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Abstract

Industrial filamentous fungal fermentations are typically operated in fed-batch mode.
Oxygen control represents an important operational challenge due to the varying
biomass concentration. In this study, oxygen control is implemented by manipu-
lating the substrate feed rate, i.e. the rate of oxygen consumption. It turns out
that the setpoint for dissolved oxygen represents a trade-off since a low dissolved
oxygen value favors productivity but can also induce oxygen limitation. This paper
addresses the regulation of dissolved oxygen using a cascade control scheme that
incorporates auxiliary measurements to improve the control performance. The com-
putation of an appropriate setpoint profile for dissolved oxygen is solved via process
optimization. For that purpose, an existing morphologically structured model is ex-
tended to include the effects of both low levels of oxygen on growth and medium
rheological properties on oxygen transfer. Experimental results obtained at the in-
dustrial pilot-scale level confirm the efficiency of the proposed control strategy but
also illustrate the shortcomings of the process model at hand for optimizing the
dissolved oxygen setpoints.
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1 Introduction

Filamentous fungi are among the most frequently used cell factories in the
fermentation industry. Their success is due to the relatively well-established
fermentation technology and the versatility of strains available, thus allowing
the production of a wide variety of products: primary metabolites, antibiotics,
enzymes, and proteins [1].

Traditionally, filamentous fungal fermentations are operated in fed-batch mode,
with the feed rates being manipulated manually. As a result of the filamentous
structure of the biomass, its concentration is considerably higher than in other
biological processes. High biomass concentration induces high viscosity, which
makes oxygen transfer difficult [2]. In addition, other factors such as the initial
properties of the biomass (inoculum) can lead to situations with insufficient
oxygen and lower performance of the microorganisms. The goal of this work
is to propose an oxygen control strategy that ensures high productivity and
limits the risk of running into oxygen limitation.

Usually, the level of dissolved oxygen (DO) is controlled by manipulating the
airflow or the stirrer speed. However, when applied to large-scale industrial
reactors, which is the ultimate goal of this work, this strategy often leads to
unacceptable power consumption. Additionally, this culture is rather shear
sensitive because of the filamentous structure of the microorganisms. Hence,
in these cases, the dissolved oxygen concentration can be controlled by limit-
ing its consumption [3], [4], [5]. This is achieved by manipulating the substrate
feed rate, i.e. the feed of the substance being oxidized. Both manual and PID
control have been used for regulating the dissolved oxygen concentration, but
the range in which this concentration could be confined is fairly wide. One way
to cope with this difficulty is to operate with a sufficiently high setpoint for
oxygen concentration so that, despite these large variations, oxygen limitation
does not occur. However, this policy corresponds to feeding less substrate,
which reduces production and is economically unacceptable. Hence, the ob-
jective is to control oxygen concentration tightly at a reasonably low setpoint
so that oxygen limitation can be avoided without sacrificing production. Con-
sequently, the objective of this project is twofold: i) optimization to determine
a setpoint profile that maximizes production, and ii) control to follow this
setpoint while avoiding oxygen limitation.

The first objective is addressed by solving a model-based optimization prob-
lem. A first-principles model of the filamentous fungal (α-amylase producing
strain of Aspergillus oryzae) fermentation process is proposed in [6], while
a data-driven model is described in [7]. Here, the former is utilized. This
first-principles model is morphologically structured and provides a description
of biomass, glucose and enzyme concentrations of submerged cultures of fil-
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amentous fungi without oxygen limitation. However, since oxygen dynamics
are crucial in the operation of fed-batch cultivations, the influence of dissolved
oxygen limitation on the biomass and enzyme production needs to be incor-
porated. These effects are included in the model, which is fitted and validated
on experimental data from fed-batch fermentations provided by Novozymes,
Denmark.

The control objective is met by a cascade-type controller. The poor perfor-
mance of standard PID control can be attributed to the fact that it only uses
information on the controlled variable, though much more information is avail-
able via auxiliary measurements such as the oxygen uptake rate (OUR) and
carbon dioxide evolution rate (CER). Hence, the idea to incorporate some of
these measurements in the control algorithm. By analyzing the structure of
the process model, a simple cascade control scheme is proposed, whereby the
outer-loop oxygen controller provides the setpoint for the OUR/CER signal
that is controlled in the inner loop.

