
Parametric Models are Versatile:The Case of Model Based OptimizationP. FuaArti�cial Intelligence CenterSRI International333 Ravenswood AvenueMenlo Park, California 94025AbstractModel-Based Optimization (MBO) is a paradigm in which an objective function is used to expressboth geometric and photometric constraints on features of interest. A parametric model of a feature(such as a road, a building, or coastline) is extracted from one or more images by adjusting the model'sstate variables until a minimum value of the objective function is obtained. The optimization procedureyields a description that simultaneously satis�es (or nearly satis�es) all constraints, and, as a result, islikely to be a good model of the feature.1 IntroductionModel-Based Optimization (MBO) is a paradigm in which an objective function is used to express bothgeometric and photometric constraints on features of interest. A parametric model of a feature (such as aroad, a building, or coastline) is extracted from one or more images by adjusting the model's state variablesuntil a minimum value of the objective function is obtained. The optimization procedure yields a descriptionthat simultaneously satis�es (or nearly satis�es) all constraints, and, as a result, is likely to be a good modelof the feature.The deformable models we use here are extensions of traditional snakes [Terzopoulos et al., 1987, Kass etal., 1988, Fua and Leclerc, 1990]. They are polygonal curves or facetized surfaces to which is associated anobjective function that combines an \image term" that measures the �t to the image data and a regularizationterm that enforces geometric constraints.In this paper we demonstrate cartographic applications of this paradigm and show that a large variety ofobjects can be thus modeled. More speci�cally we use MBO to e�ectively delineate 2D and 3D features|such as roads, rivers and buildings|and to recover the shape of the surrounding terrain. The algorithmsdescribed below are implemented within the Radius Common Development Environment (RCDE) [Mundyet al., 1992].2 2{D and 3{D DelineationWe model linear features as polygonal curves that may either be described as sequential list of vertices or, formore complex objects such as a road network or a 3{D extruded object, exhibit the topology of a network. Inthe latter case, to describe them completely, one must supply not only the list of their vertices but also a listof \edges" that de�nes the connectivity of those vertices. In addition, with some of these complex objects,one can also de�ne \faces," that is circular lists of vertices that must be constrained to remain planar.1
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Our ultimate goal is to accommodate the full taxonomy of snakes described by table 1. The columsrepresent di�erent type of snakes and the rows di�erent kinds of constraints that can be brought to bear.The table entries are examples of objects that can be modeled using these combinations.Constraints/Type Simple curve Ribbon curve NetworkSmooth Low res. roads, rivers. High res. roads. Road network.Polygonal Man-made structures. City streets Street Networks.Planar Planar structures. City streets Street Networks.Rectilinear Roof tops, parking lots. City streets Buildings.Table 1: Snake taxonomy. The columns represent di�erent types of snakes and the rows di�erentkinds of constraints that can be brought to bear. The table entries are examples of objectsthat can be modeled using these combinations.2.1 Polygonal SnakesA simple polygonal snake, C, can be modeled as a sequential list of vertices, that is, in two dimensions, a listof 2{D vertices S2 of the form S2 = f(xi yi); i = 1; : : : ; ng ; (1)and, in three dimensions, a list of 3{D vertices S3 of the formS3 = f(xi yi zi); i = 1; : : : ; ng : (2)In the two dimensional case, the \image energy" of these curves|the term we try to minimize when weperform the optimization, is taken to beEI(C) = � 1jCj Z jCj0 jrI(f (s))j ds; (3)where I represents the image gray levels, s is the arc length of C, f (s) is a vector function mapping thearc length s to points (x; y) in the image, and jCj is the length of C. In practice, EI(C) is computed byintegrating the gradient values jrI(f (s))j in precomputed gradient images along the line segments thatconnect the polygonal vertices.1 We therefore rewrite EI asEI = X1�i<nS((xi; yi); (xi+1; yi+1))= X1�i<nLi;i+1 ;S((xi; yi); (xj; yj)) = � Z 10 jrI(xi + �(xj � xi); yi + �(yj � yi))jd� ; (4)Li;j = q(xj � xi)2 + (yj � yi)2 :Lij is the length of the individual line segments and S((xi; yi); (xj; yj)), the sum of the gradient values alongone segment, is computed by sampling the segment at regular intervals.In the three dimensional case, EI(C) is computed by projecting the curve into a number of images,computing the image energy of each projetion and summing these energies. Formally, given a set of N1The gradient images are computed by gaussian smoothing the original image and taking the x and y derivatives to be �nitedi�erences of neighboring pixels. 2



