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Abstract

We present a framework for 3{D surface reconstruction that can be used to model fully 3{D scenes from an

arbitrary number of stereo views taken from vastly di�erent viewpoints. This is a key step toward producing

3{D world-descriptions of complex scenes using stereo and is a very challenging problem: real-world scenes tend
to contain many 3{D objects, they do not usually conform to the 2-1/2{D assumption made by traditional

algorithms, and one cannot take it for granted that the computed 3{D points can easily be clustered into separate

groups. Furthermore, stereo data is often incomplete and sometimes erroneous, which makes the problem even
more di�cult.

By combining a particle-based representation, robust �tting, and optimization of an image-based objective

function, we have been able to reconstruct surfaces without any a priori knowledge of their topology and in spite
of the noisiness of the stereo data.

Our current implementation goes through three steps|initializing a set of particles from the input 3{D data,

optimizing their location, and �nally grouping them into global surfaces. Using several complex scenes containing
multiple objects, we demonstrate its competence and ability to merge information and thus to go beyond what

can be done with conventional stereo alone.
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1 Introduction

Reconstructing arbitrary 3{D surfaces from stereo image pairs|or more generally N-tuplets|remains an unsolved
problem because they provide incomplete, and sometimes erroneous, information about the location of 3{D points
in space. Grouping these points into meaningful surfaces involves solving a problem akin to the notoriously hard
segmentation problem. As a result, a majority of recent computer vision approaches to surface reconstruction rely
on much cleaner sources of 3{D data|such as laser range maps or medical volumetric data|as their input. Many of
these approaches also assume that there is one, and only one, object of interest whose topology is known in advance
so that a particular model|be it rigid or deformable|can be �t to the data.

Stereo, however, is a purely passive technique that only involves the use of relatively inexpensive and dependable
sensors and often is the only feasible approach. We propose a novel alternative to conventional stereo reconstruction
that overcomes many of the di�culties that traditional approaches encounter in the reconstruction of 3{D surfaces
from stereo imagery.

More speci�cally, to recover surfaces from stereo, one must contend with the following problems:

� Real-world scenes often contain several objects whose topology may not be known in advance: some surfaces
are best modeled as sheets while others are topological spheres or contain holes. One cannot typically assume
that there is only one object and one surface of interest or expect to be able to easily cluster the 3{D points
derived from stereo into semantically meaningful groups.

� The 2-1/2{D assumption that most traditional interpolation schemes make is no longer valid when reconstruct-
ing complex 3{D scenes from arbitrary numbers of images and arbitrary viewpoints. Surfaces often overlap
and may be visible in one view but not another.

� The 3{D points derived from disparity maps form an irregular sampling of the measured surfaces. In addition,
small errors in disparity can result in large errors in world position.

� Even the best stereo algorithmsmake occasional blunders that must be identi�ed and eliminated. Furthermore,
the corresponding erroneous 3{D points are often correlated with one another so that they cannot be eliminated
by robust estimation alone.

To address these problems, our approach

� Relies on an object-centered representation that can handle surfaces of arbitrary complexity, speci�cally a set
of connected surface patches or \oriented particles" as de�ned by Szeliski and Tonnesen [1992].

� Re�nes the surface's description by minimizing an objective function that combines terms measuring both
surface smoothness and gray scale correlation in the input images of the surface points'projections.

We typically start with a set of stereo pairs or triplets. We compute disparity maps for each of them, �t local quadric
surface patches to the corresponding 3{D points, and use these patches to instantiate a set of particles. We then
re�ne their positions by minimizing the objective function, thereby returning to the original image data. Finally, we
impose a metric upon the set of particles that allows us to cluster them into meaningful global surfaces.

Our technique allows the modeling of complex 3{D scenes whose topology is unknown a priori from stereo data
without the need to rely on other sources of range data. This ability is valuable for applications, such as robotics and
high-resolution cartography, where precise scene models are not always available. For example a mobile robot must
be able to distinguish the ground from objects lying on it to model obstacles and avoid them. Similarly, to grasp and
manipulate objects, a robot must be able to distinguish and model them. In the case of low-resolution cartography,
the earth's surface can indeed be relatively well modeled as a single surface. At high-resolution, however, this stops
being true: objects such as trees or buildings must be modeled as separate 3{D surfaces, and the usual 2-1/2{D
assumptions break down.