Experimental results show that the setpoint chosen by model-based optimiza-
tion is not appropriate for the real process. Though the model was fitted and
validated on experimental data, its extrapolative power remains poor due to
plant-model mismatch. However, the cascade controller is quite effective in
keeping the dissolved oxygen in a tight range.

The paper is organized as follows. Section 2 describes the process under consid-
eration and its operation in industry. Section 3 details a first-principles model
of filamentous fungal fermentation and develops oxygen transfer relationships.
Oxygen control is considered in Section 4, with optimization to determine the
DO setpoint and cascade control for its regulatation. Section 5 presents exper-
imental results carried out in a pilot plant at Novozymes. Finally, conclusions
are provided in Section 6.

2 Process Description and Industrial Practice

2.1 Fungal Fermentation

The process studied in this paper is the α-amylase production by Aspergillus
oryzae. The same substrate is consumed for both biomass growth and enzyme
production. The main difficulty with this process is oxygen limitation in the
liquid phase. This depletion is usually caused by high biomass concentration,
which, due to its filamentous structure, increases the viscosity and makes
oxygen transfer difficult.
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2.2 Current Operation

The fermentation at Novozymes Pilot Plant, (Bagsvaerd, Denmark) is carried
out in a 2500 L stirred vessel. pH is controlled through dosing ammonia (g) and
phosphoric acid. The fermenter is aerated at the constant rate of 1 vvm and
agitation speed of 275 rpm. Temperature and pressure are kept at a constant
level by the process control system DeltaV, from Fisher Rosemount.

The typical way of operating the fermentation process is presented in Figure 1.
For the sake of confidentiality, the experimental results have been normalized
and thus no measurement units are presented. The substrate feeding policy
takes into account the problem of oxygen limitation and consists of:

(1) a batch or growth phase, during which the substrate concentration is
reduced from a high initial value to its operational range,

(2) a linearly-increasing feed rate whose role is to avoid oxygen limitation in
the early phase of the fed-batch, and

(3) a ’constant’ feed rate that is chosen in order to exactly fill the reactor in
the remaining operation time and keep the dissolved oxygen around the
desired value DOdesired = 25.

As can be seen in Figure 1, the range of dissolved oxygen is fairly wide (20-
40%). Also, towards the end of the batch, increasing the feed rate causes
oxygen limitation. A larger feed rate means more biomass, higher viscosity
and thus reduced oxygen transfer. This phenomenon has been encountered
and analyzed by the biologists in Novozymes. It can be explained as follows.
Once under oxygen limitation, the biomass changes morphology, whereby the
viscosity of the medium increases significantly. However, this increase in vis-
cosity reduces oxygen transfer even more. This positive feedback effect leads
to lower and lower oxygen levels and eventually to the death of the microor-
ganisms. Hence, if tight oxygen control is not ensured, the risk of running into
oxygen limitation is very high.

2.3 Measurements

The measurements available are the volume V , the viscosity η, the dissolved
oxygen pressure DO, the aeration rate Qg, the amount of oxygen consumed
∆[O2], and the amount of carbon dioxide produced ∆[CO2].

The volume is calculated from weight measurements, assuming constant den-
sity throughout the fermentation. The viscosity is determined by a viscosime-
ter Hydramotion, York England. DO is determined by an electrode Ingold,
from Mettler Toledo. The oxygen and carbon dioxide concentrations in the
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exhaust gases are determined by a mass spectrometer VG Prima dB, from
Thermo.

The oxygen uptake rate OUR and the carbon dioxide evolution rate CER are
determined from gas analysis. The inlet flow rate is measured, as are the mass
fractions of oxygen and carbon dioxide in the inlet and the outlet flows. By
using these quantities and a nitrogen (inert) balance, the volumetric output
gas flow rate Gout can be determined as follows:

Gout yN2,out = Gin yN2,in (1)

Gout = Gin
1 − yO2,in − yCO2,in

1 − yO2,out − yCO2,out − yW,out
(2)

where

Gout – volumetric output gas flow rate (nL/h)
yN2,out – output mass fraction of nitrogen
Gin – volumetric input gas flow rate (nL/h)
yN2,in – input mass fraction of nitrogen
yO2,in – input mass fraction of oxygen
yO2,out – output mass fraction of oxygen
yCO2,out – output mass fraction of carbon dioxide
yW,out – output mass fraction of water

The output water mass fraction can be be calculated from the dilution of
oxygen measurement, by purging the reactor without reaction [8]:

yW,out = yO2,in − yO2,out (3)

Once the output gas flow rate has been computed, OUR and CER can be
determined from balance equations without accumulation terms:

OUR =
Gin yO2,in − Gout yO2,out

V

ρ

MO2

(4)

CER =
Gout yCO2,out − Gin yCO2,in

V

ρ

MCO2

(5)
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where ρ is the average density of the gas flow, while MO2 and MCO2 are the
molecular weights for oxygen and carbon dioxide, respectively.