images and corresponding camera models, we writeEI = X1�k�N EkI ; (5)EkI = X1�i<nS(Prk(xi; yi; zi); (Prk(xi+1; yi+1; zi+1)))= X1�i<nLki;i+1 ; (6)where k denotes the image number, Prk(x; y; z) the pair of coordinates of the projection of point (x; y; z)into image k and Lki;j the length of the projection into image k of the segment i; j.2.2 Smooth Snakes and RibbonsThese snakes are used to model smoothly curving features such as roads or ridge-lines.2{D curves. Following Kass el al. [1988], we choose the vertices of such curves to be roughly equidistantand add to the image energy EI a regularization term ED of the formED(C) = �1Xi (xi � xi�1)2 + (yi � yi�1)2 + �2Xi (2xi � xi�1 � xi+1)2 + (2yi � yi�1 � yi+1)2 (7)and de�ne the \total energy" ET as ET (C) = ED(C) + EI(C) (8)The �rst term of ED approximates the curve's tension and the second term approximates the sum of thesquare of the curvatures, assuming that the vertices are roughly equidistant. In addition, when starting, aswe do, with regularly spaced vertices, this second term tends to maintain that regularity. To perform theoptimization we could use the steepest or conjugate gradient, but it would be slow for curves with largenumbers of vertices. Instead, it has proven much more e�ective to embed the curve in a viscous mediumand solve the equation of the dynamics@E@S + �dSdt = 0; (9)with @E@S = @ED@S + @EI@S ;where E is the energy of Equation 8, � the viscosity of the medium, and S the state vector that de�nes thecurrent position of the curve. Since the deformation energy ED in Equation 7 is quadratic, its derivativewith respect to S is linear and therefore Equation 9 can be rewritten asKSSt + �(St � St�1) = � @E@S ����St�1) (KS + �I)St = �St�1 � @E@S ����St�1 (10)where @ED@S = KSS;and KS is a sparse matrix. Note that the derivatives of ED with respect to x and y are decoupled so thatwe can rewrite Equation 10 as a set of two di�erential equations in the two spatial coordinates(K + �I)Xt = �Xt�1 � @EI@X ����Xt�1(K + �I)Yt = �Yt�1 � @EI@Y ����Yt�13



where K is a pentadiagonal matrix, and X and Y are the vectors of the x and y vertex coordinates. BecauseK is pentadiagonal, the solution to this set of equations can be computed e�ciently in O(n) time using LUdecomposition and backsubstitution. Note that the LU decomposition need be recomputed only when �changes.In practice � is computed in the following manner. We start with an initial step size �p, expressed inpixels, and use the following formula to compute the viscosity:� = p2n�p ����@E@S ���� ; (11)where n is the number of vertices. This ensures that the initial displacement of each vertex is on the averageof magnitude �p. Because of the non linear term, we must verify that the energy has decreased from oneiteration to the next. If, instead, the energy has increased, the curve is reset to its previous position, thestep size is decreased, and the viscosity recomputed accordingly. This is repeated until the step size becomesless than some threshold value. In most cases, because of the presence of the linear term that propagatesconstraints along the whole curve in one iteration, it takes only a small number of iterations to optimize theinitial curve.3{D Curves. To extend the smooth snakes to three dimensions, we add one term in z to the deformationenergy of Equation 7 and ED becomesED(C) = �1Xi (xi � xi�1)2 + (yi � yi�1)2 + (zi � zi�1)2 (12)+ �2Xi (2xi � xi�1 � xi+1)2 + (2yi � yi�1 � yi+1)2 + (2zi � zi�1 � zi+1)2Since the derivatives of ED with respect to x, y, and z are still decoupled, we can rewrite Equation 10 as aset of three di�erential equations in the three spatial coordinates:(K + �I)Xt = �Xt�1 � @EI@X ����Xt�1(K + �I)Yt = �Yt�1 � @EI@Y ����Yt�1(K + �I)Zt = �Zt�1 � @EI@Z ����Zt�1where X,Y , and Z are the vectors of the x,y, and z vertex coordinates.The only major di�erence with the 2{D case is the use of the images' camera models. In practice, EI(C)is computed by summing gradient values along the line segments linking the vertices' projections. Theseprojections, and their derivatives, are computed from the state vector S using the camera models. Similarly,to compute the viscosity, we use the camera models to translate the average initial step �p, a number ofpixels, into a step �w expressed in world units and use the latter in Equation 11.Ribbons 2{D snakes can also be extended to describe ribbon-like objects such as roads in aerial images.A ribbon snake is implemented as a polygonal curve forming the center of the road. Associated with eachvertex i of this curve is a width wi that de�nes the two curves that are the candidate road boundaries. Thestate vector S becomes the vector S = f(xi yi wi)g; i = 1; : : : ; ng and the average edge strength the sum ofthe edge strengths along the two boundary curves. Since the width of roads tends to vary gradually, we addan additional energy term of the form EW (C) = Xi (wi � wi�1)2 (13)4



