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Abstract

We develop a framework for 3–D shape and motion recovery of articulated deformable
objects. We propose a formalism that incorporates the use of implicit surfaces into earlier
robotics approaches that were designed to handle articulated structures. We demonstrate its
effectiveness for human body modeling from synchronized video sequences. Our method
is both robust and generic. It could easily be applied to other shape and motion recovery
problems.

1 Introduction

Recently, many approaches to tracking and modeling articulated 3–D objects have been pro-
posed. They have been used to capture people’s motion in video sequences with potential
applications to animation, surveillance, medicine, and man-machine interaction.

Such systems are promising. However, they typically use oversimplified models, such
as cylinders or ellipsoids attached to articulated skeletons. These models are too crude for
precise recovery of both shape and motion. We propose a framework that retains the articulated
skeleton but replaces the simple geometric primitives by soft objects. Each primitive defines
a field function and the skin is taken to be a level set of the sum of these fields. This implicit
surface formulation has the following advantages:�
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� Effective use of stereo and silhouette data: Defining surfaces implicitly allows us
to define a distance function from data points to models that is both differentiable and
computable without search.� Accurate shape description from a small number of parameters: Varying a few di-
mensions yields models that can match different body shapes and allow both shape and
motion recovery.� Explicit modeling of 3–D geometry: The model can be projected into images to predict
the expected location of image features and occluded areas, thereby making silhouette
extraction more robust.

The Articulated Soft Object Model depicted by Figure 1(a-d) is at the root of our approach.
It is equally applicable to other vertebrates, such as the horse and cow of Figure 1(e), and, more
generally, to non-polyhedral articulated objects.

The main contribution of this paper is to show that the articulated implicit surface formalism
is powerful enough to yield qualitatively good results under very difficult conditions, even
in the absence of the sophisticated probabilistic frameworks that many other approaches rely
on. Furthermore, it is amenable to a mathematically elegant and simple implementation by
extending well known robotics results [7].

We integrate our formalism into a complete framework for tracking and modeling and
demonstrate its robustness using trinocular video sequences of complex 3–D motions. To val-
idate it, we focus on using stereo and silhouette data because they are complementary sources
of information. Stereo works well on both textured clothes and bare skin for surfaces facing the
camera but fails where the view direction and the surface normal is close to being orthogonal,
which is exactly where silhouettes provide robust information.

In the remainder of this paper, we first describe related approaches to articulated shape and
motion recovery. We then describe our model in more detail and introduce our optimization
framework. Finally, we present reconstruction results on complex human motions.

2 Related Work

Modeling humans from images involves recovering both body-shape and motion. Most exist-
ing approaches can be classified as addressing one or the other of these two problems, which
is what we do in this section. However, in the following sections, we will argue that these
two issues are intimately connected and one of the original features of our approach is that it
simultaneously captures both shape and motion.

2



2.1 Human Shape Reconstruction

Digital photogrammetry and structured light have long been used to quickly acquire the stereo
information needed to model live subjects. By using large numbers of cameras and space carv-
ing techniques [28, 8], it is possible to go even further and to capture the shape at frame-rate.
However, these approaches mainly focus on re-rendering captured scenes from new viewpoints
using disparity maps and multiple textures to interpolate between observed viewpoints. This
is in part because the data produced in this way cannot be directly animated to create new
motions: Animating the body shape requires partitioning it into body parts and attaching those
parts to an articulated skeleton [2, 13, 30].

At the other end of the cost and complexity range are methods that accept simple pho-
tographs as input [18, 21]: They use silhouettes to deform generic 3-D models and create 3–D
facsimiles of individual people that are suitable to represent articulated movement in a virtual
world. Such systems are low-cost but do not produce a realistic body shape for a specific in-
dividual. Instead, they rely on texture mapping to hide the deficiencies of the approximated
shape.

