
(Müller 1996; Ferrez and Liebling 2002) in the spher-
ical case. The weighted Delaunay triangulationD
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generated by a number of spheresS1, ..., Sn cen-
tered at pointsx1, ..., xn is a particular mesh of the
convex hull of{x1, ..., xn} whose basic elements are
tetrahedra. Its regularity properties are greatly appre-
ciated particularly when it comes to numerically solv-
ing spatial differential equations. Furthermore, one of
its properties turns to be useful for our contact detec-
tion concerns :if two spheresSi andSj, i 6= j inter-
cept, then the segment[xi, xj] is an edge ofD. De-
tecting contacts among the spherical particlesP1, ...,
Pn then amounts to building the weighted Delaunay
triangulation generated byP1, ..., Pn and testing for
contact the pairs of particles which are linked by an
edge ofD. Considering that in our practical cases the
number of edges ofD is linear in the numbern of
generating spheres (see section 4), this method allows
to reduce the complexity of contact detection from
O(n2) to O(n), which is about the best one can hope
for in this context. Of course, building and handling
the weighted Delaunay triangulation requires special
attention, but this issue will not be addressed here and
one may refer to (Ferrez 2001) for more details.

Now, supposeP1, ..., Pn are non-spherical parti-
cles with skeletonss1, ..., sn and radiir1, ..., rn. The
triangulation based contact detection method can be
adapted to those non-spherical particles as follows.
Assign to each particlePi a setΣi of spheres having
no relative motion with respect toPi and so that the
two following conditions are satisfied :

Covering Condition : The point-wise union of the
spheres inΣi containsPi for all i ∈ {1, ..., n}.

Orthogonality Condition : Independently of the
relative position of any two particlesPi andPj, i 6= j,
for two spheresSi ∈ Σi andSj ∈ Σj with radii Ri and
Rj and centersxi andxj respectively,‖xi − xj‖2 >
R2

i + R2
j .

If the covering condition is satisfied, the spheres
in setsΣi are also called covering spheres. The or-
thogonality condition actually bounds the overlap of
any two spheres assigned to different particles at
any time during the simulation process. CallingD
is the weighted Delaunay triangulation generated by
the spheres in allΣi, i ∈ {1, ..., n}, provided the two
above conditions are satisfied, the following holds :
if two particlesPi andPj, i 6= j intercept, then there
exist two spheresSi ∈ Σi andSj ∈ Σj whose centers
are linked by an edge ofD.

Therefore, detecting contacts among the non-
spherical particlesP1, ..., Pn amounts to covering
each particle with a set of spheres so that the orthog-
onality condition is satisfied, building the weighted
Delaunay triangulation generated by those spheres
and testing for contact those pairs of particles hav-
ing at least one covering sphere each, whose cen-
ters are linked by an edge ofD. A given pair of

particlesPi and Pj will be in contact as soon as
ri + rj −‖xj −xj‖> 0, wherexi andxj are the points
in Si andSj respectively so that‖xj − xi‖ is minimal
as defined in previous section. The actual computation
of xi andxj is a simple, yet interesting optimization
problem (see (Pournin et al. 2005) for the case of two
segments).

Covering the particles with spheres so that the or-
thogonality condition is satisfied may be done in a
variety of ways. Here, we only address the simple
case of identical regular spherotetrahedra, each be-
ing covered by a single sphere. SupposeP is such a
spherotetrahedron with skeletons and radiusr. Call
M its mass center andl the distance betweenM and
any vertex ofs. The covering sphereS of P will
be centered at pointM and its radius will bel + r
that is, just enough for it to coverP . In such a situ-
ation, the distance betweenM and the boundary of
P is l/3 + r. This means that the smallest possible
distance between the centers of two covering spheres
equals2l/3 + 2r− ξm, whereξm is an upper bound to
the overlaps which will occur at any contact through-
out the simulation. Therefore, if2l/3 + 2r − ξm ≥√

2(l + r) then the orthogonality condition is satis-
fied. Recall that the overlap accounts for the defor-
mation at the contact point. Hence, any realistic sim-
ulation should lead to small values forξm/r. With
the acceptable value ofξm/r = 1/8, we obtain that
for l ≤ 0.61r, the orthogonality condition is satisfied.
These dimensions were used to produce some of the
numerical experiments discussed in next section.

4 RESULTS AND DISCUSSION
The above generalization of the traditional dis-
tinct elements method allows investigating gran-
ular phenomena involving non-spherical particles.
For spherosegments, granular crystallization (Pournin
et al. 2005; Ramaioli et al. 2005) has been success-
fully replicated with our model, providing a first val-
idation. Still, further validations are needed and nu-
merical experiments with more complex shapes may
be conducted such as shape segregation or granular
stratification (Makse et al. 1997). This section only
aims at giving a feeling about the complexity of the
contact detection method.

Snapshots of experiments performed with this non-
spherical version of the distinct element method are
shown on figure 4. Those experiments consist in pour-
ing particles into a cylindrical container of diameter
20 mm. This means that the number of particles grad-
ually increases while the simulation performs. All
particles have eight times the volume of a sphere of
diameter1 mm, independently of their shapes. Exper-
iment 1 involves 250 spherosimplices of each kind.
Experiment2 involves500 spheres and500 spherote-
trahedra, and experiments3 and4, 1000 spheroseg-
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Figure 4:Snapshots of final states of numerical experiments.
Left : experiment1, right : experiment3.

ments each.
For the first two experiments, each particle only

uses one covering sphere for contact detection. This
is achieved by calibrating every shape the same way
the spherotetrahedra have been calibrated at the end of
section 4. This constraint actually limits the particle’s
sharpness. Still, those particles are far from spheri-
cal and this way, the complexity of contact detection
is the same as if all particles were spheres. In exper-
iment 3, particles have an elongation coefficientl/r
of 3, wherel is half the length of the segment con-
stituting their skeletons andr is their radius. With
such elongated shapes,5 covering spheres per particle
are needed. In experiment4, l/r = 6, and9 covering
spheres are needed for a particle. In every experiment,
ξm = 5× 10−5 m.

The computing time of the DEM process, includ-
ing contact detection, is drawn on figure 5 against
the number of simulated particles. In all cases it is
almost linear. Observe that the slope of this linearity
increases with particle elongation, naturally reflecting
that the number of possible contacts is higher for elon-
gated particles. The inset shows the number of edges
of the triangulation, drawn versus the number of cov-
ering spheres and the four cases reveal identically lin-
ear. The slope of around7 is close to the coordination
number of random close-packed spheres, indicating
that our method appropriately identifies the pairs of
particles to be tested for contact.

5 CONCLUSION

This generalization of the distinct element method
to non-spherical particles opens numerical simulation
to a wide new range of granular media. Our linear
triangulation-based contact detection method allows
processing large populations of non-spherical parti-
cles. While many issues need to be further discussed,
such as the influence of the shape of contact areas on
the behaviour of a contact, the first trials to be found
in (Pournin et al. 2005; Ramaioli et al. 2005) sug-
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Figure 5:Actual computing time of the DEM process drawn
versus the number of simulated particles for all experiments. The
time indexis normalized to1 for 1000 of the last experiment’s
spherosegments. Each point is averaged over400 DEM itera-
tions. Inset : numberε of edges in the triangulation versus the
numberσ of covering spheres for the same experiments.

gest that this model successfully captures the reality
of non-spherical particles.
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