) @EW@W = LW;where W is the vector of the vertices' widths and L a tridiagonal matrix. The total energy can then bewritten as E(C) = �DED(C) + �W EW (C) + �GEI(C)where �D and �W wheigh the contributions of the two geometric terms. At each iteration the system mustsolve the three di�erential equations:(K + �I)Xt = �Xt�1 � @EI@X ����Xt�1(K + �I)Yt = �Yt�1 � @EI@Y ����Yt�1(K + �I)Wt = �Wt�1 � @EI@W ����Wt�12{D ribbons can be turned into 3{D ones in exactly the same way 2{D snakes are turned into 3{D ones.The state vector S becomes the vector S = f(xi yi zi wi)g; i = 1; : : : ; ng and at each iteration the systemmust solve four di�erential equations, one for each coordinate.2.3 Network SnakesThe 2{D and 3{D \network snakes" are a direct extension of the polygonal snakes of Section 2.1.
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1(a) (b)Figure 1: Snake Topology. (a) A simple polygonal curve is described by a sequential list of verticesvi| v1�5 here. (b) A network is decribed by a list of vertices vi| v1�8 here , and a list ofedges|((1 2) (2 3) (3 4) (4 5) (2 6) (3 7) (7 8)) here.In the two-dimensional case, the extension is straightforward. A network snake is now de�ned by a listof n vertices S2 as before and list of edges A = f(i; j) where 1 � i � n and 1 � j � ng. Figure 1 depictssuch a network snake. EI(C) is computed asEI(C) = X(i;j)2AS((xi; yi)(xj ; yj))= X(i;j)2ALki;j ; (14)5



where S and L are the functions de�ned in Equation 5. It is optimized using either steepest gradient descentor conjugate gradient. In Figure 2, we show an example of such a network. When constraints, such asplanarity or rectilinearity, are imposed on the network, constrained optimization can also be used [Gill etal., 1981, Brechb�uhler, 1995, Brechb�uhler et al., 1995].
(a) (b)Figure 2: Optimizing a two-dimensional polygonal network. (a) Initialization (b) Network after opti-mization.

(a) (b)Figure 3: Edge Visibility. (a) An RCDE \extruded-object." Only the visible faces, that is those whosenormal is oriented towards the viewer are drawn. Note that this heuristic does not accountfor non-convexity, as a result the faces in the lower left corner of the image are improperlydrawn. (b) The network snake generated to optimize the extruded-object. It includes roof-edges and vertical wall-edges. The edges at the back of the building are not drawn|and notused during the computations involving these views|because they belong to hidden faces.The edges at the base of the building are treated as invisible because their appearance isunreliable in typical imagery.In the three-dimensional case, one must take into account the fact that not all the network's edges arevisible in all views. As a result one must also provide, for each projection of the snake into all the images, alist of visible edges. We compute this list by using the face-visibilitymethods embedded in RCDE: we assume6



