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Abstract

The use of energy minimizing deformable models in various applications has become
very popular. The issue of initializing such models, however, has not received much
attention although the model’s performance depends critically on its initial state. We aim
at obtaining good convergence and segmentation properties from a minimum of a priori
information.

We present a new approach to segmentation of 2— and 3-Dimensional shapes that
initializes and then optimizes a deformable model given only the data and a very small
number of 2-D or 3-D seed points respectively. This is a valuable capability for medical,
robotic and cartographic applications where such seed points can be naturally supplied. In
effect, the 2-D “snake” and the 3—D surface model are clamped onto the object boundary
in manner reminiscent of a ziplock or velcro being closed.

We develop the method’s mathematic framework and show results using 2-D carto-
graphic data. Preliminary results in 3—D using volumetric medical data are shown as well.

1 Introduction

In recent years, deformable models have emerged as a very powerful tool for semiau-
tomated object delineation and surface modeling as well as for 2— and 3-Dimensional
image segmentation in applications as diverse as medical imaging, graphics, robotics
or terrain-modeling.

The 2-D models, known as “snakes” have been originated by Terzopoulos, Kass,
and Witkin (Terzopoulos et al., 1987; Kass et al., 1988) and have since given rise to
a large body of literature (Fua and Leclerc, 1990; Cohen, 1991) among many others,
that explores theoretical and implementation issues as well as new applications.

In most of these papers, however, it is assumed that the initial position of the
snake is relatively close to the desired solution. In effect, initialization here amounted
to a painstaking almost complete, manual delineation of the desired outline. While
this is a reasonable assumption for applications such as motion tracking (Bascle and



Deriche, 1993) where the effort is limited to the first image of a whole sequence, it
is ineffective for delineating complex objects from scratch.

Our efforts are aimed at alleviating the often repetitive task practitioners face
when segmenting images. In particular, we aim at eliminating the need to outline
the desired structure very precisely. In our implementation, the user needs only
to supply a few discrete points through which the contour must pass; the system
then propagates the information along the contour starting from these points. As a
result, the snake is progressively clamped onto an image contour so that it smoothly
connects those points and has the right orientation at their locations. This behavior
is analogous to the closing of a ziplock, hence the name of our snakes. As illustrated
in Figure 1, considerably fewer control points are needed than for conventional
implementations which we refer to as traditional snakes.

Figure 1: Outlining facial features. (a) A face image with low contrast contours. (b)
Five sets of initial points, each denoted by a different symbol. Four of them are pairs
of endpoints while the fifth is shown as a set of circles. (c) The contours delineated by
Ziplock snakes. (d) The initial delineations that must be supplied to achieve the same
result using traditional snakes.

In the same spirit, we present a method that allows a user to initialize and then
optimize a 3—D surface model by supplying only a very small number of 3-D seed
points and corresponding surface normals. This is a valuable capability because
there are many applications, such as Segmentation of 3—D shapes from volumetric
data, Incremental construction of a world model by a mobile robot, Construction
of composite models for high-resolution cartographic modeling in which imposing
initial conditions in this manner is both easy and natural.

Our technique relies on classical elastic models that are represented as triangu-
lated meshes and deform themselves to minimize an objective function (Terzopoulos
et al., 1987). This method extends our 2-D ziplock approach (Neuenschwander et
al., 1994) to the 3-D domain. We show that a small set of 3-D seed points provides
sufficient boundary conditions to solve the differential equation that governs the
model’s behavior in closed form, assuming that the data component of the objective
function remains constant. As a result, it becomes possible to instantiate the model
using these points alone by initially ignoring the data term and then propagating
image information along the surface by progressively “turning it on”. The triangu-
lated mesh behaves like a piece of Velcro that is progressively being clamped onto
the surface of interest, hence the name of our deformable surfaces.



