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The distinct element method was originally designed to handle spherical particles. Here, this method is ge
eralized to a wider range of particle shapes caipierosimplices A contact detection method is given as
well which uses weighted Delaunay triangulations to detect contacts occurring in a population of particles wit
such shapes. Finally, a set of numerical experiments is performed indicating that the overall contact detecti
complexity is linear in the number of particles.

1 INTRODUCTION

The distinct element method (DEM) is widely used
to perform granular media simulations. The two key
elements this requires are an adequate model for inte
particulate contact forces and an efficient contact de
tection method. Although this method originally han-
dles granular media composed of spherical particles
making it possible to process non-spherical particles
has turned out to be of utmost importance. Indeec
it is such grains that one finds in nature and many
important phenomena cannot be reproduced just us
ing spherical grains. Here, we propose a generaliza
tion of the distinct element method to a wide range of
non-spherical particles. In the following, we describe
some of the shapes this generalization will be able tdigure 1:The three non-sphericaipherosimplicesised to
work with and explain how the contact force mod- model particle shapes, together with their skeletons.

els should be handled. Then, we address the question

of detecting contacts between pairs of such particlesSPherotetrahedra .

by generalizing the method described in (Ferrez and 1hese shapes are special cases of more general
Liebling 2002) which relies on the properties of the Structures (not necessarily convsgheropolyhedrp

weighted Delaunay triangulations to detect contactd/hich we can also treat, and which we will dis-
in the spherical particles case. cuss elsewhere. Two particlésand( are in contact

whenever they overlap, that isifN Q # (). The over-
> PARTICLE SHAPES AND CONTACT MODEL- lapping betweer” and() models the deformation at
ING the contact point. .
' . . . In the original distinct element method, that is
From here on, a partIClB will be the Minkowski sum when P and Q are Spheres’ the amount of over|ap_

of a simplexs (either a point, a line segment, a tri- ping at the contact point is quantified by thermal
angle or a tetrahedron) with a ball of radiusen-  gyerlap¢, as :

tered at the origin. We sayis the skeleton of” and

r its radius. Those particles, shown on figure 1 will &n=rp+rg—|so—spl, (1)
appropriately be callespherosimplicer depending

on their skeletonspherosegmentalso called sphero- wheresp ands( are the centers aP and() respec-
cylinders (Pournin et al. 2005)3pherotrianglesand  tively andrp andrg are their radii (see figure 2). A



https://core.ac.uk/display/147910413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2:Geometrical modeling of a contact between spherical
particlesP and@ in the usual DEM framework with the contact
force f applied by particle® on particleQ.

Figure 3: Geometrical modeling of a contact between non-
spherical particlesP and @ (here, a spherotriangle and a
spherosegment). According to the modek, andz are points

) in sp andsg so that||zg — zp|| is minimal and the contact be-
unit vectoru,, normal to the contact area can be de-tweenP andQ has samé,,, u,, andz¢ as the imaginary contact

fined asu,, = %. Aforce f is applied on the par- between sphereSp andSy,.
ticles at contact point accordingly to the third New- o
ton law (thatisf = fp_ = —fo_p) and its normal amounts to considering that the contact betwéen

componentf,, = f.u, will be given as a function of andQ actually occurs between the sphefe of ra-

¢, and its time derivativé,,. The most popular model diusrp centered at point» and the spherg, of ra-
for this contact force, first introduced in (Cundall and diusrq centered at point,.

Strack 1979) reads : The contact point (to which the contact force is
applied) will therefore be the intersection of segment
Fo = ko + Cobn ) [zp, x| with the plane® containing the circular inter-

