
Correlation-Based Tuning of a Restricted-Complexity

Controller for an Active Suspension System
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Abstract

A correlation-based controller tuning method is proposed
for the “Design and optimization of restricted-complexity
controllers” benchmark problem. The approach originally
proposed for model following is applied to solve the distur-
bance rejection problem. The idea is to tune the controller
parameters such that the closed-loop output be uncorre-
lated with the measured disturbance. Since perfect decor-
relation between the closed-loop output and the distur-
bance is not attainable with a restricted-complexity con-
troller, the cross-correlation of these two signals is mini-
mized. This is done iteratively using stochastic approxi-
mation. A frequency analysis of the tuning criterion al-
lows dealing with control specifications expressed in terms
of constraints on the sensitivity functions. Application to
the active suspension system of the Automatic Labora-
tory of Grenoble (LAG) provides a 2nd-order controller
that meets the control specifications to a large extent.

Keywords: Restricted-complexity controller; controller
tuning; correlation approach; active suspension.

1 Introduction

The design of restricted-complexity linear controllers has
drawn wide attention in the control community. Low-order
controllers are usually preferred in industry because the
controller size may be limited by hardware and/or com-
putational requirements. Moreover, simple controllers are
easier to implement, maintain and understand. There are
several ways of arriving at reduced-order controllers [1]. In
the first type of approaches, a high-order controller is first
designed and an optimization procedure used to minimize
a norm of the error between the full-order and reduced-
order controllers. Information regarding the plant model
and the control specifications needs to be considered in the
controller reduction procedure [3, 9]. Another approach
consists of deriving a reduced-order model of the plant on
the basis of which the controller is designed. However, the
controller-design step should consider the unmodeled dy-
namics in order to ensure robustness [16]. A third type of
approaches solves an optimal control problem directly for
the reduced-order controller [10, 2].

Furthermore, the parameters of a restricted-complexity

controller can also be tuned using data collected under
closed-loop operation. The gradient of the criterion can be
computed using additional experiments performed on the
real system, i.e. without using the model of the plant (so-
called model-free approaches) [4]. Alternatively, the gra-
dient can also be estimated using an approximate model
of the plant [15, 7]. In all these approaches, since the
plant model is not used explicitly for control design, the
controller order is not linked directly to the plant order.

Recently, a correlation approach for iterative controller
tuning has been proposed to address the model-following
problem [7, 6, 8]. Instead of minimizing an LQG-like con-
trol criterion, this approach tries to decorrelate the closed-
loop output error (the difference between the achieved and
designed closed-loop outputs) from the excitation signal.
The controller parameters, which are solutions of a corre-
lation equation involving instrumental variables, are com-
puted iteratively using the Newton-Raphson algorithm. In
[6], this method was compared with the closely related IFT
approach and applied successfully to a magnetic suspen-
sion system. The convergence of the controller parame-
ters towards the solution of the correlation equation in
the presence of noise and modeling errors was studied in
[7]. Since perfect decorrelation is not possible in the con-
text of restricted-order controller design, it is natural to
reformulate the design criterion as the minimization of the
cross-correlation function between the closed-loop output
error and the reference signal [8]. A frequency analysis of
the proposed criterion has indicated that the tuning algo-
rithm minimizes the integral of the difference between the
achieved closed-loop transfer function and the reference
model, this difference being weighted by the square of the
reference signal spectrum.

In this paper, the correlation approach is adapted for tun-
ing restricted-order controllers that need to reject distur-
bances in certain frequency regions. Furthermore, a stop-
ping condition based on the statistical properties of the
criterion is proposed. The correlation approach is applied
to solve the disturbance rejection problem for the bench-
mark proposed in this Special Issue of European Journal of
Control [14]. The benchmark problem involves the design
of the simplest controller capable of ensuring good dis-
turbance rejection for an active suspension system. The
control specifications are stated in terms of constraints on
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the sensitivity functions. Although the procedure used
in this paper does not consider specifications in the fre-
quency domain explicitly, these can be met thanks to the
frequency analysis performed in [8]. The two-norm of the
cross-correlation function is minimized using the extended
instrumental variables method.

The main advantage of the proposed tuning approach is
that, asymptotically, the controller parameters are not af-

fected by noise. Though, for the regulation problem, IFT
and the correlation-based approach lead to similar results
when the measurement noise is small, this is no longer true
with a significant amount of noise. Indeed, IFT provides
a trade-off between closed-loop performance and noise re-
duction, while closed-loop performance is the only objec-
tive in the correlation-based approach since it does not
attempt to minimize the effect of measurement noise.