that only edges that belong to visible faces are visible. This is e�ective for convex objects but my fail forconcave ones. Figure 3 illustrates the strengths and weaknesses of this approach. A better way to computevisibility would be to use the Z-bu�ering capabilities of SGI machines; unfortunately this impractical for thetime being because the graphics libraries supplied by SGI cannot currently be loaded into RCDE, due tolimitations of the Lucid Common Lisp compiler.Formally, given a set of N images, we de�ne a visibility list Ak1�k�N for each image and we rewrite theimage energy of Equation 6 asEI = X1�k�N EkI ; (15)EkI = X(ij)2Ak S(Prk(xi; yi; zi); (Prk(xi+1; yi+1; zi+1)))= X1�i<nLki;i+1 : (16)
(a) (b) (c) (d)Figure 4: Three-stage optimization of a 3{D Network. (a) The object is hand-entered using RCDE.By default the vertex heights are that of the underlying terrain model. (b) The object isoptimized using only the top view. The object matches the roof outline in the top viewbut not the lower one because the object is higher than the terrain. (c) The height of thevertices is computed approximately by searching a range of z values while maintaining theshape of the object's projection in the top view. (d) The network's 3{D shape is furtherre�ned by simultaneously optimizing the x, y and z values of the vertices' positions. Itsprojections then match image features in both views, guaranteeing that the 3{D shape ofthe underlying objects has been recovered.The optimization typically is a three step process and is illustrated by Figure 4:1. We optimize a snake using a single image. Since a single view underconstrains the three degrees offreedom of the individual vertices, we �x one of them for each vertex. The z value is �xed and onlythe x and y coordinates are allowed to change. As shown in Figure 4(b), at the end of this �rst step,7



the network's projections match image features in the view that was used but not necessarily in anyother view because the �xed z values usually are erroneous.2. The height of the vertices is estimated by taking the network to be horizontal and searching through arange of z values, calculating the x and y values for each vertex so that the projection of the networkremains the same in the view used in the previous step and retaining the z value that yields the optimalvalue of EI , the image energy of Equation 16.3. The 3{D positions of the network's vertices are further re�ned by optimizing EI with respect to allthree degrees of freedom of the vertices simultaneously.As in the case of the 2{D networks, the optimization of Steps 1 and 3 can be performed using eithersteepest steepest gradient descent, conjugate gradient or constrained optimization.The number of degrees of freedom of generic 3{D networks can be reduced by forcing them to be planar.We do this either by de�ning a plane of equationz = ax+ by + c (17)and imposing that the vertices lie on such a plane or imposing planar constraints on sets of four vertices.In both cases, we replace the n degrees of freedom necessary to specify the elevation of each vertex by thethree degrees of freedom required to de�ne the plane.These 3{D networks can be further specialized to handle objects that are of particular interest in urbanenvironments: trihedral corners found on building roofs and extruded objects that are used in RCDE tomodel building outlines.
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XFigure 5: Topology of a trihedral corner. It has four vertices and three edges that all share one vertex.The edges form 90 degrees angles, Two of them may be constrained to be horizontal. Inthis case the corner has only four degrees of freedom, three for the position of vertex 0 and1 for the orientation of the horizontal edges.Trihedral corners. They are modeled as networks with four vertices and three edges forming 90 degreesangle with each other, as shown by Figure 5. We typically impose the additional constraint that one edgebe vertical while the two other are horizontal. Under such constraints, the trihedral corner has only fourdegrees of freedom: three for the position of the vertex that is shared by all three edges and one for rotationabout the vertical axis. When optimizing using only one image, �xing the altitude removes one additionaldegree of freedom. In both cases, the optimization is much more constrained than for generic 3{D networksand, as a result, the convergence properties are substantially improved.8



