
From a Static Impossibility to an Adaptive Lower Bound:
The Complexity of Early Deciding Set Agreement

Eli Gafni
Department of Computer

Science
UCLA

eli@cs.ucla.edu

Rachid Guerraoui
School of Computer and
Communication Sciences

EPFL

rachid.guerraoui@epfl.ch

Bastian Pochon
School of Computer and
Communication Sciences

EPFL

bastian.pochon@epfl.ch

ABSTRACT
Set agreement, where processors decisions constitute a set
of outputs, is notoriously harder to analyze than consen-
sus where the decisions are restricted to a single output.
This is because the topological questions that underly set
agreement are not about simple connectivity as in consen-
sus. Analyzing set agreement inspired the discovery of the
relation between topology and distributed algorithms, and
consequently the impossibility of asynchronous set agree-
ment.

Yet, the application of topological reasoning has been
to the static case, that of asynchronous and synchronous
tasks. It is not known yet for example, how to characterize
starvation-free solvability of non-terminating tasks. Non-
terminating tasks are dynamic entities with no defined end.
In a similar vain, early deciding synchronous set agreement,
in which the number of rounds it takes a processor to decide
adapts to the actual number of failures, falls in this category
of dynamic entities.

This paper develops a simulation technique that brings to
bear topological results to deal with the dynamic situation
that arises with early decisions. The novelty of the new
simulation is the ability of simulators to look back at the
transcript of past rounds of the simulation to influence their
current behavior.

Using our new technique, we not only re-derive past re-
sults, but we propose and prove a lower bound to syn-
chronous early stopping set agreement. We then provide
an algorithm to match the lower bound. Our technique uses
the BG simulation, in the most creative way it was used
to-date, to obtain a rather simple reduction from a static
asynchronous impossibility. This reduction is a simple al-
ternative to yet unknown topological argument, and in fact
may suggest the way of finding such an argument.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05, May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; C.4 [Performance of
Systems]: Fault tolerance; H.3.4 [Information Storage
and Retrieval]: Systems and Software—Distributed sys-
tems

General Terms
Algorithms, Theory

Keywords
Set agreement, early decision, simulation, reduction

1. INTRODUCTION
Results about the complexity of set agreement are intrigu-

ing, as they present an intrinsic trade-off between the num-
ber of processors in a system, the degree of coordination
that these processors can reach, and the number of failures
that are tolerated [7]. The complexity of early deciding [9]
set agreement is even more intriguing as it brings to the pic-
ture the number of failures that actually occur in a given
computation.

Set agreement is a generalization of the widely studied
consensus problem [11]. In set agreement, each processor is
supposed to propose a value, and eventually decide on some
output that was initially proposed, such that every correct
processor eventually decides (just like in consensus). Pro-
cessors are restricted not to decide on more than k distinct
outputs. We talk about k-set agreement, and consensus is
the special case where k = 1.

Set agreement was introduced in [6] where it was conjec-
tured that, in an asynchronous model, the problem has a
solution if and only if strictly less than k processors may
crash. (In an asynchronous model of distributed computa-
tion, (1) processors execute the algorithm assigned to them
unless they crash, in which case they stop all their activi-
ties and they are said to be faulty (not correct), as well as
(2) there is no bound on processor relative speed and mes-
sage communication delay.) This conjecture has sparked a
fruitful line of research, applying algebraic topology argu-
ments to distributed computing [3, 14, 17]. After proving
the conjecture, researchers applied topological arguments to
prove a lower bound on the complexity of set agreement in
the synchronous model [7, 12, 13]. (In a synchronous model
of distributed computation, processors execute in a lockstep