Note that, in general, an acceptable approximation is to simply consider
OUR ≈ OTR, since the solubility of oxygen is very low [9]. Typically, the
same does not hold for CER and CTR since the solubility of carbon diox-
ide depends on the physical and chemical properties of the medium, such as
temperature and pH. However, since here the fermentor is operated at con-
stant temperature, pressure and pH in the fed-batch phase (Figure 1), it can
be assumed that the rate at which CO2 is formed by microbial metabolism
corresponds to the carbon dioxide transfer rate and thus CER ≈ CTR.

3 Filamentous Fungal Fermentation Model

In this section, the influence of dissolved oxygen is incorporated within the
kinetic equations using Monod expressions, and an additional state – for dis-
solved oxygen – is introduced in the model.

3.1 Morphology and Rate Expressions

Growth kinetics. The morphologically structured model proposed by [6] is
based on the division of the biomass into three different compartments:

• Active region (Xa) - responsible for the uptake of substrate and growth of
the hyphal elements. It is assumed that only the active region is responsible
for enzyme production.

• Extension region (Xe) - responsible for new cell wall generation and exten-
sion.

• Hyphal region (Xh) - the degenerated part of the hyphal elements that is
inactive.

The macroscopic reactions for growth and production can be expressed as:

S + O2
Xa→ Xe (6)

S + O2
Xe→ Xa (7)

Xa → Xh (8)

S + O2
Xa→ P (9)
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where S stands for the substrate (glucose), O2 for the dissolved oxygen and
P for the product (α-amylase).

The corresponding kinetic expressions read:

Branching (Equation (6)):

q1 = xa
DO

DO + KDO

k1s

at(s + Ks1)
(10)

Growth of the active region (Equation (7)):

q2 = atxe
DO

DO + KDO

k2s

s + Ks2
(11)

Differentiation (Equation (8)):

q3 = k3xa (12)

The specific growth rate of total biomass is:

µ =
q2

xt

(13)

where xt = xe + xa + xh represents the total biomass concentration, xe, xa

and xh are the concentrations of the extension, active and hyphal zones, re-
spectively, s and DO are the substrate and dissolved oxygen concentrations,
at represents the number of tips per unit mass of the extension zones. The
parameter at is described as a function of µ (see [6,10] for details concerning
the morphological model). The kinetic expressions and the model parameters
are presented in Appendix A.

Specific rate of enzyme production. Enzyme production in filamentous fungi
is a classical example of growth-associated product formation. The enzyme
production is subject to glucose (substrate) inhibition and oxygen limitation:

rps =


 µ0s

Ks + s + s2

KI

+ kc
s

s + Kcor


 DO

DO + KDO
(14)
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The expression used in [6] describes the substrate inhibition by an exponential
decrease in the specific production rate of the enzyme when the substrate
concentration exceeds a certain threshold value. In this study, the expression
of the specific rate of enzyme production is modified by using a Haldane
expression to describe the substrate inhibition. This modification has been
motivated by the application of an extremum-seeking controller to this process
[11]. The parameter kc quantifies the constitutive level of enzyme production
at high glucose concentrations (during the batch phase).

The specific rate of dissolved oxygen consumption is expressed as:

rDO = YXO
q2

xt
+ YPOrps

xa

xt
+ mo

DO

DO + KDO
(15)

where YXO and YPO are the yields of dissolved oxygen consumption for growth
and enzyme production, respectively, and mo is the maintenance coefficient
that represents the oxygen consumption of biomass.

The specific rate of substrate consumption is expressed as:

rs = YXS
q2

xt
+ YPSrps

xa

xt
+ ms

DO

DO + KDO
(16)

where YXS and YPS are the yields of substrate consumption for growth and
enzyme production, respectively, and ms is the maintenance coefficient (based
on the total amount of biomass).