(a) (b) (c)Figure 6: Optimization of a trihedral corner. (a) Initial position. (b) After optimization using onlythe top view, the corner's projection matches the image features in the top view only. (c)After optimization using both views, the corner's projections match the image features inboth views.In Figure 6, we show the recovery of such a trihedral corner. Figure 7 shows additional corners recoveredand superimposed on a manually-entered 3{D wireframe models of the correspondng buildings. Because thecorners are fully 3{dimensional objects, they can be viewed from di�erent viewpoints in which they matchthe 3{D structure of the underlying objects.Note that, in order to accurately recover the corner's 3{D position, the camera models associated withthe images must be fairly precise|which they are in the examples presented here. However, if the cameramodels were less accurate, we could still perform the single-view optimization in each image separately. Wecould then feed the results of optimizing several corners to a resection program and re�ne the camera models.Extruded objects. Extruded objects are typically used to model buildings such as those of Figure 7. Foroptimization purposes, we de�ne extruded networks that are composed of a polygonal closed contour thatcorresponds to the roof outline and of vertical edges that correspond to the intersections of the vertical wallsas shown in Figure 8. As discussed above (see Figure 3), for each view, k, in which the extruded object isvisible, we de�ne a list Ak of edges that are visible and use only those to compute the image energy EI .During the optimization, we constrain the \wall" edges to remain vertical. We can also constrain the\roof-outline" to be planar and the \roof-edges" to form 90-degree angles. As in the case of 3{D corners,these constraints greatly reduce the number of degrees of freedom and allow for better convergence properties.9



(a) (b)Figure 7: Recovering building corners. (a) Several building corners superimposed on manually entered3{D wireframe models of the buildings. (b) The same corners and wireframes seen from adi�erent viewpoint. The recovered corners also are 3{D objects that match the underlyingobjects.
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Figure 8: Topology of an extruded object. It has a polygonal outline that corresponds to the roofoutline and vertical edges that correspond to the intersections of the vertical walls. In thisexample the complete edge-list is ((0 1) (1 2) (2 3) (3 4) (4 5) (5 0) (0 6) (1 7) (2 8) (3 9) (410) (5 11)). Note, however, that, due to occlusions, the list of visible edges for the particularprojection shown here would be be the sublist ((0 1) (1 2) (2 3) (3 4) (4 5) (5 0) (0 6) (1 7)(2 8)). The visible edges are shown as solid lines and the hidden ones as dashed lines.Figure 9 illustrates the recovery of a building using all the constraints described above. For comparison'ssake, in Figure 10, we show the result of the optimization using the same starting point but without imposingthe rectilinearity constraint.In Figure 11, we show several buildings modeled by roughly entering their outlines within RCDE andoptimizing the shapes in three views simultaneously using our extruded snakes . The use of the snakes hasallowed us to perform this task much faster than we would have if we had had to precisely delineate all �vebuildings by hand. 10



(a) (b) (c)Figure 9: Optimization of an extruded object. (a) Initial position. (b) The edges are assumed toform 90 degrees angles. After optimization using only the top view, the object's projectionmatches the image features in the top view only. (c) After optimization using both views,the object's projections match the image features in both views.3 3{D Surface ReconstructionGiven the task of reconstructing a surface from multiple images whose vantage points may be very di�erent,we need a surface representation that can be used to generate images of the surface from arbitrary view-points, taking into account self-occlusion, self-shadowing, and other viewpoint-dependent e�ects. Clearly,a single image-centered representation is inadequate for this purpose. Instead, an object-centered surfacerepresentation is required.Many object-centered surface representations are possible. However, practical issues are important inchoosing an appropriate one. First, the representation should be general-purpose in the sense that it shouldbe possible to represent any continuous surface, closed or open, and of arbitrary genus. Second, it should berelatively straightforward to generate an instance of a surface from standard data sets such as depth maps orclouds of points. Finally, there should be a computationally simple correspondence between the parametersspecifying the surface and the actual 3-D shape of the surface, so that images of the surface can be easilygenerated, thereby allowing the integration of information from multiple images.A regular 3{D triangulation is an example of a surface representation that meets the criteria stated above,and is the one we have chosen for our previous work. In our implementation, all vertices except those onthe edges have six neighbors and are initially regularly spaced. Such a mesh de�nes a surface composed ofthree-sided planar polygons that we call triangular facets, or simply facets. Triangular facets are particularly11