The paper is organized as follows. Section 2 briefly
presents the correlation approach for the regulation prob-
lem and introduces a stopping condition for the iterative
algorithm. A frequency analysis of the tuning criterion is
presented in Section 3. Section 4 describes the application
of this approach to the benchmark problem. Concluding
remarks are given in Section 5.

2 The Correlation Approach

The correlation-based controller-tuning approach was orig-
inally developed for the model-following problem [7, 6, 8].
The idea is to tune the controller parameters such that the
output error between the closed-loop system and the refer-
ence model be uncorrelated with the reference signal. This
way, the closed-loop output is forced to follow as closely
as possible the desired one, and this independently of the
noise characteristics of the plant. The controller param-
eters are solutions of a correlation equation involving in-
strumental variables. This solution is computed iteratively
using the Newton-Raphson algorithm.

2.1 Regulation Problem

In this paper, the case of a restricted-order controller is
considered. Since perfect decorrelation is not possible, the
two-norm of the cross-correlation function will be mini-
mized. The correlation approach is applied to the regula-
tion problem depicted in Fig. 1. Note that this problem
can be considered as a model-following problem with the
reference model equal to zero. Let the measured output of
the plant be described as:

y(t) = G(q−1)u(t) + F (q−1)v1(t) + v2(t) (1)

where q−1 is the backward-shift operator, u(t) the plant in-
put, v1(t) a measured disturbance, v2(t) a zero-mean mea-
surement noise independent of v1(t), G(q−1) and F (q−1)
LTI SISO discrete-time transfer operators. The signals
yp(t) and p(t) denote the plant output and the output of
the disturbance model F , respectively.

The plant is controlled by the controller K(q−1):
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Figure 1: Controlled plant with the measured disturbance v1

and the measurement noise v2

K(q−1) = R(q−1)/S(q−1) (2)

where

R(q−1) = r0 + r1q
−1 + · · ·+ rnR

q−nR

S(q−1) = 1 + s1q
−1 + · · ·+ snS

q−nS = 1 + q−1S∗(q−1)

The controller output can be expressed in regression form
as:

u(t) = −S∗(q−1)u(t− 1)−R(q−1)y(t) = φT (ρ, t)ρ (3)

with the regressor vector φ(ρ, t) and the vector of controller
parameters ρ, both of dimension nρ, defined as:

φT (ρ, t) = [−u(t− 1) · · · − u(t− nS),

−y(t) · · · − y(t− nR)] (4)

ρT = [s1 · · · snS
, r0 · · · rnR

] (5)

2.2 Tuning Criterion

The objective is to tune the controller parameters such
that the feedback controller exactly compensates the effect
of the measured disturbance at the plant output. In other
words, the measured output should ideally contain only
the measurement noise that is uncorrelated with v1(t). Ev-
idently, with a low-order causal controller, perfect decor-
relation of y(t) and v1(t) is not possible. Therefore, it is
natural to formulate the design objective as the minimiza-
tion of some norm of the cross-correlation function of these
two signals.

Let the correlation function f(ρ) be defined as follows:

f(ρ) = E{y(ρ, t)ζ(t)} (6)

where E{·} is the mathematical expectation and ζ(t) a
vector of instrumental variables that are correlated with
the disturbance signal and independent of the measure-
ment noise. The instrumental variables are defined as:

ζT (t) = [v(t+nz), v(t+nz−1), . . . , v(t), . . . , v(t−nz)] (7)

where
v(t) = W (q−1)v1(t) (8)

with W (q−1) being a linear generic filter and nz a suffi-
ciently large integer number. Then, the tuning objective



can be defined as the minimization of the following crite-
rion:

J(ρ) = ||f(ρ)||22 = fT (ρ)f(ρ) =

nz
∑

τ=−nz

R2
yv(τ) (9)

where || · ||2 represents the two-norm and Ryv(τ) is the
cross-correlation function between the filtered disturbance
v(t) and the closed-loop output y(ρ, t):

Ryv(τ) = E{y(ρ, t)v(t− τ)} (10)

Hence, the control parameter vector ρ∗ is given by:

ρ∗ = arg min
ρ

J(ρ) (11)

2.3 Iterative Procedure

Since this problem cannot be solved analytically, a numer-
ical method is considered. The vector ρ∗ is solution of the
following gradient equation:

J ′(ρ) = 2fT (ρ)
∂f(ρ)

∂ρ
= 0 (12)

This problem can be solved by the Robbins-Monro proce-
dure using the following iterative formula [12]:

ρi+1 = ρi − γi [Q(ρi)]
−1 [J ′(ρi)]

T (13)

where γi is a scalar step size and Q(ρi) is a positive defi-
nite matrix. Under the assumption of boundedness of the
signals in the loop, and with a step size tending to zero ap-
propriately fast, this scheme converges to a local minimum
as the number of iterations tends to infinity [8].