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147909625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

manner, moving incrementally from a round to the next, and
exchanging messages in every round; if a processor p does
not receive a message from a processor q in a round r, then
no processor ever receives any message from q in any sub-
sequent round r′ > r.) In short, the result states that any
synchronous k-set agreement algorithm that tolerates t fail-
ures (where t < N and N is the total number of processors
in the system) has at least one run where at least one correct
processor does not reach a decision before round �t/k� + 1.
This lower bound does not however say much about the ex-
istence of algorithms that would expedite a decision in runs
where f (f < t) failures actually occur. In particular, one
would expect that, in runs where few failures occur, a deci-
sion can be reached earlier than in those with more failures.
Roughly speaking, early deciding algorithms are those that
have that adaptive flavor: their efficiency depends on the ef-
fective number of failures that occur in a given computation,
rather than (only) on the (total) number of failures that can
be tolerated [9]. In practice, failures rarely happen, and it
makes sense to devise algorithms that decide earlier when
fewer failures occur. For consensus, a significant efficiency
improvement has been established when considering the ef-
fective number of failures [5, 10, 15]. In particular, it was
shown that for any integer f ≤ t, any consensus algorithm
has a run with at most f failures in which some processor
decides not earlier than in round min(f +2, t+1), and there
is an algorithm where all correct processors decide by round
min(f + 2, t + 1) for all f [5, 15].

Here we consider set agreement, yet even for consensus,
the early deciding synchronous lower bound is involved. The
consensus bound has been argued recently [15] in an ad-hoc
manner through similarity between computations, rather
than by using the more modern methods developed with
the emergence of the topological techniques [3, 4, 7, 14].

This difficulty is not surprising. Early decision argumen-
tation is evocative of the analysis that is called for when
arguing one-shot vs. long-lived object implementations [2].
The issue there is whether a processor can obtain an output
in face of continual arrival and departure of other proces-
sors. As to-date, the topological method has not helped
in resolving this matter. The topological method typically
characterizes the topological structure of views of processors
at the end of the computation, and has not been adapted
yet to deal with evolving computation. The early decision
question seems to fall into the category of evolving dynamic
computations. Hence, the lack of lower bound for early de-
ciding set agreement, and the involvement of the early de-
ciding synchronous consensus lower bound.

This paper proposes to deal with the dynamic situation of
early decision in a round-about way, rather than through a
head-on attack. It does not apply topology directly. Rather,
similar to [12] which uses algorithmic reduction, it reasons
about the dynamics of the synchronous computation through
reduction. Unlike [12] where the simulation proceeds for-
ward without “looking back”, here we propose a simulation
technique using the BG-agreement protocol [3, 4]. This al-
lows simulators to go back and look at the transcript of
the simulation and by that allows us to argue about the
dynamics of the computation rather than just its end. In-
terestingly, even if the transcript is expored in the more
abstract shared memory model, the lower bound we derive
is for message-passing model.

Our result supports the tradition in computer-science that

once few cornerstone impossibility or complexity results have
been proved using direct arguments, from there on one should
use reductions rather than argue anew. In our distributed
computing context, this translates into a minimal usage of
topological techniques. In the same vain that one proves
NP-completeness by reduction rather than rehashing Cook’s
proof of the SAT NP-completeness [8].

Nevertheless, it is intriguing to understand the analogue
of our simulation in the pure topological domain. Unfor-
tunately, our experience shows that the distributed domain
is loaded with semantics and interpretations and that con-
sequently finding the topological analogue may not be an
easy undertaking. On the encouraging side, we hold the
hope that the technique we present in this paper will prove
useful in arguing about non-terminating tasks.

The rest of the paper is organized as follows. Section 2
gives some preliminaries about distributed computing mod-
els that are needed to state and prove our results. Section 3
states and proves our lower bound result. Section 4 presents
our optimal early deciding algorithm.

2. PRELIMINARIES
In the following we present the main elements of the syn-

chronous message-passing model, in which we state the lower
bound and design our optimal algorithm, Then we present
the asynchronous shared memory model, which we use for
the reduction in our lower bound proof. We also briefly recall
the set agreement problem, and finally the BG-agreement
protocol, the simulation technique that underlies our lower
bound proof.