2.2 Human Motion Capture

In recent years there has been much interest in capturing complex motions solely by analyzing
video sequences. Single camera solutions such as [4, 32, 29] would be ideal to process standard
image sequences. However, they are not always robust, in part because image data is inherently
noisy and in part because it is inherently ambiguous [24].

In contrast, using multiple cameras leads to a considerable reduction in the size of the
search space and a considerable improvement in robustness, at the cost of having to deal with
a large amount of data, most of which is redundant. Systems such as those proposed by [6,
10, 14], among many others, handle this problem effectively. Many of these approaches rely
on sophisticated statistical models [12, 9, 5] to further reduce the size of the search space in-
volved in modeling the whole human body. These approaches, however, typically use over-
simplified models, such as cylinders or ellipsoids attached to articulated skeletons. Such
models are too crude for precise recovery of both shape and motion and it is this shortcom-
ing that our approach addresses. The physics-based spring system model proposed in [19,
20] is one the rare exceptions to this modeling approach: Limbs are represented by volumetric
primitives that are attached to one another by springs. Relatively loose connections between
the body parts replace the usual underlying rigid structure. This allows for more flexibility
in the model. However, with such a model it is difficult to constrain joint angles in order to
enforce anatomically correct postures and the method has been mostly demonstrated on very
clean silhouette data.

For a more detailed description of existing approaches, we refer the interested reader to
recent surveys of visual motion capture research [1, 17, 23].
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3 Articulated Soft Objects

The human body model depicted by Figure 1(a-d) is at the root of our approach. It was orig-
inally developed solely for animation purposes [31]. Smooth implicit surfaces, also known as
metaballs or soft objects [3, 11], are attached to an articulated skeleton and are arranged in an
anatomically-based approximation.

This particular human body model includes 230 metaballs. In order to prevent body parts
from blending into each other, the body is segmented into ten distinct parts: Arms, legs and
torso are split into upper and lower parts. When computing the implicit surfaces, only metaballs
belonging to the same segments are taken into account. We constrain the left and right limbs
to be symmetric. The head, hands and feet are explicit surfaces that are attached to the body.
For display purposes, a polygonal skin surface is constructed via B-spline patches over control
points computed by ray casting [31].

Our goal is to use video-sequences to estimate the model’s shape and derive its position
in each frame. To this end, in the following sections, we reformulate the animation model as
an articulated soft object. We outline this formalism below and refer the interested reader to
earlier publications [26, 25] for additional details.

(a) (b) (c) (d) (e)
Figure 1: Articulated soft objects: (a) Skeleton. (b) Volumetric primitives used to simulate muscles and fat

tissue. (c) Polygonal surface representation of the skin. (d) Shaded rendering. (e) A cow and a
horse modeled using the same technique.

3.1 State Vector

Body shape and position are controlled by a state vector
�

, which is a set of parameters defin-
ing joint locations and limb sizes. We assign to each body part variable length and width
coefficients. These dimensions change from person to person but we take them to be constant
within a particular sequence. This constraint could be relaxed, for example to model muscular
contraction. The motion is given by rotational degrees of freedom of the articulated skeleton’s
joints in all frames and by six parameters of global position and orientation.
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3.2 Metaballs

The skin metaball surface � is a generalized algebraic surface that is defined as a level set of the
summation over � 3-dimensional Gaussian density distributions, each called a primitive [3]. �
is the implicit surface defined by the level set ���
	���
���������� :

� � ����	���
��������! #"%$&���
	���
��������'�)( (1)���
	���
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	���
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	���
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	���
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Here > - represents the algebraic ellipsoidal distance introduced in Eq. 4 and � is taken to be 0.5.
For simplicity, we omit the index B for specific primitives wherever the context is unambiguous.