3.2 Mass Balance Equations

The model proposed in [6] consists of a set of five balance equations for the
three regions of biomass, the substrate and the product concentrations, as
given in equations (17) - (19). An additional mass balance is included here
to describe the dissolved oxygen concentration in the bioreactor (20). Fur-
thermore, eq. (21) describes the bioreactor volume that varies with time and
determines the end of the fermentation process.

Morphological states xe, xa and xh
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ẋe = q1 − F
V
xe, xe(0) = xe0

ẋa = q2 − q1 − q3 − F
V

xa, xa(0) = xa0

ẋh = q3 − F
V
xh, xh(0) = xh0

(17)

Glucose s

ṡ = −rsxt +
F

V
(sf − s), s(0) = s0 (18)

Enzyme p

ṗ = rpsxa − F
V

p, p(0) = p0 (19)

Dissolved oxygen DO

ḊO = −rDOxt + kLa(DO∗ − DO) − F

V
DO, DO(0) = DO0 (20)

Volume V

V̇ = F − Fevap, V (0) = V0 (21)

In these equations, F represents the substrate feeding rate, sf is the substrate
concentration in the feed, Fevap is the evaporation rate, kLa the specific gas-
liquid mass transfer coefficient for oxygen, and DO∗ the oxygen saturation
concentration.

The model parameters and their numerical values are given in Appendix A.
The parameters related to the microscopic morphology (10)-(11) are taken
from [6]. The kinetic parameters for the Haldane expression (14) are identified
by fitting the model to simulated data generated by the model in [6]. The
yield coefficients YXS, YPS, YXO, YPO are identified from experimental data
provided by Novozymes. The data used for model fitting include both on-line
measurements (DO, viscosity, OUR, CER, and V ) and off-line measurements
(p and xt).
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3.3 Modeling Oxygen Transfer

The effect of oxygen on growth and production is crucial due to the positive
feedback effect mentioned in Section 2.2. Hence, it is necessary to understand
and model the factors that affect oxygen transfer. This will be done via an
empirical model that relates kLa to the state variables xt and DO. This link
will be established through the viscosity and consists of various steps:

(1) Estimation of kLa. In stirred bioreactors, the oxygen transfer coefficient,
kLa, depends on the impeller characteristics and the rheological proper-
ties of the fermentation medium. The value of kLa can be determined
experimentally by the dynamic OTR method (oxygen transfer rate mea-
surement) that gives an average kLa value for the bioreactor [12]. On-
line measurements of oxygen transfer rate (OTR), viscosity, and DO are
available, as well as off-line measurement of the total biomass xt. The
kLa-value is calculated as:

kLa = γ
OTR

(DO∗ − DO)
(22)

where γ is a proportionality factor.
(2) Calibration of kLa as a function of viscosity. An empirical relationship

between kLa and viscosity is determined experimentally. Under maxi-
mum air flow rate and constant agitation speed, the substrate feed rate
is varied in such a way that oxygen limitation occurs. kLa is estimated
as mentioned above and viscosity is measured. The relationship can be
approximated by the linear equation (Figure 2):

kLa = c0 − c1η (23)

where η represents the on-line measurement of viscosity, and c0 and c1

are linear regression coefficients (R2 = 0.94).
(3) Calibration of viscosity as a function of xt and DO. The use of eq. (23) in

the dynamic model (17) - (21) requires knowledge of viscosity. For a given
stirrer speed, the viscosity of the filamentous suspension is influenced by
two main factors: the biomass concentration and the fibrous structure
of the biomass. Due to the lack of quantification of the fibrous struc-
ture, the viscosity is simply regressed with available experimental data.
A linear relationship between viscosity and biomass concentration is ad-
equate to represent experimental observations (data not shown). This is
also in agreement with literature data for fermentations of Penicillium
chrysogenum and Aspergillus niger [12]. Nevertheless, this relation can
be improved by introducing the effect of dissolved oxygen to give:

η = η0 + aXxt − aDODO (24)
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where η0, aX , and aDO are linear regression coefficients (R2 = 0.84).
A negative effect of DO on the viscosity is found. This effect can be
explained intuitively by the behavior of the filamentous organisms con-
sidered in this paper. Following a decrease in the DO level, the microor-
ganisms react by ’reaching out for air’, that is changing their fibrous
structure so as to increase the zone of the reaction mass from where they
can absorb oxygen. As a consequence, viscosity increases (see Section
2.2). Also, when the level of DO is high, there is enough ’air to breathe’
within the immediate neighborhood, so there is no need to stretch any
further, thereby keeping viscosity low. The performance of the viscosity
model is shown in Figure 3.

