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Surface Modification With Self-Assembled
Monolayers for Nanoscale Replication of

Photoplastic MEMS
Gyu Man Kim, Beomjoon Kim, Maik Liebau, Jurriaan Huskens, David N. Reinhoudt, and Jürgen Brugger

Abstract—A release technique that enables to lift microfabri-
cated structures mechanically off the surface without using wet
chemistry is presented. A self-assembled monolayer of dodecyl-
trichlorosilane forms a very uniform 1.5-nm-thick anti-adhesion
coating on the silicon dioxide surface, on full wafer scale. The struc-
tural layers are formed directly onto the organic layer. They con-
sist here of a 100-nm-thick aluminum film and a high-aspect ratio
photoplastic SU-8 structure. After the microfabrication the struc-
ture can be lifted off the surfacetogether withthe aluminum layer.
This generic technique was used to make a variety of novel struc-
tures. First, aluminum electrodes that are embedded in plastic are
made using lithography, etching and surface transfer techniques.
Second, using a patterned monolayer as defined by microcontact
printing, resulted in a spatial variation of the surface adhesion
forces. This was used to directly transfer the stamped pattern into
a metal structure without using additional transfer etching steps.
Third, the monolayer’s ability to cover surface features down to
nanometer scale was exploited to replicate sharp surface molds into
metal coated photoplastic tips with 30-nm radii for use in scan-
ning probe instruments such as near-field optical techniques. The
advantage compared to standard sacrificial layer techniques is the
ability of replication at the nanoscale and the absence of etchants
or solvents in the final process steps. [672]

Index Terms—MEMS, nanoscale, replication, self-assembled
monolayer (SAM), SU-8.

I. INTRODUCTION

SURFACE micromachined features in microelectromechan-
ical systems (MEMS) are built up, layer by layer, on the

surface of a substrate. The functional structures are then typi-
cally released by selective removal of a sacrificial layer using a
wet etch step to obtain freestanding movable parts of a microac-
tuator device [1]–[3].
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Sometimes, however, wet chemistry may induce manufac-
turing and process design drawbacks. One problem for example
is the risk of permanent attachment of slender structures to
the underlying substrate after the final rinsing and drying
step. Other potential problems are mainly the etch selectivity
between the sacrificial and structural layers, and furthermore
the risk of surface contamination, in particular when chemically
active surfaces for (bio)chemical sensor or microfluidic devices
are constructed.

Dry-etchable organic layers have also been introduced in
MEMS fabrication techniques to be used as a sacrificial layer
[4], [5]. The absence of fluidics prevents release-related stiction
and eliminates furthermore chemical cross-contamination. In
another application, the grafting of densely packed organic
molecules on microstructure surfaces is used to enhance the
lubrication between moving MEMS parts [6], which may also
be useful as a release layer.

An entirely different method of constructing surface micro-
machined devices completely detaches the individual parts from
the surface to be used as stand-alone MEMS parts. In this case
the surface only serves as support material, which is often pre-
structured with etched mold features that are to be replicated
into the released devices. The substrate wafer containing the
mold is later completely dissolved by wet or dry etching. For
instance silicon nitride cantilever probes for atomic force mi-
croscope (AFM) featuring nanometer sharp pyramidal tips are
microfabricated in large volumes using such a wafer-dissolving
method [7].

An alternative way would be to use deposited or grown sac-
rificial layers between mold and functional layer. However, the
typically 1- m-thick sacrificial layers which are needed to allow
a high lateral underetch rate, are not suitable for nanoscale repli-
cation since the additional layer smoothens the sharp mold and
prevents accurate replication at the required scale (10 nm). Only
very recently, a novel approach for low-cost wafer-scale fabrica-
tion of AFM probes and probe cassettes has been demonstrated
without a wafer-dissolving step. The probes were constructed by
using photoplastic material (EPON-SU-8) as a functional layer
and surface released by using an ultra-thin (20-nm) wet-etched
sacrificial Al layer, yielding tip radii in the order of 30 nm [8].

The interest of using molding processes for micro- and
nanoscale device fabrication is obvious since it allows simul-
taneously high-resolution, low-cost processes and wafer-scale
compatibility. For instance, in the field of lab-on-the-chip
devices [9] with chemically functionalized surfaces, or in
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the field of nanoelectromechanical systems (NEMS) [10]
with fragile mechanical elements, it would be preferable to
use release techniques that eliminate wet-processing steps
totally. Dry-releasing a surface micro/nanofabricated device
with patterned metal electrodes on the bottom side which are
protected during the process, would enable the design and
integral manufacturing of novel devices with functional metal
electrodes and wiring, on the bottomand on the top side
of, e.g., thin films. For instance, metallic nanowires can be
transferred by mechanical lift-off from a graphite surface and
are embedded in a polystyrene film, as recently shown by [11].