In the following section, we describe related work and our contributions in this area. We then present our
framework in detail, discuss the procedure's behavior on synthetic data, and show results on real images of complex
scenes.
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2 Related Work and Contributions

Many recent publications describe the reconstruction of a surface using 3{D object-centered representations, such
as 2-1/2{D grids [Robert et al., 1992], 3{D surface meshes [Cohen et al., 1991, Delingette et al., 1991, Terzopoulos
and Vasilescu, 1991, Vemuri and Malladi, 1991, McInerney and Terzopoulos, 1993, Koh et al., 1994, Chen and
Medioni, 1994], parameterized surfaces [Stokely and Wu, 1992, Lowe, 1991], local surfaces [Sander and Zucker, 1990,
Ferrie et al., 1992, Stewart, 1994], particle systems [Szeliski and Tonnesen, 1992], spanning trees [Hoppe et al., 1992],
and volumetric models [Pentland, 1990, Terzopoulos and Metaxas, 1991, Pentland and Sclaro�, 1991, Park et al.,
1994]. Most of these rely on previously computed 3{D data, such as the coordinates of points derived from laser range
�nders or correlation-based stereo algorithms, and reconstruct the surface by �tting it to these data in a least-squares
sense. In other words, the derivation of the 3{D data is completely divorced from the reconstruction of the surface.
Errors and imprecisions in the original 3{D input data can jeopardize irretrievably the quality of the reconstruction.

In previous work, we began addressing this issue by developing an approach to 3{D surface reconstruction that
uses image cues while recovering the surface's shape [Fua and Leclerc, 1994a, Fua and Leclerc, 1994b]. It uses an
object-centered representation|speci�cally a 3{D triangulated mesh|and can take advantage of both monocular
shading cues and stereoscopic cues from any number of images to re�ne the model while correctly handling self-
occlusions.

However, in our previous approach|as in most of those mentioned above|it is assumed that the range data
used to initialize the models can easily be clustered into separate groups that de�ne distinct objects. A separate 3{D
model can then be �tted to each object. For complex scenes, this clearly is much too strong an assumption. The
technique presented in this paper, was speci�cally designed to eliminate the need for this assumption. It replaces
our triangulated meshes by a particle system that does not require any a priori knowledge of the surface's topology
and lends itself to the de�nition of a metric that has allowed us to e�ectively cluster local surface patches into global
ones.

The particles can adjust so as to minimize an objective function that is the sum of an image-based term and of a
regularization term. The image-based term is a generalization of the multi-image intensity correlation term we used
in our mesh work, except for the fact that we replace the triangular facets by circular surface patches attached to
each particle. Optimization allows us to re�ne the position of legitimate particles and to eliminate spurious ones.
Consequently, we do not have to depend on the input 3{D data to be error-free to achieve good results. This is in
contrast to Szeliski and Tonnesen's particles [1992] that have been used to great e�ect to model high quality medical
data but make no provisions for noisy and incorrect data points.

To instantiate our set of particles, we robustly �t local surfaces to the raw disparity data in a manner that is
closely related to other local surface techniques e.g., [Sander and Zucker, 1990, Ferrie et al., 1992, Hotz et al., 1993,
Stewart, 1994]. In our approach, however, these local surfaces are not the end result since they can be re�ned and
either accepted as part of a global surface or rejected. In spirit, our approach is closely related to that advocated by
Ho� and Ahuja [1987] because it combines the processes of feature matching and surface interpolation. Unlike this
earlier work, however, our technique is not limited to pairs of images.

We view the central contribution of this paper as twofold. First, we provide a speci�c alternative framework that
explicitly addresses many of the problems of conventional stereo and a representation in which they can be solved.
Second, we demonstrate that our implementation of this framework actually solves some of the problems involved in
reconstructing complex 3{D surfaces of unknown topology and provides a foundation on which to build a solution
for the others.

3 From Raw Stereo Data to Global Surfaces

Our approach to recovering complex surfaces is to model them as sets of local surface elements that interact with
one another. Following Szeliski and Tonnesen [1992], we refer to the surface patches as \oriented particles." The
forces that bind them can be understood as \breakable springs" [Terzopoulos and Vasilescu, 1991] that tend to align
the particles with each other but may break for particles that are too far out of alignment.

We use several sets of stereo pairs or triplets of a given scene as our input data. We assume that the images
are monochrome and registered so that their relative camera models are known a priori. Since we are interested in
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reconstructing surfaces, we start the process by using a simple correlation-based algorithm [Fua, 1993] to compute
a disparity map for each pair or triplet and by turning each valid disparity value into a 3{D point. If other sources
of range data were available, they could be used in a similar fashion. These 3{D points typically form an extremely
noisy and irregular sampling of the underlying global 3{D surfaces. To e�ectively model these, we take the following
steps:

1. Robustly �t particles to the raw 3{D points.

2. Re�ne the position and orientation of the particles by minimizing an image-based objective function.

3. Eliminate spurious particles and cluster those that appear to belong to the same global surfaces.

In the remainder of this section we �rst introduce our particles and then describe our technique in more detail.