3.3 3–D Quadratic Distance Function

We use ellipsoidal metaballs because they allow accurate modeling of human limbs with rela-
tively few primitives. To express the transformations of these implicit surfaces that is caused
by their attachment to an articulated skeleton, we write the ellipsoidal distance functions > of
Eq. 3 as follows:

>3�DC�� � �E�FCHG#I?J3GKLI&MNGKLI?M K I?J K IOCP� (4)

where M K and J K are Q�RSQ matrices that represent the metaball’s shape and its skeleton-induced
transformation respectively, and CT�U��	���
����8�OVW� G is a 3–D point.

More specifically, M K defines the scaling and translation along the metaball’s principal
axes. The size and position of a metaball is relative to the segment it is attached to. A length
parameter not only specifies the length of a skeleton segment but also the shape of all attached
metaballs in the direction of the segment. Width parameters influence the metaballs’ shape in
the other directions. J K is a Q)RXQ rotation-translation matrix from the world frame to the frame
to which the metaball is attached. It is defined as a series of matrix multiplications where each
matrix corresponds to the transformation introduced by one joint.

We can now compute the global field function � of Eq. 2 by plugging Eq. 4 into the in-
dividual field functions and adding up these fields for all primitives. In other words, the field
function from which the model surface is derived can be expressed in terms of the M K and J K
matrices, and so can its derivatives [26].
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4 Estimation Framework

The expected output of our system is the instantiated state vector
�

of Section 3.1 that describes
the model’s shape and motion. This is a highly non-linear problem because the model consists
of an articulated set of implicit surfaces. As a result it contains rotations in Euclidean space
as well as quadratic and exponential distance functions. Simplifying the volumetric models,
replacing the perspective transform by an orthographic one, and using a different representation
for rotational joints can be used to linearize parts of the problem [4]. Doing so, however, tends
to lose in generality. Instead, we chose to solve full non-linear problem using the Levenberg-
Marquart least squares estimator to minimize the distance between observations and model.

4.1 Least Squares Estimator

In practice, we use the image data to write �ZY\[�] observation equations of the form

���
C - � � ���'�!^P_ - �`VbacBdac�3Y\[�])� (5)

where � is the global field function of Eq. 2, � is the level value of Eq. 1, C - is a data point,
and _ - is treated as an independently distributed gaussian error term. We then minimize e G�f e ,
where eg�h�i_ 0 �W@O@O@W��_ +Oj
kml � is the vector of residuals and f is a diagonal weight matrix associated
with the observations. Our system must be able to deal with observations coming from different
sources, here stereo or silhouettes, that may not be commensurate with each other. We therefore
use the following heuristic that has proved to be very effective. To ensure that the minimization
proceeds smoothly, we multiply the weight n�oqp�rts-

of the � oqpurts individual observations of a given
type by a global coefficient v oqpurts computed as follows:

w oqp�rts � x y 0\z{-|z +Wj
kml~} �
. oqp�rts9����� K ���DC oqpurts

- � � � ���
�

� oqpurtsv oqp�rts � � oqpur6sw oqpur6s (6)

where � oqp�rts is a user-supplied coefficient between 0 and 1 that indicates the relative importance
of the various kinds of observations. This guarantees that, initially at least, the magnitudes of
the gradient terms for the various types have appropriate relative values.

4.2 Data Constraints

In this work, we concentrate on combining stereo and silhouette data. Figure 2 illustrates their
complementarity: In this example, we used a single stereo pair. In Figure 2(c) only stereo-data,
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(a) (b) (c) (d)
Figure 2: The importance of silhouette information for shape modeling. (a) First image of a stereo pair. (b)

Corresponding disparity map. (c,d) Two different fitting results. The black curves are the actual
body outlines in (a). In (c) no silhouette constraints were used and the fitting puts the model too
far away from the cloud. The system compensates by incorrectly enlarging the primitives. (d)
depicts the result of the fitting using the silhouette constraints provided by the black outlines.

in the form of a cloud of 3–D points derived from the disparity map, was used. The stereo data
is too noisy and shallow to sufficiently constrain the model. As a result, the fitting algorithm
tends to move it too far away from the 3–D data and to compensate by inflating the arms to
keep contact with the point cloud. This behavior is very similar to that observed when fitting
ellipses to noisy 2–D points, especially in the case of non uniformly distributed points such as
those obtained from stereo reconstruction [15]. Using the silhouettes in addition to the stereo
data, however, sufficiently constrains the fitting problem to obtain the much improved result of
Figure 2(d).