Figure 10: Extruded object of Figure 9 optimized without imposing the constraint that the roof-edgesform 90-degree angles. The initial position was the one shown in Figure 9(a). Note that thecorner in the lower left corner is not properly recovered.easy to manipulate for image and shadow generation; consequently they are the basis for many 3-D graphicssystems. These facets tend to form hexagons and can be used to construct virtually arbitrary surfaces.Finally, standard triangulation algorithms can be used to generate such a surface from noisy real data [Fuaand Sander, 1992, Szeliski and Tonnesen, 1992].Sources of information. A number of information sources are available for the reconstruction of a surfaceand its material properties. Here, we consider two classes of information.The �rst class comprises those information sources that do not require more than one image, suchas texture gradients, shading, and occlusion edges. When using multiple images and a full 3-D surfacerepresentation, however, we can do certain things that cannot be done with a single image. First, theinformation source can be checked for consistency across all images, taking occlusions into account. Second,when the source is consistent and occlusions are taken into account, the information can be fused over allthe images, thereby increasing the accuracy of the reconstruction.The second class comprises those information sources that require at least two images, such as the trian-gulation of corresponding points between input images (given camera models and their relative positions).Generally speaking, this source is most useful when corresponding points can be easily identi�ed and theirimage positions accurately measured. The ease and accuracy of this correspondence can vary signi�cantlyfrom place to place in the image set, and depend critically on the type of feature used. Consequently, what-ever the type of feature used, one must be able to identify where in the images that feature provides reliablecorrespondences, and what accuracy one can expect.The image feature that we have chosen for correspondence (although it is by no means the only one possi-ble) is simply intensity in radiometrically corrected images, for example by �ltering them. Clearly, intensitycan be a reliable feature only when the albedo varies quickly enough on the surface and, consequently, theimages are su�ciently textured.In contrast to our approach, simple correlation-based stereo methods often use �xed-size windows inimages to measure disparities, which will in general yield correct results only when the surface is parallel tothe image plane. Instead, we compare the intensities as projected onto the facets of the surface. Consequently,the reconstruction can be signi�cantly more accurate for slanted surfaces Some correlation-based algorithmsachieve similar results by using variable-shaped windows in the images [Quam, 1984, Nishihara, 1984, Kanadeand Okutomi, 1990, Baltsavias, 1991, Devernay and Faugeras, 1994]. However, they typically use only image-centered representations of the surface.As for the monocular information source, we have chosen to use shading, where shading is the change in12



(a) (b)
(c) (d)
(e) (f)Figure 11: Buildings modeled by entering rough models within RCDE and optimizing them using theextruded-snakes. (a) Rough initial sketches overlaid on one of the images. (b) A view froma di�erent perspective. (c,d,e) Final building outlines overlaid on the three images we usedto perform the 3{D optimization. (f) A view of the buildings from the perspective of (b).image intensity due to the orientation of the surface relative to a light source. The main reason for this isthe fact that shading is most reliable when the albedo varies slowly across the surface; this is the naturalcomplement to intensity correspondence, which requires quickly varying albedo. The complementary natureof these two sources allows us to accurately recover the surface geometry and material properties for a wide13