3.1 Oriented Particles

Our surface elements are disks whose geometry is de�ned by the positions of their centers, the orientations of their
normals and their radii. In theory, these disks have six degrees of freedom. However, when modeling a global surface
in terms of such disks, translations along the tangent plane of the surface can be ignored as long as the disks remain
roughly equidistant from one another and the radius can be chosen so that the disks approximately cover the surface.
Therefore, in practice, we deal with only three degrees of freedom.
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Figure 1: Data structures and metric. (a) A particle is a disk to which we associate a local referential. We allow
the center of gravity to shift along the z axis and parametrize the orientation using the projections of
the normal vector on the x and y axes. (b) The input 3{D points are stored in a cube-shaped set of
voxels and we instantiate a particle in each voxel containing enough such points. (c) The \distance"
between two particles is primarily a function of the distance of the center of gravity of one particle
from the tangent plane of another.

As shown in Figure 1, to achieve an orientation-independent implementation, we assign to each particle a local
referential. As discussed in Section 3.2, we instantiate this referential by robustly �tting surface patches to the 3{D
points within local neighborhoods and using the surface normals to de�ne the local z directions. We de�ne a particle's
position by the translation of the center along the local vertical and its orientation by the x and y projections of
the normal on the local x and y axes. This particular parametrization is most favorable when the local vertical is
relatively close to the normal of the surface under consideration for two reasons. First, the x and y projections of the
particle's normal vector will then be relatively small and the interaction forces between particles almost quadratic
in terms of those parameters. Second, displacements along the local z axis will be close to being normal to the
underlying surface and thus precisely the ones that are most signi�cant in terms of recovering its shape.
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3.2 Initialization

To generate a set of regularly spaced particles from our noisy stereo data, we pick spatial step sizes �x,�y and �z along
the X,Y and Z axes of an absolute referential. We use them to de�ne a cube-shaped set of 3{D buckets, such as the
one of Figure 1(b). We then store the 3{D points computed from our initial correlation data into the appropriate
buckets. By �tting a local surface to every bucket containing enough points, we generate particles whose center is
the projection of the bucket's center onto the surface and whose orientation is given by the surface's normal at that
point. In the presence of very noisy data, the projection may fall outside of the bucket. In this case, we reject the
particle thereby, ensuring that there is only one particle per bucket and that the particles are regularly distributed.

In general, most of the 3{D buckets will be empty. Therefore we do not store the set of 3{D buckets as a cube
but as a hash-table allowing for both compact storage and easy computation of neighborhood relationships.

For the initialization phase to be successful, it is important both to choose the right kind of surface model and
to use a robust method to perform the �tting. We have used both planar and quadric models. The quadrics, even
though they involve more computation, have proven very e�ective because they allow the use of larger sets of points
than planes without introducing any appreciable bias. In our implementation, we take advantage of this by �tting,
to each bucket containing enough points, a plane of form

ax+ by + cz = h

when x,y and z are coordinates in the absolute referential. We then �t a quadric of form

z0 = ax0x0 + bx0y0 + cy0y0 + dx0 + ez0 + f

where x0,y0 and z0 are coordinates de�ned by the plane. We use not only the points in the bucket under consideration
but also in the buckets that are its immediate neighbors. This method allows us to �t local surfaces of arbitrary ori-
entation using a relatively large set of 3{D points, and tends to enforce consistency of orientation among neighboring
particles.
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Figure 2: Iterative Reweighted Least Squares. (a) We �rst use standard least squares to �t an initial surface
patch to the set of noisy points and compute the distance d of these data points to the �t. The points
are denoted by the black circles, and the initial patch is labeled 1. (b) We weigh each data point
inversely proportionally to d, �t a new surface, and iterate the procedure, thereby generating the �ts
labeled 2 and 3. After a few iterations, the contribution of the outliers becomes negligible. (c) The
inuence function of the data points is shown as a solid line. For comparison's sake, a Lorentzian
inuence function, scaled so as to have the same maximum, is shown as a dashed line.