2.1 The Synchronous Message-passing Model
We consider a set of N = n+1 processors Π = {p0, . . . , pn}.

Processors communicate by message-passing. Communi-
cation channels are reliable. Processors execute in a syn-
chronous, round-based model [16]. A run is a sequence of
rounds. Every round is composed of three phases. In the
first phase, every processor broadcasts a message to all the
other processors. In the second phase, every processor re-
ceives all the messages sent to it during the round. In the
third phase, every processor may perform a local computa-
tion, before starting the next round. Processors may fail
by crashing. A processor that crashes does not execute any
step thereafter, and is said to be faulty. Processors that do
not crash are said to be correct. When processor pi crashes
in round r, a subset of the messages that pi sends in round
r (possibly the empty set) is received by the end of round
r. A message broadcast in round r by a processor that does
not crash in round r is received, at the end of round r, by
every processor that reaches the end of round r. We say that
a processor pi sees f crashes at the end of any round r, if
pi receives messages from all processors but f . We consider
that there are at most t < N processors that may fail in
any run. The state of a processor pi, at the end of round
r, consists in the content of its local memory, including the
messages received in each round r′ ≤ r, as well as the local
variables pf pi.

2.2 The Asynchronous Shared Memory Model
We prove our result by reducing computations in the syn-

chronous message-passing model, recalled above, to compu-
tations in the more abstract asynchronous shared memory
model, which we recall here. For clarity reasons, proces-

sors are called simulators in the asynchronous shared mem-
ory model. Precisely, we consider a set of k + 1 simulators
{sim0, . . . , simk}. Simulators communicate through asyn-
chronous shared memory. In the asynchronous shared mem-
ory model, there exists no bound on the processor relative
execution speed. Shared memory is organized in cells (some-
times called registers), where each memory cell may con-
tain an infinite number of bits. Cells of the shared memory
support three operations: the write(v) operation atomically
writes value v into the cell; the read() operation atomically
returns the content of the cell; the snapshot() operation re-
turns an atomic view of all the cells (i.e., at a certain point
in time between the invocation to the operation and the re-
turn of the operation) [1] (the snapshot operation may be im-
plemented from read and write operations in asynchronous
shared memory [1]). Any cell may be written by a single
simulator, and read by all of them. To simplify the presen-
tation, we assume in the following that after executing an
operation snapshot(args), the variables args are accessible by
the simulator in its local memory with the content as by the
time of the snapshot() operation.

Without loss of generality, we consider that the simulators
execute full-information protocols in shared memory [14]. In
a full-information protocol, any simulator simi writes its en-
tire state into a memory cell, whenever simi writes anything
into this cell. Any simulator that later reads the cell reads
the entire history of the states of simulator simi.

2.3 The k-Set Agreement Problem
We recall here the k-set agreement problem. Each pro-

cessor proposes a value v from a set of inputs V , and is
supposed to eventually decide on an output v′ of V , such
that:

Validity: every output is a proposed value,

k-Set agreement: there are at most k distinct outputs,
and

Termination: every correct processor eventually decides
on an output.

Solving k-set agreement in a wait-free manner means that
every correct processor eventually decides (no matter how
many processors fail). Wait-free k-set agreement is proved
impossible in an asynchronous shared memory model of k+1
processors [3, 14, 17].

2.4 The BG-Agreement Protocol
In our lower bound proof that follows, we make extensive

use of the BG-agreement notion [3, 4]. For completeness and
self-containment of our lower bound proof we briefly review
this notion here.

A BG-agreement protocol is a distributed algorithm in the
asynchronous shared memory model. Basically the protocol
consists of a wait-free code, with the exception of the last
statement of the code, which is a wait statement.