section of the boundaries 6% andS,, the overlag,,

The parameters, andc, depend on the geometrical Will read :
and mechanical properties of the contacting spheres &=rp+rg—|rg— 2P, (3)
(Pournin et al. 2002). Other expressions for have . zo—zp
been proposed in (Walton and Braun 1986; Pourni@nd . will read w, = Z>="r. The normal com-
et al. 2002). The point on eitherP and(Q to which  ponent of the contact force should then be computed
the total contact force is effectively applied is the in-from &, according to (2) or to any other contact force
tersection of segmeritp, sg] with the planeC con-  model. Besides, the knowledgex=f allows the com-
taining the circular intersection of the boundaries ofputation of¢ |, by integration of the tangential relative
P and Q. A tangential overlap¢, accounting for speed ofP and( at pointzc and £, will be found
the tangential deformation at sticky contacts can bdrom &, following an appropriate force model. Once
defined as well by integrating the tangential relativethe forces and their application points are known, the
speed ofP and () at the contact point.. The tan- Vvelocities, spins and trajectories of the particles are
gential componentf, = f — f,u, of the contact oObtained by integration of the usual motion equations.
force can therefore be modeled frogn the same This requires that the inertia matrix of every parti-
way f, has been frong,. This tangential force can cle be known. While those matrices have analytical
be bounded according to Coulombian friction law in expressions for all spherosimplices, we do not repro-
order to account for slippery contacts. duce them here.

Now, if P and( are not necessarily spherical, let
xp andz be the points insp andsg respectively so 3 A TRIANGULATION-BASED CONTACT DE-
that||xg — xp|| is minimal (see figure 3). Of course ~ TECTION METHOD
there may be several such pairs in degenerate cas@¥hen simulating large populations of particles, an ef-
for example whensp and s are two parallel tri- ficient contact detection method is required. Indeed,
angles, but therxp (resp.zq) should be chosen as the quadratic complexity of testing all possible pairs
the barycenter of the possible pointsgn(resp.sg)  of particles for contact quickly becomes prohibitive
which provides an easy, yet intuitive solution. A nor- when the number of particles increases. This section
mal overlap, a unit vector normal to the contact aredocuses on adapting to our particular non-spherical
and a contact point can be defined in this general casghapes the triangulation-based method introduced in
by replacingsp andsg by xp andz in the spheri-  (Muller 1996; Ferrez and Liebling 2002) in the spher-
cal case definitions of those quantities. This actuallyical case. The weighted Delaunay triangulation
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generated by a number of sphergs ..., S, cen- particles P, and P; will be in contact as soon as
tered at pointscy, ..., z,, is a particular mesh of the r;+r; —||z; —z;|| > 0, wherez; andz; are the points
convex hull of{z,...,z,} whose basic elements are in S; andS; respectively so thdfz; — ;|| is minimal
tetrahedra. Its regularity properties are greatly appreas defined in previous section. The actual computation
ciated particularly when it comes to numerically solv-of z; andz; is a simple, yet interesting optimization
ing spatial differential equations. Furthermore, one ofproblem (see (Pournin et al. 2005) for the case of two
its properties turns to be useful for our contact detecsegments).

tion concerns if two spheresS; and .S;, ¢ # j inter- Covering the particles with spheres so that the or-
cept, then the segmeft;, ;] is an edge ofD. De-  thogonality condition is satisfied may be done in a
tecting contacts among the spherical partides...,  variety of ways. Here, we only address the simple

P, then amounts to building the weighted Delaunaycase of identical regular spherotetrahedra, each be-
triangulation generated b#,, ..., P, and testing for ing covered by a single sphere. Suppdsés such a
contact the pairs of particles which are linked by anspherotetrahedron with skeleterand radius-. Call
edge ofD. Considering that in our practical cases the)s its mass center andthe distance betweel and
number of edges ob is linear in the numbern. of  any vertex ofs. The covering spher& of P will
generating spheres (see section 4), this method allowse centered at point/ and its radius will be + r
to reduce the complexity of contact detection fromthat is, just enough for it to coveP. In such a situ-
O(n?) to O(n), which is about the best one can hopeation, the distance betweef and the boundary of
for in this context. Of course, building and handling P is //3 + r. This means that the smallest possible
the weighted Delaunay triangulation requires speciatlistance between the centers of two covering spheres
attention, but this issue will not be addressed here andqual2/3 + 2r — &,,,, where,, is an upper bound to
one may refer to (Ferrez 2001) for more details.  the overlaps which will occur at any contact through-
Now, supposeP,, ..., P, are non-spherical parti- out the simulation. Therefore, #l/3 + 2r — &, >
cles with skeletons;, ..., s, and radiir, ...,r,. The  \/2(1 + r) then the orthogonality condition is satis-
triangulation based contact detection method can bged. Recall that the overlap accounts for the defor-
adapted to those non-spherical particles as followsmation at the contact point. Hence, any realistic sim-
Assign to each particlé’; a set¥; of spheres having ylation should lead to small values fey, /r. With
no relative motion with respect tB; and so that the the acceptable value @f,/r = 1/8, we obtain that
two following conditions are satisfied : for I < 0.61r, the orthogonality condition is satisfied.
Covering Condition : The point-wise union of the 11ese dimensions were used to produce some of the
spheres irE; containsP, for all i € {1,...,n}. numerical experiments discussed in next section.