Because of the noisiness of the input data, a robust surface-�tting method is essential. In this implementation,
we use a variant of the Iterative Reweighted Least Squares [Beaton and Turkey, 1974] technique, as illustrated by
Figure 2. To �t a surface of equation f(x; y; z) = 0 to a set (xi; yi; zi)1�i�n of n 3{D points, we minimize a criterion
of the form X

1�i�n

wif(xi; yi; zi)
2 (1)

4



where the wi are weights. At the �rst iteration the wi are all taken to be equal to one so that the �rst �t, f0, is a
regular least-squares �t. We use f0 to compute a new set of weights

wi = exp(
�jf0(xi; yi; zi)j

d
) for 1 � i � n

d = medianjf0(xi; yi; zi)j1�i�n (2)

and to �t a new surface f1 by reminimizing the criterion of Equation 1. In e�ect, we use the median distance of
the points to the �tted surface as an estimate of the noise variance, and we discount the inuence of points that are
more than a few standard deviations away. This approach can be related to the use of Lorentzian estimators [Black
and Rangarajan, 1994] because the inuence function of the data points, shown in Figure 2(c), has roughly the same
shape. However, it requires no a priori estimate of the variance of the noise and involves only least-squares, and
therefore fast, minimization.

By iterating this procedure a few|typically �ve|times, we have been consistently able to �t our quadric surfaces
to noisy data, even in the presence of large numbers of outliers. Figure 3 illustrates the robustness of our algorithm.

3.3 Clustering

To cluster the isolated particles into more global entities, we de�ne a simple \same surface" relationship R between
particles Pi and Pj as follows:

PiRPj () dpart(Pi; Pj) < maxd (3)

where dpart is a distance function and maxd a distance threshold. We could take dpart to be the Euclidean distance
between particle centers. However, such a distance would not be discriminating enough for our purposes because it
is circularly symmetric and does not take the particles'orientation into account. It has proved much more e�ective
to de�ne a distance function that penalizes more heavily the distance of one particle's center from the tangent plane
of the other than the distance along the tangent plane. The simplest way to achieve this result is to de�ne dpart as
follows:

dj = kz2j + (1� k)(x2j + y2j )

di = kz2i + (1� k)(x2i + y2i ) (4)

dpart(Pi; Pj) = max(di; dj)

where xj,yj and zj are the coordinates of the center of Pj in a referential whose Z direction is the normal of Pi and
whose origin is the center of Pi, as shown in Figure 1(c), and k is a constant larger than 0.5. In this paper, we take
k = 0:9; xi,yi and zi are de�ned symmetrically.

In essence, the threshold maxd on dpart limits the curvature of the common underlying surface to which particles
may belong. As such it is domain dependent; here we take maxd to be a multiple, typically 1.5, of the median value
of dpart for all pairs of neighboring particles in the cube-shaped structure of Section 3.2.

The data set equipped with the relationship R can now be viewed as a graph whose connected components
are the surfaces we are looking for. In practice, there will usually be spurious particles that are weakly linked to
legitimate clusters. In such cases, we have found that removing all points that do not have a minimum number of
neighbors allows us to throw away the gross errors and generate meaningful clusters such as the ones depicted in the
last column of Figure 3.

3.4 Re�ning

Because it is extremely di�cult to design a stereo algorithm that never produces correlated artifacts, we cannot
expect any robust �tting technique to exclude all erroneous 3{D points. Furthermore, �tting local surfaces to the
initial data amounts to smoothing and may result in spurious particles that appear to line up with legitimate ones
and become very hard to eliminate.
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(a) (b) (c) (d)

Figure 3: Initializing particle sets. (a) Four sets of noisy 3{D points. In the �rst three, the majority of points|
90%, 80% and 60%, respectively|lie on a hemisphere while the remaining ones|10%, 20% and 40%,
respectively|are uniformly randomly distributed. In the fourth set, the points lie on two hemispheres.
(b) The particles instantiated by our robust �tting procedure. Note that there is not a particle in
every voxel because, as explained in the text, the obviously meaningless ones are eliminated. (c) The
particles that remain after clustering. All surviving spurious particles have disappeared. (d) A shaded
view of the same particles. They are rendered as lambertian planar patches.
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To illustrate this point and to produce a di�cult example that gives rise to some of the same problems we have
encountered when dealing with real imagery, we have generated the �ve synthetic images of a textured hemisphere
occluding a plane shown in Figure 4. Our intent was to produce images ambiguous enough for a conventional corre-
lation algorithm to compute spurious disparities and to show that our re�nement procedure provides the additional
power required to eliminate them.

(a) (b) (c) (d) (e)

Figure 4: Constructing synthetic images of a hemisphere occluding a plane. We begin with the triangulated mesh
and real face image shown in the top row. We then consider the �ve views depicted by the middle row and
texture map the real image onto the triangulated mesh to produce the �ve synthetic images of the bottom
row. Obviously, these �ve images would have been easier to parse had we mapped a di�erent texture
on the plane and the hemisphere. However, our intention in generating these images was to produce a
di�cult example that gives rise to some of the same problems we have encountered when dealing with
real imagery.