2 Ziplock Snakes

The original snakes (Kass et al., 1988) are modeled as time-dependent 2-D curves
defined parametrically as 9(s,t) = (x(s,t),y(s,t))o<s<1 , where s is proportional
to the arc length, ¢ the current time, and = and y the curve’s image coordinates.
The snake deforms itself as time progresses so as to minimize an image potential
E(%), with E;(7) = —f; P(9(s,t)) ds where P(#(s,t)) is a function of the image.
One typical choice is to take P((s,t)) to be equal to the magnitude of the image
gradient, that is P((s,t)) = |VI(¥(s,t))|, where I is either the image itself or the
image convolved by a Gaussian kernel.

Whatever the choice of P, E;(%) is typically not a convex functional. To overcome
this problem, Terzopoulos (Terzopoulos et al., 1987) has proposed to introduce a
regularization term Ep(¥) that is convex and to minimize a total energy term E(¥)
that is the sum of E7(¥) and Ep(¥). Using the elastic rod model, Ep(¥) is taken to
be
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where a(s) and F(s) are arbitrary functions that regulate the curve’s tension and
rigidity. In the implementation described below «(s) and [(s) are taken to be
constant and supplied by the user. We have shown previously (Fua and Leclerc,
1990) that constant o and 3 can be chosen in a fairly image-independent way.

From variational calculus it is well known that if ¥(s) minimizes E = Ep + E;
and is sufficiently regular, that is at least C*(0, 1), then it must be a solution of the
set of two coupled Euler differential equations
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where v(s,t) stands for either z(s,t) or y(s,t). Note that, in order for this equation
to have a unique solution, one must specify boundary conditions such as the values
and derivatives of v(s,t) for s =0 and s = 1.

Discretizing Equation 2 using finite differences yields the linear system

K-V =Fy (3)

where V' stands for the vector of either x or y coordinates, K is the stiffness matrix
and Fy are the derived image forces. K is not invertible and these equations cannot
be solved directly.

2.1 Initialization and Optimization using Boundary Conditions

To improve upon the snakes’ convergence properties, we now introduce our ziplock
optimization mechanism. The user is expected to specify endpoints in the vicinity
of a clearly visible edge segment, which implies a well-defined edge direction.

To successfully optimize our snake, we start from an initial position that is ap-
proximately correct in the neighborhood of the endpoints. The easiest way to achieve



this result is to solve the homogeneous equations that correspond to the system of
Equation 2
2
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where v stands for either z(s) or y(s) and 0 § s < 1 and has to fulfill the four
boundary conditions: v(0) = 9y, v(1) =01, ¥'(0) =7}, v'(1) = ¥}. By construc-
tion, this solution has the specified tangent at the endpoints 0y, ?; and is close to
the right answer near these points.

While the tangent direction at the endpoints can be computed, its orientation
cannot be determined therefore the interface provides the user with the possibility
of flipping the orientation at both ends if necessary. By fixing the curve’s endpoints
and giving the curve’s tangent at those points, the system of Equation 3 is reduced

by 4 entries (see appendix of (Neuenschwander et al., 1995)) to

K*-V* = F}., (5)

where V* stands either for the reduced X*- or Y*-vector, and K™ is a pentadiagonal
stiffness matrix that s invertible. Of course, since Fy;. depends on the snake’s
current position, the system is only semilinear and cannot, in general, be solved in
closed form.

We start the optimization of the energy term by defining the initial snake as the
solution of the homogeneous differential system of Equation 4. At this stage the
snake “feels” absolutely no external potential forces. During the ongoing iterative
optimization process the image potential is turned on progressively for all the snake
vertices, starting from the fixed extremities. We distinguish between passive and
active snake nodes, depending on whether the potential force field is turned on for
that vertex or not.

Force boundaries
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Figure 2: Schematic Ziplock Snake during optimization. A Ziplock Snake, fixed at Head
and Tail, consists of two parts the active and the passive vertices. These areas are
separated by moving force boundaries. The active part of the snake is divided up into two
segments marked as (h) and (t) respectively.