In view of making this technique available for silicon micro-
fabrication processes, we developed a release technique using
a self-assembled monolayer (SAM) on silicon dioxide, which
serves as anti-adhesion layer between functional structures,
which are then separated by mechanically peeling them off
the surface [12]. Interestingly, the SAM that is covered by a
metallic and other functional layer provides enough stability
to support most steps typically involved in MEMS processing.
Our approach differs from other known methods of using
organic sacrificial layers including the grafting technique, since
the sacrificial organic layer is only 1.5 nm thick. This is the
basic condition for our application where we aim at replicating
surface features down to the nanometer scale. A conformal
coverage of surface features at this length scale is therefore a
prerequisite, and we will demonstrate that our technique en-
ables, e.g., the integral construction of functionalized elements
with nanoscale features as required for advanced scanning
probe instruments. In particular, novel nanomolded transparent
photoplastic probes for the scanning near-field optical micro-
scope (SNOM) have been made by the new technique [13].

The surface modification with the self-assembled monolayer
method is generic and might allow the construction of a variety
of novel surface microfabricated devices, including high-aspect
ratio plastic devices with embedded micro- and nanoscale metal
patterns. Particularly interesting is to use the dry-mechanical
lift-off technique onpatternedSAM layers, defined by micro-
contact printing ( CP) [14]. We will show that it allows todi-
rectly transfer the SAM pattern into a metal structure without
additional transfer steps. In this paper we will discuss details on
the process steps. First a brief description on the SAM formation
on planar and pre-structured silicon dioxide surfaces is given,
then details on metal layer formation on the SAM and patterning
by lithography, on the processing of photoplastic EPON-SU-8,
and finally on mechanical release, are provided.

II. PROCESSDETAILS

A variety of process combinations using a SAM as a sacri-
ficial layer are possible and have been studied depending on
the final device aimed at. We performed several case studies to
build up a knowledge base for further process design and fab-
rication sequences enabling novel devices to be made. In par-
ticular, we have studied SAM formation on planar and prestruc-
tured surfaces. We have used homogenous and patterned SAMs,
and combined them with patterned and nonpatterned Al layers.
We also analyzed combinations thereof. An overview of dif-

ferent cases and combinations involving a SAM release layer,
an Al metal layer and an SU-8 plastic MEMS device is shown
in Fig. 1. Case 1 describes the situation of a planar surface that
is homogeneously coated with an SAM and a patterned Al layer
to release the device with embedded metal electrodes. Case 2
shows a planar surface with an SAM structured byCP, and an
unstructured thin Al film, which is disrupted upon mechanical
release to transfer the adhesion into a metal pattern. And finally,
Case 3 illustrates an oxidation-sharpened pyramidal mold cov-
ered down to the apex by the SAM, then covered by Al and a
transparent SU-8 probe that is subsequently released from the
mold with the Al layer attached. In principle, other variations
between the cases are possible but are not presented here.

A. Self-Assembled Monolayer (SAM) Formation

Organosilicon derivatives RSiX , where X is chloride or
alkoxide are well known to form SAMs on hydroxylated sur-
faces [15], [16], [17]. In our case we start with a (100) single
crystal silicon wafer that is covered by a 300-nm-thick thermally
grown silicon dioxide SiO layer. Then, a 1.5-nm-thick SAM
is formed on the SiOlayer by immersing the wafer for about
2 hours into a solution of 5–10 10 M dodecyltrichlorosi-
lane(DTS) in dry toluene. During this time the process forms a
self-assembled network of molecules that are connected to the
surface and to each other by covalent bonds. The main observa-
tion of a compact monolayer is a drastic reduction of the surface
wettability, which is measured by contact angle goniometry. Ad-
vancing contact angles of 112indicated the hydrophobic na-
ture of the prepared layers. A low hysteresis of 17between the
advancing and receding 95contact angles showed the dense
packing of SAMs. For comparison, SAMs of 3-aminopropyltri-
ethoxysilane (APTES) were also prepared. APTES is forming
more hydrophilic layers having an advancing contact angle of
67 . The application of different types of monolayers enables
the tuning of the surface properties, such as wettability and ad-
hesion, on a wafer scale. SAMs formed by alkyltrichlorosilanes
(such as DTS) are stable against detergents and organic solvents
and they withstand also acidic solutions, whereas basic condi-
tions may deteriorate the monolayers. The present study applies
SAMs of DTS as nonadhesive layers to reduce the adhesion be-
tween metal and wafer and to allow mechanically lifting a func-
tional micromechanical device off the surface without release
layer etching.