The BG-agreement protocol is an election protocol. It
elects one of the participating simulators, which is called
the winner. Consequently, if each participating simulator
writes a proposal in shared memory before starting the pro-
tocol, the protocol decides on one of the proposals. The
protocol is guaranteed to elect a leader when all participat-
ing simulators arrive at the wait statement While waiting for

1: in shared memory:
2: vi ∈ V, init ⊥
3: xi ∈ {true, false}, init false
4: Si ⊆ {0, . . . , n}, init ∅

5: procedure BGpropose(v, ∗result)
6: vi := v
7: xi := true
8: snapshot(x1, . . . , xn)
9: Si := { j | xj = true, 0 ≤ j ≤ n }

10: do {The do loop is the wait statement}
11: snapshot(S0, . . . , Sn)
12: until ∀j ∈ Si : Sj
= ∅
13: winner := min(Sj), where j ∈ Si and ∀k ∈ Si : |Sk| ≥

|Sj |
14: ∗result := vwinner

Figure 1: BG-agreement protocol (code for simula-
tor simi)

other simulators to reach the wait statement, the outcome
of the election may not be known and, in our terminology,
the BG-agreement is not resolved. (Note that simulators
do not know in advance which simulators will participate).
Consequently, if the BG-agreement is not resolved, one of
the participating simulators must be in the middle of the
code rather than at the wait statement (we say that this
simulator is blocking the BG-agreement). Thus, if simula-
tors that are waiting time-share and execute other protocols
while waiting, and the BG-agreement is not resolved, we can
conclude that at least one simulator does not participate in
other protocols.

An instantiation of the BG-agreement protocol is illus-
trated in Figure 1. Variables vi, xi and Si (for any 0 ≤ i ≤
n) are in shared memory, written by simulator simi and read
by all. The ∗ in front of the parameter result indicates an
output parameter. The wait statement spans over lines 10
to 12. A simulator proposes a value v to a BG-agreement
instance by invoking BGpropose(v, result) and expects the
result of the agreement to be stored in local variable result.

The intuitive idea underlying how the BG-agreement pro-
tocol goes is as follows: a simulator writes its proposed value
and its identifier in shared memory (we say that the simu-
lator “registers”), takes a snapshot of the registered simu-
lators, and writes its snapshot into shared memory. The
simulator then continuously takes snapshots of the shared
memory, until all the registered simulators have written their
snapshots into shared memory. The simulator then returns
the value of the simulator with the smallest identifier in the
smallest set corresponding to the snapshot of a simulator.

3. THE LOWER BOUND

Theorem 1. For any integer f ≥ 0 there is no algo-
rithm C(k, f) that solves k-set agreement in a synchronous
message-passing model, under the following conditions:

1. In runs in which eventually no more than k−1 proces-
sors fail in each round, eventually every correct pro-
cessor decides.

2. A processor that sees f failures for some fixed f , de-
cides at the latest after �f/k� + 1 rounds.

1: In shared memory:
2: stater,j , init ⊥
3: FinalFaultyr,j , init ∅, r ≥ 1, 0 ≤ j ≤ n

4: procedure Simulate(C, f)
5: r := 0, Correct := Π
6: { {Execute two coroutines in parallel}
7: ResolveInputs() {Coroutine 1: the simulation}
8: for r := 1 to ∞ do
9: r := +1

10: Execute Rr,1

11: Execute Rr,2

12: SimulateRound(C, r)
13: } || { {Coroutine 2: finding a decision}
14: for scan := 1 to r do
15: if ∃pj ∈ Π : statescan,j = “failed” then
16: Correct := Correct − { pj }
17: if ∃pj ∈ Π : statescan,j = “decided v” then
18: decide v
19: else if ∃pl ∈ Π : statescan,j = “killed” then
20: add or subtract messages to pl from faulty processors to have exactly f failures
21: re-simulate C(k, f) with the new messages to pl; pl decides on v
22: decide v
23: else if |Correct | ≤ N − f then
24: select the faulty processor pl from which all correct
25: processors receive a message in round scan
26: add or subtract messages to pl from faulty processors to have exactly f failures
27: re-simulate C(k, f) with the new messages to pl; pl decides on v
28: decide v
29: }