In summary, by combining equations (23) and (24), it is possible to model
the oxygen transfer coefficient kLa in terms of total biomass and dissolved
oxygen. The accuracy of the DO prediction using equation (20) to model the
dynamics of DO and equations (23) and (24) to express kLa in terms of xt

and DO is presented in Figures 4 and 5 for two different data sets. It is seen
that the oxygen model performs satisfactorily.

The simulated behavior of the reactor is presented in Figure 6. It can be
observed that the substrate concentration is much higher at the beginning, in
the batch phase, than later on, in the fed-batch phase. This strategy favors
biomass growth in the batch phase and production in the fed-batch phase. It is
also observed that, in the fed-batch phase, the amount of inactive biomass Xh

increases. As a consequence, the viscosity of the medium increases, leading
to a decrease of the oxygen transfer rate (kLa decreases). This decrease, in
turn, reduces the dissolved oxygen concentration, which might lead to oxygen
limitation.

4 Oxygen Control

4.1 Setpoint Computation for Dissolved Oxygen

The model given in the previous section can be used to determine the dissolved
oxygen profile that would maximize the bioreactor performance while avoiding
oxygen limitation. This optimization problem can be formulated mathemati-
cally as follows [13]:
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min
F (t),tf

tf (25)

s.t. (10) − (21), (23), (24)

p(tf )V (tf ) ≥ [p(tf )V (tf )]min

V (tf) ≤ Vmax

Fmin ≤ F (t) ≤ Fmax

where tf is the final time, [p(tf)V (tf)]min is the minimum amount of enzyme to
be produced, Vmax is the maximum volume, Fmin and Fmax are the minimum
and maximum feed rates, respectively.

Note that this optimization can be performed once before the beginning of
the batch or repeated several times during the batch. If the optimization is
repeated, the available measurements can be used in the optimization via a
software sensor that estimates the current states (Figure 7). In this study, a
software sensor based on open-loop model prediction is used [14]. This software
sensor is based on the model used for optimization, except that the equations
corresponding to the measured states DO and V are discarded since the state
values are known from measurements. Furthermore, kLa is computed as in
equation (22).

Usually, the goal of such an optimization is to compute the control inputs
directly [15]. In this study, however, not the feed rate profile F (t) but the
dissolved oxygen profile DO(t) is sought. This profile is used as reference
profile for the cascade controller to be discussed in the next subsection. The
strategy is illustrated in Figure 7.

4.2 Cascade Control

A cascade control structure is chosen since it has been observed experimentally
at Novozymes that simple output controllers for DO control do not perform
well. Hence, additional measurements are sought to improve the control per-
formance. The auxiliary measurements that are available for this process are
pH , pressure, viscosity, V , OUR and CER. Since pH and pressure have not
been incorporated in the model and the viscosity sensor is not always reliable,
the idea is to develop a control strategy that uses the OUR, CER and V
measurements.

An interesting feature can be taken from the oxygen dynamics. The feed rate
has two main effects on the dissolved oxygen concentration: (i) an immedi-
ate effect through dilution (the last term on the right-hand side of eq. (20))
since increasing F decreases DO, and (ii) integral effect through oxygen con-
sumption (first term) since increasing F increases the amount of substrate in
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the reactor and thus also its consumption, which in turn decreases DO. Fur-
thermore, the influence of F on the oxygen transfer between the gaseous and
the liquid phases (second term) is quite negligible compared to the other two
terms.

If the DO level is controlled through dilution only (the last term on the right-
hand side of eq. (20)), the resulting change in the amount of substrate may
itself induce a change in DO, which gives rise to oscillations and poor perfor-
mance. This is typical of systems where the zero dynamics play an important
role in process performance [16].