Because our field-function � is both well-defined and differentiable, the observations and
their derivatives can be computed both simply and without search using the matrix formalism
of Section 3.3. We sketch these computations below and, again, refer the interested reader to
earlier publications [26, 25] for additional details.

4.2.1 3–D Point Observations

Disparity maps such as those of Figure 2 are used to compute clouds of noisy 3–D points.
Each one is used to produce one observation of the kind described by Eq. 5. Minimizing the
corresponding residuals tends to force the fitted surface to be as close as possible to these
points. Because of the long range effect of the exponential field function in the error function� of Eq. 2, the fitting succeeds even when the model is not very close to the data. Also, during
least-squares optimization, an error measure that approaches zero instead of becoming ever
greater with growing distance has the effect of filtering outliers.

To compute the Jacobian of the error function of Eq. 2, we must differentiate the individual
field functions of Eq. 3. Derivatives with respect to parameter �g� � can be computed as:

�� � 1 ��>3�DCE� � ����� � 1� > � >� � ��:=<���t� >3�DC�� � �� �\����� } K�� � (7)�� � >��
C�� � ��� <���C G I?J G K�I?M G K�IE� �� � M K I?J K�� IWC*� (8)
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where the � ��t� M K J K3� term can be computed simply with a few matrix multiplications [26]. In
short, these derivatives consist of modules that either are inexpensive to compute or need only
be computed once because they are constant over all observations and constraints.

4.2.2 Silhouettes Observations

A silhouette point in the image defines a line of sight tangential to the surface. For any ��� � ,
we define the implicit surface �%�~���S���8� 	���
3���&���! " �����D	���
����8�����E�'� � . Let � 	¡���?�6��
H���?�6�����~���\�
be the point on the line of sight where it is tangential to �%�~��� . By definition, ��	¡�~���t��
Z�~���t�������?�¢�
satisfies two constraints:

1. The point is on the surface, therefore ���D	¡���?�6��
H���?�6���£�����t�������¤� .

2. The normal to ¥¦�~��� is perpendicular to the line of sight at � 	¡���?�6��
H���?�6�����~���\� .
We integrate silhouette observations into our framework by performing an initial search along
the line of sight to find the point C that is closest to the model in its current configuration. This
point is used to add one of the observations described by Eq. 5. By construction, the point on
the ray with the lowest field value satisfies the second constraint.

A change in model position or size induces a motion of C along the line of sight so thatC remains the point closest to the model. This involves computing first and second order
derivatives for the Jacobian entries of the form

� � >� 	 - � 	 � � <�� � C� 	 - G I?J G K I�M G K I?M K I?J K I � C� 	 � �� � >� 	 - � � � <���C G I9§A� �� � J G KLI&M G K � I?M K I?J K ^¨J G K�I?M G K�IE� �� � M K I?J K���© I � C� 	 - �
where 	 - ��	 � represent translational degrees of freedom, while � stands for one of the rotational
ones [26]. Again this involves evaluating the same � ��t� M K J K�� terms as before and, therefore,
very little extra computation.

5 Implementation and Results

We initialize the model in one frame of the sequence by clicking on the approximate locations
of several key joints in two images. This gives us a rough scaling of the skeleton and an
approximate model pose. The system then goes through the following two steps.
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1. Frame-to-frame tracking: For a given time step, the system extracts clouds of 3–D
points from our synchronized input video sequences using a correlation-based approach
[16]. These points are used to create observations of the kind described in Section 4.2.1.
The tracking process adjusts the model’s joint angles by minimizing the objective func-
tion of Section 4.1 with respect to the joint angle values relative to that frame. This
modified posture serves as the initialization for the next one. Optionally, the system may
use the model’s projection into the images to derive initial silhouette estimates, optimize
these using image gradients, and derive silhouette observations such as those introduced
in Section 4.2.2.