I I I1 2 3

g1 g2 g3

N

L(a) (b) (c)Figure 12: Mesh representation and computation of the image terms of the objective function: (a)Wireframe representation of the mesh. (b) Facets are sampled at regular intervals; thecircles represent the sample points. The stereo component of the objective function iscomputed by summing the variance of the gray level of the projections of these samplepoints, the gis. (c) Each facet's albedo is estimated using its normal N , the light sourcedirection L, and the average gray level of the projection of the facet into the images.The shading component of the objective function is the sum of the squared di�erences inestimated albedo across neighboring facets.variety of images.In contrast to our approach, traditional uses of shading information assume that the albedo is constantacross the entire surface, which is a major limitationwhen applied to real images. We overcome this limitationby improving upon a method to deal with discontinuities in albedo alluded to in the summary of [Leclerc andBobick, 1991]. We compute the albedo at each facet using the normal to the facet, a light-source direction,and the average of the intensities projected onto the facet from all images. We use the local variation ofthis computed albedo across the surface as a measure of the correctness of the surface reconstruction. Tosee why albedo variation is a reasonable measure of correctness, consider the case when the albedo of thereal surface is constant. When the geometry of the mesh is correct, then the computed albedo should beapproximately the same as the real albedo, and hence should be approximately constant across the mesh.Thus, when the geometry is incorrect, this will generally give rise to variations in the computed albedo thatwe can take advantage of. Furthermore, by using a local variation in the computed albedo, we can deal withsurfaces whose albedo is not constant, but instead varies slowly over the surface.Current implementation. The triangulated 3{D mesh of vertices that represents a surface, S, is ahexagonally connected set of vertices such as the one shown in Figure 12(a). The position of a vertex vj isspeci�ed by its Cartesian coordinates (xj; yj ; zj). The mesh can be deformed by varying these coordinatesto minimize an objective function that includes terms derived from stereo and shading information.The stereo component of the objective function is derived by comparing the gray levels of the points inall of the images for which the projection of a given point on the surface is visible. As shown in Figure12(b), this comparison is done for a uniform sampling of the surface. This method allows us to deal witharbitrarily slanted regions and to discount occluded areas of the surface.The shading component of the objective function is computed using a method that does not invoke thetraditional constant albedo assumption. Instead, it attempts to minimize the variation in albedo across thesurface, and can therefore deal with surfaces whose albedo varies slowly. This term is depicted by Figure12(c).The stereo term is most useful when the surfaces are highly textured. Conversely, the shading term ismost reliable where the surfaces have little or no texture. To account for this phenomenon, we take thecomplete objective function, E(S), to be a weighted average of these two components where the weighting isa function of texture within the projections of individual facets.In general, E(S) is a highly nonconvex function of the vertex positions. To minimize E(S), we use the\snake-type" [Kass et al., 1988] optimization technique described in Section 2.2. We de�ne the total energy14



of the mesh, ET (S), as ET (S) = �DED(S) + E(S) (18)where �D is a weighting coe�cient that decreases as the optimization proceeds and ED(S) is the regularizationterm. In practice, we take ED to be a measure of the curvature or local deviation from a plane at everyvertex. Because the mesh is regular, ED can be approximated using �nite di�erences as a quadratic form[Fua and Leclerc, 1995a] ED(S) = 1=2(XTKX + Y TKY + ZTKZ) ; (19)where X,Y , and Z are the vectors of the x,y and z coordinates of the vertices, and K is a sparse and bandedmatrix. This regularization term serves a dual purpose. First, it \convexi�es" the energy landscape when�D is large and improves the convergence properties of the optimization procedure. Second, in the presenceof noise, some amount of smoothing is required to prevent the mesh from over�tting the data, and wrinklingthe surface excessively.To speed the computation and prevent the mesh from becoming stuck in undesirable local minima, wetypically use several levels of mesh size|three in the examples presented here|to perform the computation.We start with a relatively coarse mesh that we optimize. We then re�ne it by splitting every facet into foursmaller ones and reoptimizing. Finally, we repeat the split and optimization processes one more time.Our speci�c approach has led to a number of important contributions:� Our framework can incorporate cues from many images, even if taken from widely di�ering viewpoints.It accommodates such viewpoint-dependent e�ects as self-occlusion and self-shadowing.� Our technique for doing stereo avoids the constant depth assumption of traditional correlation-basedstereo algorithms. As the Hierarchical Warp Stereo System [Quam, 1984], it e�ectively uses variable-sized windows in the images but does it in a more generic fashion.� Our approach to shape from shading is applicable to surfaces with slowly varying albedo. This is asigni�cant advance over traditional approaches that require constant albedo.� We have proposed a dynamic weighting scheme for combining shape from shading and stereo, anddemonstrated that it leads to signi�cantly better results than using either cue alone.With this purely image-based approach, we have obtained good results on complex surfaces such as thejagged terrain shown in Figure 13. We have also evaluated the performance of our procedure against the\ground truth" supplied to us by a photogrammetrist from Ohio State University for the images of Figure14. In this example, we initialize a coarse resolution mesh by interpolating a correlation map derived usingthe images reduced by a factor of 4. We �rst apply our continuation method to this coarse mesh using thestereo component of the objective function. Next, we increase the resolution of both the images and themesh, reoptimize, and repeat the process once more. At each level of resolution, as the regularization termis progressively turned down, the discrepancy between our surface model and the control points diminishes.In Figure 14(e), we plot the distance of the control points to the surface at the end of each optimizationstep. The �nal error at each level of resolution, denoted by the thick vertical lines, corresponds to an error inmeasured disparity that is smaller than half a pixel. Given the fact that the control points are not necessarilyperfect themselves, this is the kind of performance one would expect of a precise stereo system [G�uelch, 1988].Furthermore, at higher resolutions, we have also shown [Fua and Leclerc, 1995b], that our approach canalso take advantage of the geometric constraints derived from measured 3{D points and 2{D silhouettes,thereby making the reconstruction more robust.4 ConclusionWe have presented object modeling techniques for 2{D and 3{D linear features as well as 3{D surfaces thatrely on analogous parametric models that are extensions of traditional snakes. Using a variety of real imagery,15