This problem can be better understood by considering a simplified linearized
version of Problem (17)-(21) with both a direct and an integral effect of u:
ẋ1 = a x2 + u and ẋ2 = u, where a � 0 is a coefficient that represents the
relative importance of the integral effect (Figure 8). With the input u and

the controlled output x1 the transfer function reads X1(s)
U(s)

= s+a
s2 . Using the

proportional controller k shown in Figure 9 , the closed-loop characteristic
polynomial becomes s2 + ks + ak, which will have real roots for k � 4a.
Hence, in the presence of a fast zero (a large), one needs to use a very
large controller gain to ensure non-oscillatory behavior. Such a large gain
may not be admissible in practice due to model mismatch and measurement
errors.

An efficient way of controlling this second-order system is to use the
cascade scheme given in Figure 10, i.e. u = ki[ko(x1,sp−x1)−x2]. Note that
this cascade scheme corresponds to full-state feedback for this second-order
system. The characteristic polynomial is s2 + ki(ko + 1)s + akiko, the poles
of which can be placed anywhere independently of the value of a.

Hence, the proposed cascade scheme is one way of implementing state feedback
for the part of the dynamics that concerns dissolved oxygen.

The term rDOxt can be evaluated via OUR and CER measurements. This
can be understood from eq. (15) that shows that rDO is the total oxygen con-
sumptions for growth, production and maintenance. This oxygen consumption
is approximately reflected by the OUR measurement. Furthermore, the CER
measurement is an indication of biomass activity and its concentration in the
medium. For the operating conditions used in this experiment (constant CO2-
solubility), OUR and CER are both directly related to rDOxt. Hence, rDOxt

can be approximated as β OUR+CER
V

, where β is a proportionality factor. Note
that a controller using only OUR measurements would probably work as well.
Unfortunately, such a controller was not tested as part of this work.

The idea of the cascade control is to use (rDOxt)sp as the manipulated variable
to control DO, while F is used to control rDOxt, xt being a function of F as
shown by eq. (17). This leads to the cascade structure of Figure 11, in which
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the role of the inner loop is to regulate the substrate consumption based on
OUR and CER measurements, while the outer loop gives the setpoint for this
consumption.

4.3 Controller Tuning

Since, for the system at hand, cascade control corresponds to state feedback,
there are sufficient degrees of freedom to place the poles of the closed-loop sys-
tem arbitrarily in the complex plane. Hence, the performance of the closed-loop
system (including its stability) is determined by placing the poles appropri-
ately in the complex plane. Ideally, the desired poles are determined from some
theoretical considerations, as explained in standard textbooks [17]. For this,
however, the nonlinear process model has to be linearized and the controller
gains determined on the basis of the linear approximation.

In this study, controller tuning was carried out directly on the nonlinear pro-
cess model by trial and error. The advantage of this approach is that it avoids
the errors induced by linearization, while having the disadvantage of being
empirical. Nevertheless, the controller tuning was successful, as shown in the
next section.

Furthermore, a PID controller was also tuned empirically. However, due to the
presence of a zero in the oxygen dynamics, as pointed out in the previous sec-
tion, a PID controller does not have sufficient degrees of freedom for arbitrary
pole placement, thereby resulting in less satisfactory results. Note, however,
that PID control may, in some cases, provide good regulatory performance;
for example, a system without zero is handled successfully by PI control in
[5].

5 Experimental Results

The performance of PID control to regulate the process around a constant
setpoint (DOsp = 25) is illustrated in the second phase of Experiment II (Fig-
ure 12). The performance is rather poor, with a large DO variability (25±10).
In contrast, the cascade controller used in the third phase of the experiment
is able to keep the DO concentration within the interval 25 ± 2, which is a
major improvement to both manual operation and standard PID control.

The cascade controller is further tested in Experiment III (Figure 13). The
setpoint for this experiment has been obtained by solving the optimization
problem (25) off-line before the beginning of the batch, i.e. without the soft-
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ware sensor given in Figure 7. Since the resulting DO-profile is nearly constant,
it is approximated by a constant value for ease of implementation [13]. The
controller works satisfactorily for most of the time. However, the oscillatory
behavior typical of oxygen limitation starts after 0.75 time units. Since this
phenomenon of oxygen limitation is highly nonlinear, the linear cascade con-
troller is unable to bring the fermentation back to normal operation.