On the left of the �rst row of Figure 5, we show a noise-free set of 3{D points that belong to either the plane
or the hemisphere and, on the right side, the particles that are instantiated by running our initialization procedure
on this set. In the leftmost column of the following rows, we show three subsets of all the 3{D points generated by
correlating pairs of these images|speci�cally (a) and (b), (a) and (c), (a) and (d), (a) and (e)|using three di�erent
window sizes, 5x5 for the �rst row, 10x10 for the second, and 15x15 for the third. The second column from the left
depicts the particles that are instantiated using this data.

As the window size increases, the 3{D points appear to be smoother but, in fact, �t the data less well. Of course
this problem can be alleviated by using variable-shaped windows [Nishihara, 1984, Devernay and Faugeras, 1994]
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(a) (b) (c) (d)

Figure 5: Running our complete procedure on the images of Figure 4. Top row: A set of 3{D points lying on
the surfaces used to generate the images and a shaded view of the particles that our procedure �ts
to these points. Column (a): 3{D points computed by running a correlation-based algorithm on the
synthetic images by using, from top to bottom, �xed windows of size 5x5, 10x10, and 15x15. Column (b):
The particles instantiated from these sets of points. Column (c): The same particles after optimization.
Column (d): For each set of particles, the two subsets that appear to belong to the same surface according
to our metric.
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and, our approach to particle re�nement can be viewed as a 3{D generalization of these purely image-based techniques.
A more serious problem stems from the presence of correlated but erroneous 3{D points on the right side of the

shape. These points are produced by the correlation windows that straddle the hemisphere and the plane, and line
up well enough so that the �tting procedure produces a set of surface patches that appear to be valid but do not
correspond to any physical surface.

To resolve such problems, it is necessary to return to the original images and assess the quality of each particle.
For each disk-shaped particle, we de�ne a \multi-image intensity correlation" term by projecting the 3{D disks into
2{D elliptical patches in each image and measuring how well these patches correlate. This term is similar to the one
we de�ned in previous work for 3{D triangular facets [Fua and Leclerc, 1994a]. It is a function of the three degrees
of freedom of each particle and can therefore be used to perform optimization.

When using noise free synthetic images such as the ones of Figure 4, we have veri�ed experimentally that,
for legitimate particles, the minimum of this image-correlation term occurs for positions and orientations that are
very close to the ones computed by simply �tting the disparity maps while the position of spurious particles may
be arbitrarily far from the minimum. In such an ideal case, the good particles could be separated from the bad
ones on that basis alone. However, when dealing with real images that are never entirely noise free, the situation
becomes more complex and the minima for the individual particles may shift substantially because of the noise.
A more practical approach is then to allow the particles to interact with one another and to rearrange themselves
to minimize an energy term that is the sum of the multi-image intensity correlation term discussed above and of
a deformation energy term that tends to enforce consistency between neighboring particles [Szeliski and Tonnesen,
1992]. As illustrated by the two rightmost columns of Figure 5, while optimizing the energy term, the particles that
actually correspond to the same underlying global surfaces will \stick together" and the ones that do not will tend
to move in separate directions, stop lining up with each other and be easily eliminated by the clustering technique
of Section 3.3.

Formally, we write the total energy of a set of particles ET as

ET = ESt + �DED ; (5)

where ESt is the multi-image intensity correlation term, ED the deformation energy term, and �D a weighting
coe�cient.

We now turn to the formal de�nition of these energy terms.

3.4.1 Multi-Image Intensity Correlation

The basic premise of most correlation-based stereo algorithms is that the projection of the 3{D points into various
images, or at least band-passed or normalized versions of these images, must have identical gray levels. To take
advantage of this property in our particle-based representation, we de�ne the stereo component of our objective
function as the variance in gray-level intensity of the projections in the various images of a given sample point on a
particle, summed over all sample points, and summed over all particles. This component is depicted by Figure 6(a)
and is presented in stages below.

First, we de�ne the sample points of a disk-shaped particle P , of center x0, radius R and normal ~n, by noting
that all points on a particle can be written as

xr;� = x0 + r cos(�) ~vx + r sin(�)~vy for 0 � r � R and 0 � � � 2� ; (6)

where ~vx and ~vy are unit vectors chosen so that ~vx,~vy and ~n form an orthonormal basis. We obtain our regularly
spaced sample points xri;�j by taking

ri = i
R

nr
1 � i � nr

�j = j
2�

n�(ri)
1 � j � n�(ri)

where n�(ri) = 2� ri
R
nr so as to ensure approximately uniform sampling of the disk.
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Figure 6: Computing the energy terms. (a) Particles are sampled uniformly; the circles represent the sample
points. The stereo component of the objective function is computed by summing the variance of the
gray level of the projections of these sample points, the gis. (b) The forces that bind the particles are
computed as functions of their normal vectors, ~vi and ~vj , and of the vector ~rij whose endpoints are
the centers of gravity.