Patterned SAMs of dodecyltrichlorosilane were prepared
following the procedure developed elsewhere [14], [18]. It
involved the preparation of a polydimethylsiloxane (PDMS;
Sylgard 184) stamp patterned with 5-m-wide lines, the inking
of the stamp with the above described solution of DTS in
toluene under a dry nitrogen atmosphere, and the printing of
this stamp (1 min) on the oxidic surface of the silicon wafer.
Hereafter, the wafers were washed with toluene and ethanol,
and dried in a nitrogen stream.

B. Deposition and Patterning of Aluminum on SAM

The wafers are then coated by a thin metal layer directly onto
the SAM. We used typically aluminum (Al) in a standard resis-
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Fig. 1. Overview and process flow of studied “SAMs meet MEMS” experiments. (a) Nanomold making and SiOgrowing; (b) SAM coating; (c) metal deposition
and patterning; (d) SU-8 process; (e) lift-off. CASE 1: Photoplastic MEMS with flat, embedded electrodes fabricated on a planar surface with homogenous SAM
coating. CASE 2: For transferring a SAM pattern made by�CP directly into a thin Al film by mechanical layer disruption. CASE 3: Replication of a photoplastic
near-field optical probewith Al coating from an oxidation-sharpened mold. In principle, other variations of these cases are possible but are not presented here.

tive evaporation tool, but any other metal such as gold, chrome,
etc., is possible. The distance between the evaporation source
and the substrate was 300 mm and the base pressure was 6
10 mbar. Deposition time was typically3 min for 100-nm-
thick layers. Estimated temperature at the sample surface was
below 50 C. The Al layer (on the SAM) was then patterned
by standard contact mode microlithography using UV exposure,
followed by wet Al etching using phosphoric acid and resist re-
moval. No peculiarities were observed during these steps, indi-
cating that the SAM is not affecting the Al film processing.

C. EPON SU-8 Process

For the construction of the plastic MEMS devices we used
EPON SU-8 because of its outstanding properties allowing
high-aspect ratio structures to be made with near-UV exposure
equipment [19], [20], [21]. In a single spin the negative,
epoxy type, near-UV (365 nm) photoresist can be built-up to

a thickness up to 500m having aspect ratios up to 25. The
SU-8 process steps are performed directly on the SAM/Al
double-layer. A schematic illustration of the resulting sandwich
layer consisting of SiO/SAM/Al/SU-8 is also shown in Fig. 1.
Because of its capacity to fill surface features very conformal
down to the nanometer range, SU-8 is an excellent material for
novel scanning probe instruments. Furthermore, due to its high
transparency, it can be used for optical applications (Optical
MEMS) and nanooptical devices (SNOM).

III. RESULTS

A. Mechanically Releasing the Photoplastic SU-8 With Al
Pattern (Case 1)

Because of the low adhesion between the Al and the sur-
face induced by the SAM as molecular “nanocarpet” the pho-
toplastic structure can easily be detached from the silicon wafer
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(a) (b)

(c) (d)

Fig. 2. Results of Case 1. (a) SEM image of a released photoplastic structure with patterned Al layer. (b) Optical microscope image using bottom-side illumination
showing the transparent (SU-8) and opaque (Al) regions, the illuminated squares are 5�m� 5�m. (c) Atomic force microscope image showing a 15-�m� 15-�m
section. (d) Line scan across the checkboard pattern shows that the Al pattern is embedded in the SU-8. The ripples in the SU-8 result from plastic deformation
during the mechanical release step.

by means of microtweezers. Fig. 2(a) shows a scanning elec-
tron microscope (SEM) image of a released photoplastic struc-
ture with a patterned Al layer. The optical microscope image in
Fig. 2(b) using bottom-side illumination shows clearly the open
(SU-8) and covered (Al) pattern. There are two unique assets
to this technique: first the Al pattern is embedded in the SU-8
and, second, the metal surface is very smooth with less than 0.8
nm mean surface roughness as measured by AFM. It therefore
allows fabrication of ultra-flat electrode structures, which be-
come increasingly important for nano-scale and molecular elec-
tronics. The AFM scan image and corresponding cross sectional
analysis over a 100-nm-thick and 5-m-sized lithographic Al
pattern are shown in Fig. 2(c) and (d). The missing pads in the
pattern are due to a lithographic and etching defect, and not
due to the release step. The ripples in the SU-8 are due to the
plastic deformation during mechanical release step using the mi-
crotweezers.