The on-line reoptimized DO setpoint given in Figure 7 is used in the second
phase of Experiment IV (Figure 14). Unfortunately, the optimization provides
setpoints that are well below DOsp = 20%, already known from Experiment
III to lead to oxygen limitation. Since this is considered unacceptable, a safe
and constant setpoint is used in the third phase of this experiment. In this
third phase, several external perturbations act on the system, ranging from
sensor failure at time 0.55 to manual setpoint changes at time 0.7.

These experiments have demonstrated that, even though the model has been
fitted to give good one-step ahead prediction and fairly reasonable multi-step
simulations, the setpoints provided by solving optimization problem (25) off-
line (Experiment III) or on-line (Experiment IV) are in the region of oxygen
limitation. This observation can be explained by the plant-model mismatch
present in the oxygen dynamics. However, these experiments have shown that
the cascade controller is able to follow the desired DO setpoint more accurately
than traditional PID control.

Unfortunately, though the regulatory performance of the controller is excellent,
the transients exhibit some overshoot. This is mainly due to input saturation
not being accounted for in the control design. Other strategies, such as con-
trolling OUR, could be applied since they give a more reliable indication of
biomass activity than DO early in the batch.

6 Conclusions

The main outcome of this study is the cascade controller for dissolved oxygen.
The proposed scheme efficiently regulates the DO level, but a proper setpoint
needs to be chosen to keep the process away from oxygen limitation. The
advantage of the proposed control strategy is that it is simple to apply and
not specific to the strain of microorganism studied in this paper. Thus, it is
applicable to a wide variety of fungal fermentations.

A mechanistic model of enzyme production by filamentous fungal fermentation
has been extended to include rheological considerations. The effect of medium
viscosity on the oxygen dynamics is described by empirically modeling the
dependence of the mass transfer coefficient kLa on viscosity and that of vis-

15



cosity on biomass and dissolved oxygen concentration. The resulting model is
used to determine the optimal DO setpoint, while the insight gained from the
model is also used to design a cascade controller. This study has also indicated
several model shortcomings. The most important one is that the effect of pH
is completely discarded. As a consequence, the model predicts feasible opera-
tion at low dissolved oxygen values that could not be verified experimentally.
Also, the model-based optimization is not capable of computing reliable DO
setpoints.

In future experiments, one could focus on determining experimentally the best
setpoint for dissolved oxygen, e.g. using extremum-seeking techniques [11].
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A Kinetic Expressions and Model Parameters for the Fed-batch
Filamentous Fermentation Model

k1 =
kbran · 104

π
4
(d · 10−4)2(1 − w)fρ

(A.1)

at =

(
1

2

(
1

2
d · 10−4

)3 4π

3
(1 − w)ρ

)−1

(A.2)

k2 = ktip,max · 10−4π

4

(
d · 10−4

)2
(1 − w)fρ (A.3)

d =
1.1 +

√
1.21 + 135ktip,maxfsxe

(s+Ks2)(xe+xa+xh)

2
(A.4)
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Table A.1
Model parameter values

Parameter Value Measurement unit

aDO 0.04 kg/(m s %)

ax 0.094 kg DW kg/(g m s)

β 1 L / mmol

γ 1 1 / mmol

c0 67.2 h−1

c1 4.3816 m s/(kg h)

DO∗ 100 %

η0 4.185 kg/(m s)

f 80 %

Fevap 1.25 L/h

k3 0.08 h−1

kbran 0.0017 tip / (µm h)

kc 8 FAU kg DW/(L g h)

Kcor 10−6 g/L

KI 1.5 · 10−3 g glucose/L

KDO 2.5 %

KS 0.0211 g glucose /L

Ks1 0.003 g glucose /L

Ks2 0.006 g glucose /L

ktip,max 49 µm / (tip h)

mo 0.01 % kg DW/(g h)

ms 0.01 kg DW g glucose /(g L h)

µ0 227 FAU kg DW/(L g h)