Next, we develop the sum of squared di�erences in intensity from all images for a given point x. A point x in
space is projected into a point u in image gi via the perspective transformation u = mi(x). Consequently, the sum
of squared di�erences in intensity from all the images, �2(x), is de�ned by

�(x) =
1

ni

niX

i=1

gi(mi(x)) ;

�2(x) =
1

ni

niX

i=1

(gi(mi(x)) � �(x))2 :

Note that �(x) can be considered as the \gray level" of the sample point and by taking its median value over all
sample points of the particle, we can de�ne the median gray level of a particle that we use for clustering purposes as
discussed in Section 3.5. Note also, that when using only two images, �2(x) reduces to the square di�erence in gray
levels. In this case, our approach is equivalent to straightforward correlation with deformable windows but has the
advantage of generalizing to arbitrary numbers of images.

The above de�nition of �2(x) does not take into account occlusions of the surface: not all sample points of all
particles are visible in all images. In theory, this could be handled by generalizing the Z-bu�ering technique we used
in previous work [Fua and Leclerc, 1994a]. However, in the current implementation we use a simpler heuristic. As
discussed in Section 3.2, the particles are initialized by computing disparity maps using pairs or triplets of images
and �tting local surfaces to the corresponding 3{D points. We record the origin of these points and associate to each
particle the set of two or three images that provided the largest amount of support for the local surface. We use
these images to compute �2(x) because they are the ones in which the particle is most likely to be entirely visible.

The multi-image intensity correlation component ESt then becomes:

ESt =
X

k

EkSt (7)

EkSt =

P
r;� �

2(xr;�)

sk
; (8)

where sk is the total number of samples for particle k, Ek
St is the value of the correlation component for a single

particle and the summation over k denotes a summation over the set of all particles.

3.4.2 Particle Interactions
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Figure 7: Rearranging the particles of the second row of Figure 5 by minimizing the deformation energy alone.
The optimization progresses from left to right. All particles, but only a few outliers, end up lying on
one of two separate planes.

Following Szeliski and Tonnesen [1992], we de�ne a conormality potential E ijcn and a coplanarity potential E ijcp
between particles i and j by writing

E ijcn = 1=2jj~ni� ~njjj
2 = 1� ~ni ~nj ;

E ijcp = 1=2((~ni ~rij)
2 + ( ~nj ~rij)

2) ; (9)

where ~ni and ~nj are the normal vectors and ~rij the vector joining the centers of the two particles, as shown in
Figure 6(b). These terms control the surface's resistance to bending and we take our overall regularization terms ED
to be

ED =
X

i;j

f(E ijcn + E
ij
cp) (10)

where the summation over i and j denotes a summation over all pairs of particles that are neighbors in the cube-
shaped structure of Section 3.1, and f is a monotonically increasing function. In practice we implement the concept
of breakable springs by taking f to be

f(x) = log(1 + x=s)

with s being a �xed constant so that, as in Section 3.2, the interaction forces have a Lorentzian behavior [Black and
Rangarajan, 1994]. As the particles move out of alignment, the strength of the interaction increases up to a point
after which the interaction strength decreases and eventually vanishes.

In our implementation, we have not found it necessary to weight the interactions: by construction, our particles
tend to be equidistant and cannot slide along the surfaces because they have only three degrees of freedom. In Figure
7, we show the result of rearranging one of the sets of particles from Figure 5 by minimizing ED alone.

3.5 Global Optimization

Recall that the total energy of a set of n particles is written as

ET = ESt + �DED :

Since each particle has three degrees of freedom, ET is a function of 3n state variables. In this work, we use conjugate
gradient to minimize it and dynamically compute �D so that the two energy terms have comparable inuences [Fua
and Leclerc, 1994b].

In general, ESt, the image-correlation term, is not convex and conjugate gradient may not �nd a global minimum.
The presence of ED, the deformation energy, which tends to convexify the energy landscape alleviates the problem
but may prove insu�cient for large sets of particles. In such cases, an e�ective way to achieve a desirable minimum
of the objective function is to cluster the particles into smaller subsets, to optimize each subset independently, and
to reiterate the process until a stable solution is found. In practice, this can be achieved either by using the metric
of Section 3.3 to break the set of particles into smaller subsets or by histograming the median gray levels of the
particles, as de�ned in Section 3.4.1, and grouping those that fall into the same histogram peaks. The latter makes
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sense in the absence of surface markings because particles that have similar gray-levels are more likely to belong
to the same underlying surfaces than particles that do not. This heuristic has been used to produce the results of
Section 4 but is clearly too simple and will need re�nement in future work. Note, however, that this grouping scheme
is only used as a device to speed up the optimization: it need not be perfect since no �nal decision is based on it.