The gradient of the criterion involves the expectations of
signals that are unknown and should be replaced by their
estimates from closed-loop data. Let the correlation func-
tion be estimated as:

f̂(ρ) =
1

N

N
∑

t=1

y(ρ, t)ζ(t) (14)

where N is the number of data points. Then, the gradient
of the criterion can be expressed as:

Ĵ ′(ρi) = 2f̂T (ρi)
1

N

N
∑

t=1

ζ(t)
∂y(ρ, t)

∂ρ

∣

∣

∣

∣

ρi

(15)

An accurate value of the gradient cannot be computed
because the derivative of y(ρ, t) with respect to ρ is un-
known. However, an unbiased model-free estimation can
be obtained using one additional closed-loop experiment
as is done in the IFT approach for the case of one-degree-
of-freedom controller [4]. Note that the gradient could also
be computed from a plant model, which could be identi-
fied under open-loop or closed-loop operation, using the
following expression [6]:

∂y(ρ, t)

∂ρ
≈ B̂(q−1)

Â(q−1)S(q−1) + B̂(q−1)R(q−1)
φT (ρ, t) (16)

where B̂/Â is the identified plant model.

In order to improve the convergence speed, Q(ρi) in Eq.
(13) can be chosen as an approximation of the Hessian of
the criterion (Gauss-Newton direction):

Q̂(ρi) =





∂f̂(ρ)

∂ρ

∣

∣

∣

∣

∣

ρi





T

∂f̂(ρ)

∂ρ

∣

∣

∣

∣

∣

ρi

+ λI (17)

where the parameter λ should be chosen so as to ensure
positive definiteness of the matrix Q̂(ρi).

2.4 Stopping Condition

Inspired by the cross-correlation test for model validation
available in the field of identification [13, 11], a stopping
condition for the iterative algorithm is provided in this
subsection.

Let denote the estimate of the cross-correlation between
y(t) and v(t) based on N data points by:

R̂yv(τ) =
1

N

N
∑

t=1

y(t)v(t− τ) (18)

It is shown in [11] that, for N → ∞, the sequence of
random variables

√
NR̂yv(τ) converges in distribution to

the normal distribution with zero mean and covariance
matrix P , i.e.

√
NR̂yv(τ) ∈ AsN (0, P ) ⇒

√

N

P
R̂yv(τ) ∈ AsN (0, 1) (19)

where

P =

∞
∑

k=−∞

Ry(k)Rv(k) (20)

with Ry(k) and Rv(k) being the autocorrelation of y(t)
and v(t), respectively.
Consider the following lemma taken from [13]:

Lemma 1. Let x ∈ AsN (m, P ) be of dimension n. Then

(x−m)T P−1(x−m) ∈ Asχ2(n).

With this lemma, Eq. (19) gives:

N

P

nz
∑

τ=−nz

R̂2
yv(τ) ∈ Asχ2(2nz + 1) (21)

Thus, if χ2
α(2nz + 1) denotes the α-level of the χ2(2nz +

1) distribution, the iteration could be stopped when the
criterion (9) is statistically not different from zero with the
confidence level α:

Ĵ(ρ) =

nz
∑

τ=−nz

R̂2
yv(τ) ≤ P̂

N
χ2

α(2nz + 1) (22)

where

P̂ =

nz
∑

k=−nz

R̂y(k)R̂v(k)



Therefore, if the computed value of Ĵ falls outside the
confidence region, the iteration should be continued. The
stopping condition (22) can also show whether the selected
controller order is appropriate. If the iterative procedure
does not succeed in meeting the stopping condition after a
large number of iterations, one should consider increasing
the order of the controller. On the contrary, reaching the
test threshold “too early” indicates that the order of the
controller may be reduced.