2. Global fitting: The results from the tracking in all frames serve as initialization for
global fitting to refine the postures in all frames and to adjust the skeleton and/or metaball
parameters to improve the model’s shape. To this end, it minimizes again the objective
function of Section 4.1, over all frames and with respect to the full state vector.

Global fitting is required to correctly model the proportions of the skeleton and derive the
exact position of the articulations inside the skin surface by simultaneously using as much
information as possible. To stabilize the optimization, we add to our objective function ad-
ditional observations that favor constant angular speeds. Their weight is taken to be small so
that they do not degrade the quality of the fit but, nevertheless, help avoid local minima in
isolated frames and yield smoother and more realistic motions. In the examples shown below,
optimization is performed on the 27 degrees of freedom that define the shape and motion of
the upper body.

5.1 Using Stereo Alone

The images of Figure 3 are from 10-second sequences acquired by three progressive-scan cam-
eras arranged in an inverted “L” configuration and capturing non-interlaced images at 30 Herz
with an effective resolution of ª?Q�«�R¬Q�«?« . These sequences feature highly complex motions
of the subject’s arms and upper body. Note the frequent self-occlusions as well as merging of
body parts, such as grasping both hands in frame 110.1

Using our correlation-based approach, we created approximately 4000 3–D point observa-
tions per frame of the type described in Section 4.2.1. In the middle row, we show a shaded
version of the recovered 3–D body model reprojected into the images. In the bottom row, we
overlay the outline of this model on the original images. Note that in frame 100 the system
places the left elbow too far from the body but recovers before frame 110. In effect the arm is
“sliding” along the stereo data. In Section 5.2, we will show that using silhouettes during the
reconstruction fixes this problem. In this example, neither hand nor head motion were mod-
eled. Both are interpreted as rigid objects rigidly attached to neighboring body parts. This is
why, in frame 40, the left hand is not at the right place, and, in frame 110, the model seems to
look in the wrong direction when the subject moves his shoulder with respect to the head.

1Note to reviewers: Higher resolution versions of Figs. 3, 4, 5, and 6 will be made available as mpeg movies.
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20 40 80 100 110
Figure 3: Tracking results in frames 20, 40, 80, 100 and 110 of a 300-frame sequence. Top row: Disparity

maps. Middle row: Tracking and fitting results. Bottom row: Projections of the recovered model
outline overlaid on the original images. The system correctly tracks until frame 80, misplaces the
elbow in frame 100, and recovers by frame 110. As shown in Fig 6, using silhouette information
will eliminate the error in the frame 100.

10 25 100 115 120 125
Figure 4: Selected frames of a trinocular sequence in which the subject performs complex upper body mo-

tions coupled with abrupt arm waving. Top row: One of the three original images at a given time.
Center row: Reconstructed body model. Bottom row: Superposition of the original image and of
the shaded model.

Figure 4 depicts the tracking of another very complex motion: In addition to the unpre-
dictable arm movements, the torso bends and twists away from the cameras.

In Figure 5 we consider the case of somebody wearing a baggy sweater instead of being
bare-chested. Edge-based methods would fail on such a sequence because the various defor-
mations of the cloth hide the person’s contour. The stereo data we obtain from the images is
discriminating enough for our estimator to find the correct posture. In this case, we optimized
only with respect to the motion parameters, the actual body shape being unobservable. Careful
examination of those results, however, reveals some of the limitations of the shoulder model
we use: A single ball-and-socket joint is convenient for motion estimation but it cannot capture
realistic shoulder poses and deformations. A more anatomically correct model [22] is needed.
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Figure 5: A few frames from a sequence in which the subject wears a baggy sweater, thus complicating
the task of the tracker. Top row: One of the three original images at a given time. Bottom row:
Tracking results.