4 Results

In this section, we demonstrate the applicability of our method on a variety of imagery.

4.1 Evaluating Components of the Approach

We �rst use four stereo pairs of images of a head to illustrate the e�ectiveness of the initialization and clustering
methods of Sections 3.2 and 3.3, given relatively clean stereo data. The 512x512 images, shown in Figure 8, are part
of a sequence of forty that were acquired with a video camera over a period of a few seconds by turning around
the subject who was trying to stand still. Camera models were later computed using standard photogrammetric
techniques at the Institute for Geodesy and Photogrammetry, ETH-Z�urich.

(a) (b) (c)

(d) (e) (f)

Figure 8: Head images (Courtesy of ETH-Z�urich). (a,b) A stereo pair of a person's head as seen from one
side. (c) The corresponding disparity map. Black indicates that no disparity value was computed,
and lighter areas are further away than darker ones. Note that the disparities around the occluding
contour on both the left and right sides of the head are erroneous. (d,e,f) The left images of three
other stereo pairs of the same person taken from di�erent viewpoints.

We ran our correlation-based algorithm [Fua, 1993]|once for each consecutive pair of images in the sequence|
stored the resulting 3{D points in a 80x80x80 set of voxels and instantiated particles in all voxels containing at
least 200 points. The results are shown in the �rst row of Figure 9. Because we use a large number of images,
the main features of the head|including the nose, mouth, chin, ears and even the boundary of the skullcap|are
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(a)

(b)

Figure 9: Modeling the head. Row (a): Four shaded views of the particles instantiated by �tting local surfaces
to the 3{D points derived by correlating the images of Figure 8. Row (b): Similar views of the subset
of particles that belong to the same global surface. Erroneous ones on the side of the nose and the
back of the head have been eliminated.

clearly captured by our representation. However, because the correlation-based algorithm produced erroneous, but
not random, disparities around occlusion boundaries, we also �nd a number of spurious particles around the nose,
chin and back of the head. To get rid of them we computed the distance of Section 3.3 and eliminated all particles
not having at least four neighbors within 1.2 times the median distance between neighbors, as shown in the second
row of Figure 9. In this speci�c example, optimizing the positions of the particles yields a result that is virtually
indistinguishable from the one presented here.

To demonstrate the accuracy that can be obtained by minimizing the total energy of Section 3.4, we use the
512x256 aerial images of Figure 10 and evaluate our results against the \ground truth" supplied to us by a pho-
togrammetrist from Ohio State University. We ran our correlation-based algorithm, instantiated a set of particles
using a 50x50x1 set of voxels, and re�ned their positions by minimizing the total energy of Equation 5. In Fig-
ure 10(h), we plot the vertical distance of the particles'centers from the triangulated surface de�ned by triangulating
the control points. The Root Mean Square distance is 0.19 meter, which corresponds to an error in measured dis-
parity that is smaller than half a pixel. Given the fact that the control points are not necessarily perfect themselves,
this is the kind of performance one would expect of a precise stereo system [G�uelch, 1988]. As discussed previously,
in this simple case where only two images are used, our approach is equivalent to a correlation-based approach with
deformable windows.

4.2 Reconstructing Complex 3{D Scenes

We now turn to the scene of Figure 11 whose modeling requires multiple viewpoints and a full 3{D representation.
These images were acquired by setting a wheel and a box on a turntable and using the INRIA trinocular stereo rig
to take seven triplets of images by rotating the turntable. In this case and in all views, the wheel presents surfaces
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Figure 10: A stereo data set (courtesy of Ohio State University). (a,b) An aerial stereo pair. (c,d) Matched pairs
of points hand-entered by a photogrammetrist. (e) Shaded view of the triangulated surface formed
by the corresponding 3{D points. (f) The particles instantiated using a correlation-based disparity
map after minimization of the total energy of the set. (g) Shaded view of the surface generated by
triangulating the centers of the particles. (h) A plot of the vertical distance, in meters, from these
centers to the \ground truth" surface of Figure 10(e). The RMS distance is equal to 0.2 meter, which
corresponds to an error of approximately 0.4 pixel in disparity.

that are sharply slanted away from the cameras. The correlation data and the corresponding 3{D points, depicted by
Figure 12(a), are much noisier than before. As a result, as shown in Figure 12(b), many more spurious particles are
generated so that it becomes very di�cult to distinguish the wheel from the base it rests on and from the erroneous
�ts. More speci�cally, there is no setting of the distance threshold that can cleanly separate the particles that sit on
the wheel's surface from other ones. However, the optimization of the total energy of the set of particles produced
enough of an improvement, shown in Figure 12(c), so that the clustering technique of Section 3.3 became able to
e�ectively select the legitimate particles used to produce the shaded views of the �gure's second row. This example
demonstrates the ability of our object-centered representation to e�ectively pool the information from very di�erent
views to re�ne the representation beyond what could be done using only conventional stereo followed by robust
surface �tting without reference to the original image data.