(a) (b) (c)
(d) (e) (f)Figure 13: (a,b) A stereo pair of images of the Martin-Marietta Autonomous Land Vehicle (ALV) testsite. (c) Disparity map computed using a correlation-based algorithm. The black areasindicate that the stereo algorithm could not �nd a match. Elsewhere, lighter grays indicatehigher elevations. (d) The initial surface estimate derived by smoothing and interpolationof the disparity map. It is shown as a shaded surface viewed by an observer located abovethe upper left corner of the scene. (e,f) Shaded views of the mesh after optimization.Note that the ridge has become very sharp and that the shadow-casting cli�s visible inthe top portion of the image are recovered. They are clearly visible at the top of (e) andthe bottom right corner of (f).we have demonstrated that the resulting methods allow powerful and exible reconstruction. However intheir current form, they su�er from two limitations:� All these methods are optimization based and require a reasonably good starting point.� At present all objects are optimized independently.In future work, we intend to explore the use of more powerful search techniques to alleviate the �rstproblem to provide our system with a repertoire of constraints that can be used to tie the objects togetherand guide the optimization.References[Baltsavias, 1991] E. P. Baltsavias. Multiphoto Geometrically Constrained Matching. PhD thesis, Institutefor Geodesy and Photgrammetry, ETH Zurich, December 1991.16



(a) (b)
(c) (d)

Stλ

RMS error (meters)

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 
0.2 

0.3 

0.4 

0.5 

0.6 (e) (f)Figure 14: (a,b) An aerial stereo pair (Courtesy of Ohio State University). (c,d) Matched pair of points hand-entered by a photogrammetrist. (e) Plot of the distance, in meters, of the control points of Figure14(c,d) to the surface as the optimization proceeds. The thick vertical lines indicate a change inresolution and the dotted ones an increase in weighting of the stereo component of the objectivefunction. At the highest resolution, an elevation error of 0.2 meters corresponds to an error ofapproximately 0.4 pixels in disparity. (f) Reconstructed surface at the highest level of resolution.[Brechb�uhler et al., 1995] C. Brechb�uhler, G. Gerig, and O. K�ubler. Parametrization of closed surfacesfor 3-d shape description. Computer Vision, Graphics, and Image Processing: Image Understanding,61(2):154{170, March 1995.[Brechb�uhler, 1995] C. Brechb�uhler. Description and Analysis of 3-D Shapes by Parametrization of ClosedSurfaces. PhD thesis, ETH Zurich, R�amistrasse 101, CH-8092 Z�urich, 1995. Diss. ETH No. 10979.[Devernay and Faugeras, 1994] F. Devernay and O. D. Faugeras. Computing Di�erential Properties of 3{DShapes from Stereoscopic Images without 3{D Models. In Conference on Computer Vision and PatternRecognition, pages 208{213, Seattle, WA, June 1994.17
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