3 Frequency Analysis of the Tuning Criterion

In this section, the frequency characteristics of the
achieved closed-loop system are analyzed. An asymp-
totic frequency-domain equivalent of the tuning criterion
(9) is derived using the relationship between the cross-
correlation and the spectral density functions.

When nz tends to infinity, applying Parseval’s formula to
Eq. (9) leads to:

lim
nz→∞

J(ρ) =
1

2π

∫ π

−π

|Φyv(ω)|2dω (23)

where Φyv(ω) is the cross-spectral density between y(ρ, t)
and v(t).

Moreover, the closed-loop output can be expressed as:

y(ρ, t) = Syp(q
−1, ρ)(F (q−1)v1(t) + v2(t)) (24)

where Syp(q
−1, ρ) is the output sensitivity function of the

closed-loop system defined as:

Syp(q
−1, ρ) =

(

1 + K(q−1, ρ)G(q−1)
)−1

(25)

Thus, from Eqs. (8) and (24), and using the fact that
v(t) and v2(t) are independent, the cross-spectral density
Φyv(ω) reads:

Φyv(ω) = Syp(e
−jω , ρ)F (e−jω)W−1(e−jω)Φv(ω) (26)

where Φv(ω) is the spectrum of the filtered disturbance
signal v(t). Finally, using Φyv(ω) of Eq. (26) in Eq. (23)
gives:

lim
nz→∞

J(ρ) =
1

2π

∫ π

−π

|Syp(e
−jω , ρ)|2|F (e−jω)|2

×|W (e−jω)|2Φ2
v1

(ω)dω (27)

with Φv1
(ω) = |W−1(e−jω)|2Φv(ω) being the spectrum

of v1(t). This equation indicates that the criterion based
on the correlation approach is not affected by the noise
signal v2(t). Furthermore, when W (q−1) = 1 and v1(t) is
white noise with variance 1, the tuning algorithm tries to
minimize the magnitude of the sensitivity function Syp in
the frequency regions where |F (e−jω)| is large.

4 Application to an Active Suspension System

The objective in the benchmark problem is to design a
reduced-complexity controller for the active suspension
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Figure 2: Block diagram of the active suspension system
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Figure 3: Weighting of Syp: Spectrum of the primary
path Φp(ω) = |C(e−jω)/D(e−jω)|Φv1

(ω) (dashed),
magnitude of |W (e−jω)| (dash-dot), and aggregate
weighting |W (e−jω)|Φp(ω) (solid)

system of LAG [14]. The block diagram of the active sus-
pension system is presented in Fig. 2.

The system is excited by the primary force v1(t) generated
by a computer-controlled shaker. The transfer function
C/D between the primary and the residual forces is called
the primary path. The disturbance signal p(t) is the out-
put of the primary path. The output y(t) is the measured
voltage corresponding to the residual force yp(t). The non-
parametric model of the primary path shows that there are
several vibrational modes, with the first mode at 31.47 Hz
and the second mode around 160 Hz being the most im-
portant ones (dashed line in Fig. 3).

The control input u(t) drives a piston that can modify
the residual force. The secondary path is defined as the
transfer function B/A between the control input and the
residual force.

The design objective is to compute a low-order linear
discrete-time controller R(q−1)/S(q−1) that minimizes the
residual force around the first and second vibrational
modes of the primary path while trying to distribute
the amplification over higher frequencies. The control
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Figure 4: Incorporating fixed terms in the secondary path

specifications are expressed as constraints on the out-
put sensitivity function Syp and input sensitivity func-
tion Sup = SypR/S. In addition, since the controller
gain should be zero at the Nyquist frequency, the term
Rfix(q−1) = 1 + q−1 is incorporated in the controller.

The tuning procedure is modified as follows in order to
include the fixed terms Rfix and Sfix in R and S, i.e.
R = R′Rfix and S = S′Sfix: The secondary path model
B/A is augmented with the fixed terms Rfix and Sfix

(Fig. 4). Then, u(t) in (4) is replaced by the input of

the augmented plant, u′(t) =
Sfix

Rfix
u(t). The estimate of

the gradient (16) is calculated by replacing B̂, Â, R and
S with B̂Rfix, ÂSfix, R′ and S′, respectively. Finally,
R′ and S′ are computed using the iterative algorithm and
later multiplied by the fixed terms to obtain the controller
polynomials R and S.