In Figure 13, we use the same setup and the same wheel as for the images of Figure 11, but we have added objects
and use twelve triplets that span to a full 360 degrees of rotation of the turntable. The second row depicts the 3{D
points computed by our simple correlation-based stereo algorithm. Note all the spurious points \oating" above the
actual objects. For comparison's sake, we have veri�ed that another correlation algorithm [Hannah, 1988], which is
more sophisticated and is considered as one of the best ones currently available [G�uelch, 1988], yields similar results.
In fact, no setting of its parameters can e�ectively eliminate these points without also eliminating many of the real
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(a) (b) (c)

(d) (e) (f)

Figure 11: Images of wheel (Courtesy of INRIA). (a,b,c) A triplet of images of a wheel resting on a box sitting
on a turntable. (c) Corresponding disparity map. Because the surface of the tire in the top left part
of the wheel is slanted away from the camera, the disparities are of very poor quality in that part of
the image. (e,f) First images of two other triplets acquired by rotating the turntable. The �ve other
triplets used in this example were acquired for turntable positions that were intermediate between
those of (e) and (f).

structures as long as one uses only pairs of images.
By running our system using the same parameters as before, except for the distance threshold, we generate the

shaded representation shown in the third row of Figure 13. Note that the various objects|the wheel, the model
of a brain, and the sides of the box on which they rest|appear clearly. However, our simple clustering mechanism
does not pull them out as separate objects because it essentially uses the same threshold on surface curvature for
the whole scene. In this case di�erent thresholds are required for the di�erent objects, and a more sophisticated
heuristic|such as computing the distance threshold on a more local basis|would be required to achieve a complete
segmentation. Finding optimal groups of particles can be recast as the problem of �nding the best description of
the scene in terms of this speci�c vocabulary given the input data. A possible approach would then be to use the
Mininum Description Length [Rissanen, 1987] as was done by Leonardis et al. to extract surface patches from range
data [1990]. Note also the hole in the wall of the wheel's tire in Figure 13(i). Careful examination of the original
correlation data, reveals that 3{D data was particularly sparse there, presumably because that part of the tire is
almost completely black. Such holes could potentially be �lled by introducing a particle creation mechanism [Szeliski
and Tonnesen, 1992].

In our �nal example, shown in Figure 14, we reconstruct a ground-level scene using three triplets of images
acquired by the INRIA mobile robot. The ego-motion of the robot was computed by extracting 3{D segments and
matching them across views [Zhang and Faugeras, 1990]. Note that the �ve main rocks in the scene, including one
that overhangs, appear in the reconstruction.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Modeling the wheel. (a) A subset of all the 3{D points computed by running a correlation-based
algorithm on each of the image triplets. (b) The particles instantiated by �tting local surfaces to the
3{D points originating from seven noisy disparity maps. (c) The same particles after minimization of
the total energy of the set. (e,f,g) Shading views of the set of legitimate particles after elimination of
the spurious ones.

5 Conclusion

We have proposed a framework for 3{D surface reconstruction that can be used to model fully 3{D scenes from an
arbitrary number of stereo views taken from vastly di�erent viewpoints. By combining a particle-based representation,
robust �tting, and optimization of an image-based objective function, we have been able to reconstruct surfaces
without any a priori knowledge of their topology.

Our current implementation goes through three steps|initializing a set of particles from the input 3{D data,
optimizing their location, and �nally grouping them into global surfaces. We have demonstrated its competence and
ability to merge information and thus to go beyond what can be done with conventional stereo alone.

However, as the quality of the input data decreases and the size of the problems we want to deal with increases,
some of the current heuristics|speci�cally the ones used to cluster the particles for the purposes of both optimizing
the set and rejecting outliers|may prove too simple. To push the method forward, it will be necessary to develop
more sophisticated grouping techniques and to introduce new heuristics to �ll in holes in the original correlation
data. The basic framework, however, will remain because it provides the primitives required to implement these
additional capabilities.
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of the particle set after re�nement and clustering.
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