As illustrated by Figure 2, we define the force boundaries as the location of the ver-
tices farthest away from the endpoints that feel the image forces. These boundaries
approach each other during the ongoing optimization process by moving forward.



The simplest way to optimize the snake would be to gradually move the force
boundaries from the snake’s head and tail towards its center and solve Equation 5
for each new position. However, because Equation 5 is semilinear, it cannot be
solved in one single step. To enforce stability we introduce a viscosity term (s, t)
similar to the one used by traditional snakes and iteratively solve the Equation

(K" 7 l) - Vi =% Vit + Fy.

(6)
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The initial coordinate vector (X, Y)T is the solution of Equation 4. The viscosity
v(s,t) is initialized as v(s,0) = 0 ,s € [0,1] and recomputed each time the force
boundaries move so that the initial displacement of each vertex is on the average
of a given a-priori magnitude, typically 1 pixel, see (Fua and Leclerc, 1990). Each
force boundary is moved individually but at most one vertex per iteration. A force
boundary is moved only if the average motion of the active part of the snake, feeling
the image forces and lying between the force boundary and the head (h) or tail (t),
respectively, is below a fraction of a pixel. The two different parts are marked with
(h) and (t) in Figure 2.

The potential of Ziplock Snakes has already been illustrated in Figure 1. In
Figure 3 we use Ziplock Snakes to outline various features of a house in an aerial
image. Using our snakes we can delineate rather complex object boundaries using

a very small number of seed-points.

h

Figure 3: Delineating man-made objects in aerial images. a) the two figures show comple-
mentary sets of pairs of seed-points used to initialize Ziplock Snakes. b) Outlined features
by Ziplock Snakes. Courtesy of the Institute of Geodesy and Photogrammetry, ETH.

2.2 Extension to Ribbon Snakes

Following (Fua and Leclerc, 1990), we have implemented a tool for interactive road
delineation, called ribbon snake. The model vector 7 is augmented by a third com-
ponent, the varying width w(s,t) of the road. The expression for the deformation
energy (1) still holds for ¥(s,t) = (z(s,t),y(s,t),w(s,t))T, where the width is sub-
ject to “tension” and “rigidity” constraints as the two coordinate components. The
ribbon forms the center of the road, while the assigned width defines two curves



that are the actual deforming road boundaries. Note that the image information
is taken into account along these two curves only. The sequence in Figure 4 de-
picts the initialization and the subsequent “Ziplock”-optimization of a ribbon snake
model. Each ribbon is initialized by the two corresponding endpoints and the road
direction, which is the average direction of the left and right road boundary.

o

Figure 4: Road delineation in aerial images. a) & c¢) Initial ribbon snakes defined by
the two fixed endpoints and the corresponding road direction. b) & d) The three images
show intermediate and final results using the presented “Ziplock”-optimization mechanism.
Note, that the ribbon snake can pass over other significant image features due to the fact
that the image forces are not active between the force boundaries.Courtesy of the Institute
of Geodesy and Photogrammetry, ETH and the Schweizer Landestopographie, Bern.

a)

3 Deformable Velcro™ Surfaces

Velcro surfaces as well as Snakes belong to the same framework of deformable mod-
els proposed by Terzopoulos (Terzopoulos et al., 1987). The physical interpretation
uses basics of elasticity theory and regards deformable surfaces as a weighted com-
bination of membrane and thin plate. A generalized deformable surface model is
defined as #(w,t) = (z(w,t),y(w,t), z(w,t)) where we Q C IR? is a suitable para-
metrization, ¢ the current time, and z,y and z are the corresponding coordinate
functions of the surface. The surface deforms itself so as to minimize its image po-
tential energy Fp(?) = — [[P(U(w))dw where P is the same potential function as
derived in Section 2.
In the case of deformable surfaces, the convex regularization term Ep(7) we use
has the following form:
7) 0v 2
= fft) | 2]+ 2