Experiments performed on the real suspension system
showed that the plant varies slightly with time, thereby
reducing the convergence rate of the algorithm. Because of
this and the fact that the number of real-time experiments
available in this benchmark study is limited, a high-order
model of the secondary path (available from the bench-
mark web site [14]) is used to simulate the secondary path
B/A and generate the data needed in this “data-driven”
controller tuning procedure. The same model is also used
to compute the gradient Ĵ ′(ρi) in (15) and Hessian Q̂(ρi) in
(17). Moreover, open-loop experimental data are available
from the benchmark web site, where v1(t) is a PRBS gener-
ated by a 10-bit shift register with data length N = 20000
and the measured signal y(t) corresponds to p(t) + v2(t).
Thus, the model C/D of the primary path is not involved
in the controller tuning procedure.

The following controller structure is used:

K(q−1) =
(r0 + r1q

−1)(1 + q−1)

1 + s1q−1 + s2q−2
(28)

A 2nd-order controller is chosen since it corresponds to
the lowest order still capable of meeting the benchmark
specifications. All the parameters of the controller are
initialized to zero except for r0 = 0.0025. It is also verified
that the initial controller K0 = r0(1 + q−1) stabilizes the
closed-loop system.

Considering the spectrum of the primary path (dashed line
in Fig. 3) and choosing W (q−1) = 1 in Eq. (27), it is evi-
dent that the algorithm will reduce the sensitivity function
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Figure 5: Output and input sensitivity functions of the
closed-loop system: before tuning (dash-dot), af-
ter 3 iterations (dashed), after 8 iterations (thick
solid line), and constraints (thin solid line)

Syp mainly around the first resonant mode. However, in
order to accentuate the higher frequencies, the vector of
instrumental variables is filtered by a 3rd-order high-pass
Butterworth filter with the cut-off frequency of 100 Hz:

W (q−1) =
0.4459− 1.3377q−1 + 1.3377q−2 − 0.4459q−3

1− 1.459q−1 + 0.9104q−2 − 0.1978q−3

The magnitude plot of this filter is presented as the
dash-dot line in Fig. 3, while the aggregate weighting
|C(e−jω)/D(e−jω)||W (e−jω)|Φv1

(ω) of Syp in Eq. (27) is
shown as the solid line. The length of the instrumental
variables vector should be larger than the number of con-
troller parameters to be tuned but much smaller than the
data length. Here, nz = 28 is chosen.

A local optimum is reached after 8 iterations. In all it-
erations, the initial step size γi = 1 is used. When the
tuning procedure provides a controller that destabilizes
the closed-loop system (which is readily verified if a plant
model is available), the step size is simply divided by 2.
If a plant model is not available, the stability test based
on the Vinnicombe gap between two successive controllers
can be performed using the closed-loop data [5]. Note that
destabilizing controllers were frequently found due to the
fact that the underlying open-loop plant has several oscil-
latory modes.

Fig. 5 shows the output and input sensitivity functions
Syp and Sup before tuning (dash-dot), after 3 iterations
(dashed), and after 8 iterations (thick solid line) along with
the constraints (thin solid line) provided in the benchmark
problem. The resulting controller reduces Syp consider-
ably around the first and second resonant modes without
violating the constraints on Sup.
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Figure 6: Closed-loop output and input sensitivity function
estimated from data collected on the experimental
set-up with the final controller (thick line), and
constraints (thin line)

The controller obtained in simulation is implemented on
the experimental set-up and Fig. 6 shows the correspond-
ing sensitivity functions. The output sensitivity function
estimated by spectral analysis slightly violates the con-
straints at some frequencies. This can be explained by
the fact that the model used to generate the data needed
for controller design does not describe the experimental
system very well around those frequencies. Nevertheless,
satisfactory experimental results are obtained using the
2nd-order controller.

5 Conclusions

This paper presents an application of the iterative
correlation-based controller tuning scheme to the “De-
sign and optimization of restricted-complexity controllers
benchmark”. With the assumption that the disturbance
signal can be measured, it has been shown that reduc-
ing the correlation between the disturbance signal and the
output of the closed-loop system is an appropriate ob-
jective for tuning restricted-complexity controllers. This
approach can also be used with systems where the dis-
turbance cannot be measured but there is the possibility
of injecting a known test signal. Though the proposed
controller-tuning algorithm uses data collected in the time
domain, a frequency analysis indicates how to handle the
control specifications expressed in terms of constraints on
the sensitivity functions. The resulting restricted-order
controller provides satisfactory performance both in simu-
lation and real-time implementation for the active suspen-
sion system of LAG.
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