Orthogonality Condition : Independently of the 4 RESULTS AND DISCUSSION
relative position of any two particles; and P;, i # j, L " .
. J The above generalization of the traditional dis-
for two spheres; € 2; andS; € X.; with radii /; and tinct elements method allows investigating gran-
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g" ingzcenterm anda; respectively,jz; —x;[* > 50 phenomena involving non-spherical particles.

‘ 7 For spherosegments, granular crystallization (Pournin

If the covering condition is satisfied, the sphereset al. 2005; Ramaioli et al. 2005) has been success-
in setsY; are also called covering spheres. The or{ully replicated with our model, providing a first val-
thogonality condition actually bounds the overlap ofidation. Still, further validations are needed and nu-
any two spheres assigned to different particles americal experiments with more complex shapes may
any time during the simulation process. Callihy be conducted such as shape segregation or granular
is the weighted Delaunay triangulation generated bystratification (Makse et al. 1997). This section only
the spheres in al;, i € {1,...,n}, provided the two aims at giving a feeling about the complexity of the
above conditions are satisfied, the following holds :contact detection method.
if two particlesP; and P;, i # j intercept, then there  Snapshots of experiments performed with this non-
exist two sphere§; € 3, and S; € X; whose centers spherical version of the distinct element method are
are linked by an edge db. shown on figure 4. Those experiments consist in pour-

Therefore, detecting contacts among the noning particles into a cylindrical container of diameter
spherical particles?;, ..., P, amounts to covering 20 mm. This means that the number of particles grad-
each particle with a set of spheres so that the orthogdally increases while the simulation performs. All
onality condition is satisfied, building the weighted particles have eight times the volume of a sphere of
Delaunay triangulation generated by those spherediameterl mm, independently of their shapes. Exper-
and testing for contact those pairs of particles haviment 1 involves 250 spherosimplices of each kind.
ing at least one covering sphere each, whose cerkxperiment2 involves500 spheres and00 spherote-
ters are linked by an edge dP. A given pair of trahedra, and experimenisand 4, 1000 spheroseg-
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Figure 4:Snapshots of final states of numerical experiments. . . . .
Left : experimentl, right : experimens. 0 200 400 600 800 1000
number of particles
ments each. Figure 5:Actual computing time of the DEM process drawn

. . . versus the number of simulated particles for all experiments. The
For the first two experiments, each particle onlyime indexis normalized tol for 1000 of the last experiment's
uses one covering sphere for contact detection. Thispherosegments. Each point is averaged d0erDEM itera-

is achieved by calibrating every shape the same Wa;ions. Inset : num_bezr of edges in the triangulatiqn versus the
the spherotetrahedra have been calibrated at the end@fmbero of covering spheres for the same experiments.
section 4. This constraint actually limits the particle’s _ _
sharpness. Still, those particles are far from spherigest that this model successfully captures the reality
cal and this way, the complexity of contact detection0f non-spherical particles.

is the same as if all particles were spheres. In exper-

iment 3, particles have an elongation coefficigrit _?_h_ACKNO:/VLEDfGEdMgl\t')TSth Swiss National Sci
of 3, wherel is half the length of the segment con- ! NIS Project was tunaed Dy tne SwiSs National SCl-
stituting their skeletons an%l is their rad%us. with €nce Foundation, grant # 200020-100499/1.
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