2= 2
v

07
+ p(w )”@

2
Ows

0*v

(9(4]1 (9(4)2

o |

(9(4)2

2] dw (7)




where p(w) = 1 — 7(w) and w = (w1, ws). In the implementation described below,
we take the surface tension parameter, 7, to be a constant between 0 and 1 supplied
by the user. The Euler differential equation according to the optimization problem
of the functional E(¥) = E;(¥) + Ep(¥) can be written as

9 oP
TAv + (1 —7)A%v = 5o (8)
where v stands for either =,y or z. Note, these differential equations do not have
a unique solution in the absence of boundary conditions, whose incorporation is
crucial for a successful segmentation.

We use the same notations as introduced in Section 2 for the 3-D framework and
refer to equations derived in 2-D. Note, however, that equivalence is restricted to
the notation while these expressions differ in their detailed mathematical structure.

In the context of segmentation of anatomical organs in 3-D medical image data,
we assume that the surface is topologically equivalent to a sphere. We tessellate
the surface into triangular patches and therefore define the discrete model by a set
of nodes. The user manually supplies a few “anchor-points” and supervises the
tessellation by specifying the triangular facets and their refinement. Using finite
differences, the governing Equation 8 becomes the linear system

K-V =Fy (9)

where now V stands for the vector of either x,y or 2z coordinates, K is the surface’s
stiffness matrix and Fy are the derived image forces. As it is the case for Snakes,
the matrix K is not invertible and these equations cannot be solved directly.

3.1 Initialization and Optimization Using Boundary Conditions

First we address the acquisition of boundary conditions and their use to effectively
initializing the deformable surface model. We then discuss the actual optimization.

Visual inspection of 3—D data sets simultaneously from the three cardinal di-
rections is supported by appropriate user interfaces and allows to identify surface
points interactively. The normal vectors are taken as the gradient’s direction of
the potential field at the selected points. This process yields a set B of boundary
conditions defined by an arbitrary number m of 3-D anchor-points P; (4 < ¢ < m,
non-coplanar) and the corresponding surface normals 7p,. Therefore B can be writ-
ten as

B={t) = P,,Ny =17p ; ¥0o=Po,Ns, =1ip, ;...;0n = Pu, Nz, =iip,} (10)

To successfully optimize the surface, we must start from an initial shape that is
approximately correct in the neighborhood of the selected anchor-points. This result
can be achieved by solving the homogeneous equations that correspond to the system
of Equation 8

—TAv+(1-7)Nv=0 (11)

where v stands for either x,y or 2. The initial surface we compute is a solution
of Equation 11 that satisfies the set B of boundary conditions defined above. By



construction, this solution will pass through the anchor-points and have the specified
normal vectors there, and be close to the final surface near these points.
The semilinear system of Equation 9 is reduced by incorporating boundary con-
ditions (set B) to
K*-V* =TIy, (12)

where now V* stands either for the reduced X*-, Y*- or Z*-surface vector, and K*
is the sparse stiffness matrix that s now invertible.

We start the optimization of the energy term by defining the initial surface as the
solution of the homogeneous differential system of Equation 11. At this stage the
surface “feels” absolutely no external potential forces. During the ongoing iterative
optimization process the image potential is turned on progressively for all the surface
nodes, starting from the seed points. We distinguish between passive and active
surface nodes, depending whether the potential force field is turned on for that vertex
or not. We define the expanding force fronts as the location of the nodes farthest
away from their corresponding central seed point that feel the image forces. These
fronts approach each other during the ongoing optimization process and propagate
all over the surface by moving forward like concentric wave fronts. This propagation
is illustrated in Figure 5.