B. Direct Formation of a Metal Pattern on Photo-Plastic
Using a Patterned SAM (Case 2)

We studied the mechanical release technique not only on
plane SAMs but also on patterned monolayers as they can be
formed by CP. In this situation, the surface adhesion force
between the Al layer and the surface varies according to the

spatial variation of the SAM. In other words, the part of the Al
thin film situated on top of the SAM nanocarpet, has a weaker
adhesion to the surface than to the SU-8 structure and is hence
lifted off the surface together with the SU-8. The part of the
Al film directly in contact with SiO surface adheres stronger
to the surface than to the SU-8, and therefore remains on the
surface. During the release step the thin Al film mechanically
disrupts according to the SAM pattern layout. Fig. 3(a) shows
a scanning electron micrograph of the metal pattern on the
SiO surface after mechanical rupture of a 20-nm-thick Al
film. Due to a specific one-directional pull-off movement, one
of the edges is less defined than the other. An AFM scan image
and single line scan is shown in Fig. 3(b). The 5-m-large Al
lines are still attached to the silicon dioxide where it was not
in contact with the stamp and therefore remaineduncoatedby
the SAM. The single-sided poor edge definition is attributed to
directional forces occurring during the lift-off step. In order to
improve the edge definition and to reduce lateral dimensions,
further systematic experiments are needed. The presented
results show that this technique enables to directly transfer a
structured SAM pattern into a corresponding metal structure
without intermediate transfer steps. Thereby, the metal pattern
on the two separated surfaces is complementary in its shape.
The resulting thin metal pattern can be used directly or could
form a robust mask for subsequent postprocessing such as
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(a) (b)

Fig. 3. Results of Case 2: A�CP SAM pattern (stripes of�5 �m width) has been coated with 20-nm-thick Al and 150-�m-thick SU-8. Mechanical removal
of the composite SU-8 blockwith the attached Al results in patterned disruption of the thin Al layer according to the layout of the patterned SAM layer, which
determines locally the adhesion to the surface. This allows to directly transfer a�CP SAM pattern into a metal pattern without additional process steps. (a) Shows
an SEM and (b) shows an atomic force microscope image including a single line scan surface roughness measurement. The poor edge definition is attributed to
the directional mechanical rupture of the thin Al film during lift-off.

dry etching or plating. Further studies need to be done to
understand the mechanism upon rupture of the thin metal film
and also to quantitatively understand the adhesion forces.

C. Low-Cost Photoplastic Probe for Scanning Near-Field
Optical Methods (Case 3)

The combination of smooth and nanometer precise separation
of metallized SU-8 structures have been used together to de-
velop a nanomold technique for the integrated microfabrication
of scanning near-field optical microscopy (SNOM) probes. The
novel probe is composed of a light-guiding pyramidal tip (SU-8)
covered by an opaque layer (Al). A nanoscale aperture at the
tip apex is subsequently made by focused ion beam (FIB). This
process is adapted from [8] for low-cost photoplastic atomic
force microscope probes and modified here to be able to release
the SU-8 nanoprobe from the mold together with the Al layer.
A reproducibly microfabricated probe that is microassembled
and attached to an optical fiber is shown in Fig. 4. The tip has a
curvature radius of about 30 nm as lifted-off from an oxidation
sharpened silicon dioxide nanomold.

IV. CONCLUSION

Ultrathin organic self-assembled monolayers were used to
functionalize surfaces on wafer level prior to a replication and
demolding processes using functional metal and high-aspect

ratio photoplastic layers. Our presented technique is useful for
a variety of MEMS related applications, where functionalized
integrated probes, and double side patterned MEMS structures
are relevant. The unconventional method to define first metal
patterns before coating them with a photoplastic and then
to lift the structure off the surface, allows electrodes to be
made on both sides of thin film structures, the bottom-side
pattern furthermore being embedded. In addition, since the
metal is not exposed to environment (after being coated with
the photoplastic) until the last release step, would allow to
define clean metal surfaces as they become more and more
relevant when interfacing structures at the scale of biological
and molecular scales. Here, self-assembled monolayers are
used as a sort of nanocarpet to reduce adhesion between a
metal layer and the surface. Our technique enables furthermore
to directly transfer a CP SAM pattern into a metal structure
without using additional etch steps, which makes it another
variation of a low-cost patterning technique. A more profound
and quantitative understanding of the adhesion forces involved
between the organic molecular monolayer , the silicon dioxide
and the metal film is necessary to make further use of the
technique. One of the major advantages shown in this paper
is the demonstration that the SAM allows to replicate surface
mold structures down to nanometer scale, which will allow the
design and fabrication of novel functionalized tip sensors for
scanning probe methods.
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Fig. 4. Results of Case 3. Microfabricated photoplastic SNOM probe microassembled to an optical fiber. The Al layer forms an integral part of the probeand has
been made using the combined SAM/MEMS process Case 3. A closeup of a replicated sharp tip with 30 nm tip radius demonstrates the capability of nanoscale
replication using the thin SAM layer.
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