ρ 1 g/cm3

sf 430 g glucose / L

w 0.67 g/kg DW

YXS 1.75 g glucose kg DW / L g

YPS 1.88 · 10−4 g glucose / FAU

YXO 57 % kg DW / g

YPO 35 % L / FAU
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B Variables used in the Fed-batch Filamentous Fermentation Model

at – number of tips per unit mass (tips/(kg DW))
aDO – regression coefficient (kg/(m s %))
ax – regression coefficient (kg DW kg/(g m s))
β – proportionality coefficient (L/mmol)
γ – proportionality coefficient (1/mmol)
CER – Carbon Evolution Rate (mmol/(L h))
c0 – regression coefficient (h−1)
c1 – regression coefficient (m s/ (kg h) )
d – hyphal diameter (µ m)
∆[CO2] – change in carbon dioxide concentration over the reactor (%)
∆[O2] – change in oxygen concentration over the reactor (%)
DO – dissolved oxygen concentration (%)
DO∗ – equilibrium dissolved oxygen concentration (%)
η – viscosity (kg/(m s))
η0 – regression coefficient (kg/(m s))
f – fraction of the active region (%)
F – feed flow rate (L/h)
FAU – 1 FAU is the amount of enzyme that hydrolyzes 5.26 g starch/h at
30 ◦C
Fevap – evaporation rate (L/h)
k1 – specific branching frequency (tips/(kg DW h))
k2 – maximal tip extension rate (kg DW/(tips h))
k3 – rate constant (h−1)
kbran – specific branching frequency determined by image analysis (tip/(µ
m h))
kc – constitutive α-amylase production rate (FAU kg DW/(L g h))
Kcor – correction constant for the product formation (g glucose/L)
KDO – limit value of dissolved oxygen concentration, below which oxygen
limitation occurs (%)
KI – Haldane parameter (g glucose/L)
kLa – specific gas-liquid mass transfer coefficient (1/(L h))
KS – Haldane parameter (g glucose/L)
Ks1 – saturation constant for branching (g glucose /L)
Ks2 – saturation constant for tip extension (g glucose /L)
ktip,max – maximal tip extension rate determined by image analysis (µm /
(tip h))
mo – maintenance coefficient (% kg DW/(g h))
ms – maintenance coefficient (kg DW g glucose /(g L h))
µ0 – Haldane parameter (FAU kg DW/(L g h))
OUR – Oxygen Uptake Rate (mmol/(L h))
p – α-amylase concentration (FAU / L)
pref – reference pressure (atm)
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q1 – rate of branching (g/(kg DW h))
q2 – growth rate of the active region (g/(kg DW h))
q3 – rate of hyphal cell formation (g/(kg DW h))
R – universal gas constant (L atm/(mmol K))
rDO – oxygen consumption rate (kg DW/(g h))
rps – specific α-amylase formation rate (FAU kg DW/(L g h))
rs – substrate consumption rate (kg DW g glucose /(g L h))
ρ – hyphal density (g/cm3)
s – substrate concentration (g glucose / L)
sf – feed substrate concentration (g glucose / L)
Tref – reference temeprature (K)
V – volume (L)
w – hyphal water content (g/kg DW)
xa – concentration of active region (g/kg DW)
xe – concentration of extension zone (g/kg DW)
xh – concentration of hyphal region (g/kg DW)
YPO – stoichiometric coefficient for oxygen consumption for product forma-
tion (% L / FAU)
YXO – stoichiometric coefficient for oxygen consumption for growth (% kg
DW / g)
YPS – yield coefficient for α-amylase on substrate (g glucose / FAU)
YXS – stoichiometric coefficient for the uptake of substrate (g glucose kg
DW / L g)
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Fig. 1. Experiment I - Current operation in manual mode with three phases (batch
operation, linearly-increasing feed, constant feed).
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Fig. 3. Evolution of viscosity during fed-batch operation. Measured value (- -) and
calculated value using eq. (24 (–)).
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Fig. 4. Dissolved oxygen evolution during fed-batch operation - Data Set 1. Mea-
sured (- -) and predicted (–) values as a function of time.

Fig. 5. Dissolved oxygen evolution during fed-batch operation - Data Set 2. Mea-
sured (- -) and predicted (–) values as a function of time.
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Fig. 12. Experiment II - Batch phase followed by PID control and cascade control.
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Fig. 13. Experiment III - Batch phase followed by cascade control. The DO setpoint,
which has been obtained to optimize the bioreactor performance, is lower than in
Experiment II.
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Fig. 14. Experiment IV - Batch phase followed by cascade control using first a
reoptimized and then a constant DO setpoint. Note that the curve corresponding
to the setpoint is hidden behind the measurement curve. The perturbations in the
third phase are due to sensor failure and attempted manual setpoint changes.
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