5.2 Using Silhouette Information

At video rates, we can take the initial guess for the silhouette location to be the projected
body outline in the previous frame. We then optimize this position using an active contour.
However, in the presence of a cluttered and unknown background, even a good initial body-
outline estimate does not guarantee convergence of an active contour to the correct solution.
We therefore exploit our disparity maps to reject those gradients that are too far from areas
whose distance from the cameras make them likely to be part of the subject and to correspond
to actual silhouettes [27].

We then rerun our fitting algorithm on the 3–D stereo data augmented by this hypothesized
silhouette outline. Even though the active contour may occasionally miss parts of the true body
outline, thanks to the implicit surface treatment of outliers and to the strong stereo information,
the system is usually able to find the correct model pose.

In a final refinement step, the model, now in its correct pose, is again projected into the
camera frame and reoptimized. The full 3–D model is then fitted again using this improved
silhouette and the stereo information. This approach yields the results of Figure 6. These
results show that this new algorithm is able to overcome the errors that occurred when using
stereo alone as depicted by Figure 3.

97 100
Figure 6: Applying the model-based silhouette extraction method of Section 5.2 to the sequence of Fig-

ure 3. The tracking errors around frame 100 have been corrected by combining stereo and sil-
houette information. The snake-optimized contours are overlaid on the original images and on the
reconstructed body model.
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6 Conclusion

We have presented a flexible framework for video-based modeling using articulated 3–D soft
objects. The volumetric models we use are sophisticated enough to recover shape and simple
enough to track motion using noisy image data. This has allowed us to validate our approach
using trinocular video-sequences featuring complex fully 3–Dimensional motions without en-
gineering the environment or adding markers. Even though we use a straightforward approach
to optimization instead of a sophisticated probabilistic one, our system can handle complicated
motions that involve self-occlusions, temporary merging of body parts and noise introduced by
clothing.

The implicit surface approach to modeling we advocate extends earlier robotics approaches
designed to handle articulated bodies. It has a number of advantages for our purposes. First,
it allows us to define a distance function from data points to models that is both differentiable
and computable without search. Second, it lets us describe accurately both shape and motion
using a fairly small number of parameters. Last, the explicit modeling of 3–D geometry lets us
predict the expected location of image features such as silhouettes and occluded areas, thereby
increasing the reliability of image-based algorithms.

Our approach relies on optimization to deform the generic model so that it conforms to the
image data. This involves computing first and second derivatives of the distance function from
model to data points. To this end, we have developed a mathematical formalism that greatly
simplifies these computations and allows a fast and robust implementation. This is in many
ways orthogonal to recent approaches to human body tracking as we address the question of
how to best represent the human body for tracking and fitting purposes. The specific optimiza-
tion scheme we use could easily be replaced by a more sophisticated one that incorporates
statistics and can handle multiple hypotheses [12, 9, 5]. Another natural extension of this work
would be to develop better body and motion models: The current model constrains the shape
and imposes joint angle limits. This is not quite enough under difficult circumstances: A com-
plete model ought to also include more bio-mechanical constraints that dictate how body parts
can move with respect to each other, for example in terms of dependencies among joint angles.

In our current work, we rely on cheap and easily installed video cameras to provide data.
This, we hope, will lead to practical applications in the fields of medicine, athletics and enter-
tainment. It would also be interesting to test our approach using high quality data coming from
a new breed of image or laser-based dynamic 3–D scanners [28, 8]. Our technique will provide
the relative position of the skeleton inside the data and a standard joint-angle-based description
of the subject’s motion. Having high-resolution front and back data coverage of the subject
should allow us to recover very high-quality animatable body models.
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