] a) b) g d)

Figure 5: Propagation of the force boundaries. a) First polyhedral initialization per-
formed by the user. b)-d) Solution of the Euler differential equation. At every seed point
a force front expands on the surface. The black dots denote the various fix points while
the light shaded vertices denote the active mesh nodes. Note, a case without image forces
was used for this illustration.

As explained in Section 2, to enforce stability we introduce a viscosity term y(w, t)
and iteratively solve the equation

(K* 43 I)- Vi =%V + Fy. (13)

V=V,

where now the initial coordinate vector (X, Yy, Z¢)T is the solution of Equation 11.
The viscosity v(w,t) is initialized as y(w,0) =0 ,w € Q and recomputed each time
the force boundaries move.

We illustrate the segmentation process on the example of the putamen, a rela-
tively small nucleus of the deep gray matter of the brain. The original binarized
dataset is shown in Figure 6a). First the user has to provide a reasonable number
of anchor-points, which will be used to generate the initial approximation of the



surface. At the same time they serve as seed points for the force front propagation
of the surface evolution. We have built a special tool, which serves as a 3-D cursor
in a gray-valued field, and is illustrated by Figure 6b). The tool simultaneously
updates the three orthogonal planes that cross each other at the actual 3-D cursor
position, which is shown as cross-hair on each of the planes.

Figure 6: a) The original dataset used as an example to illustrate the segmentation
process. b) Tool for the selection of fix points in the dataset to be segmented. c) Initial
surface resulting from the force-free solution of the homogeneous system of Kuler-Lagrange
differential equations, and its refined triangulation. d) The final result of the surface
evolution, governed by the progressive turning on of the image potential forces. Note,
that the resulting surface is smooth, but features which are selected by the user as anchor-
points are preserved.

a)

c) d)

The Delaunay-tetrahedralization (Boissonnat, 1984) of the selected anchor-points
is then computed and “sculpted” interactively by successive deletion of Delaunay
tetrahedra from the convex hull, until all selected points lie on the surface. Finally
the remaining tetrahedra are used to define an initial triangulation that is refined
by a number of recursive subdivisions—4 in the example presented here resulting in
1794 vertices and 3584 facets—and used to compute the unperturbed initial surface,
as shown in Figure 6¢). This solution is then optimized according to the procedure
proposed in this section. Figure 6d) shows the result of this surface evolution.

4 Conclusion and Future Work

We have proposed a snake-based approach to semiautomated delineation that allows
a user to outline an open contour by specifying only very distant endpoints and
allowing the computer to propagate edge information from the extremities toward
the center. In other words, we have proposed a natural initialization procedure that
is completely in line with both the practitioner’s task and the mathematical problem
so that the “expert user” (Kass et al., 1988) of the original snake papers need not be
that much of an expert anymore. Ziplock snakes have been ported into the RADIUS
Common Development Environment (Mundy et al., 1991) where they can be used
to optimize or connect curves and ribbons in a semiautomated fashion while taking
advantage of RCDE’s extensive editing capabilities.

We have generalized the 2-D method to a 3-D procedure that allows initializ-
ing and optimizing a 3-D surface model given only a very small number of 3-D



seed points and corresponding surface normals. This is valuable in semiautomated
applications—such as medical ones—where seed points can be supplied manually
by the user with reasonable ease. The user can influence the level of detail in the
final representation by choosing the most appropriate force field, adjusting the ten-
sion parameter, and by providing more or less seed points for any given part of the
surface.

The capability presented here should also be valuable for fully automated appli-
cations. Vision algorithms—such as the so-called “shape from X” methods—often
provide high-quality results in some parts of a scene but may be unreliable in others.
Our method has the potential to allow the use of the most reliable surface patches
as anchors and the propagation of information to other parts of the surface.

Further development of deformable Velcro surfaces will primarily address the
implementational and the user interface level. The governing objective is to develop
the mathematical theory, the implementation, and the user interface of a tool for the
segmentation of 3—D objects without requiring expert Computer-Vision knowledge
for its use.
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