Figure 3: Simulation of algorithm C (code for simulator simi)

BG-agreement in Rr,1

Purpose agree upon the state of a processor
pj at the beginning of round r + 1
(i.e., whether pj crashes in round r
and, if not, which messages pj re-
ceives in round r)

Input values “failed”, “pj receives messages from
all processors in a set correct ⊆ 2Π”

BG-agreement in Rr,2

Purpose agree upon a correct processor at
the beginning of round r + 1

Input values “no processor”, “kill pl ∈ Π”

Figure 2: Series of BG-agreements in Rr,1 and Rr,2

Theorem 1 generalizes the result of [5, 15] on early deciding
consensus. Indeed taking k = 1 in the above theorem leads
to the early deciding lower bound of consensus.

The proof is by contradiction and the main idea is to re-
duce the problem of solving wait-free k-set agreement in the
asynchronous shared memory model to an algorithm C(k, f)
solving k-set agreement and satisfying the two conditions of
Theorem 1. The impossibility of the former problem [3, 14,
17] implies the impossibility of the later. In short the re-
duction consists in simulating, with algorithm C(k, f), an
execution of an algorithm in asynchronous shared memory

1: procedure ResolveInputs()
2: for each pj ∈ Π do
3: BGproposej,0(i, state1,j)

Figure 4: Resolving inputs of algorithm C (code for
simulator simi)

1: procedure SimulateRound(C, r)
2: execute round r of C using stater,0, . . . , stater,n:
3: • if a processor pj decides on a value v, then

stater+1,j := “decided v”
4: • otherwise generate the content of the messages to

be sent in round r + 1

Figure 7: Simulating the code C (code for simulator
simi)

that wait-free solves k-set agreement among k+1 processors,
called simulators.

Notice that, in the BG-agreement, a simulator, after tak-
ing a snapshot, has a set of candidate winners—the ones that
appear in its snapshot. No simulator registering later may
win the agreement, and, in general, no simulator registering
after any other processor arrived at the wait statement, may
win the agreement. Thus, if a simulator, after arriving to
the wait statement, observes that all current proposals are
the same, this simulator may determine the resolution of the

1: procedure Execute Rr,1

2: snapshot(stater,0, . . . , stater,n)
3: Fr,i := { pj | stater,j ∈ {⊥, “failed”, “killed”}} ∪ Suspectedr,i

4: for each pj ∈ Fr,i do
5: BGproposej,r,1(“failed”, stater+1,j)
6: snapshot(stater+1,0, . . . , stater+1,n)
7: FinalFaultyr+1,i := { pj | stater+1,j = “failed” or BGproposej,r,1 has only “failed” proposals}
8: for each pj ∈ Correctr+1,i := Π\FinalFaultyr+1,i do
9: BGproposej,r,2(“pj receives messages from all processors in Correctr+1,i”, stater+1,j)

Figure 5: First asynchronous phase Rr,1 (code for simulator simi)

1: procedure Execute Rr,2

2: snapshot(stater+1,0, . . . , stater+1,n)
3: snapshot(FinalFaultyr+1,0, . . . ,FinalFaultyr+1,n)
4: if (i) pl = ⊥ and

(ii) ∃simq : |FinalFaultyr+1,q| ≥ f and

(iii) �(pj ∈ Π, r′ ≥ 1) : stater′,j = “killed” and
(iv) �(pj ∈ Π, r′ ≥ 1) : BGproposer′ has only “kill pj” proposals then

5: processorToKill := minj{ pj | stater+1,j /∈ {⊥, “failed”, “killed”}}
6: BGproposer(“kill processorToKill”, pl)
7: else
8: BGproposer(“no processor”, pl)
9: if pl /∈ {⊥, “no processor”} then stater+1,l := “killed”

10: snapshot(stater+1,0, . . . , stater+1,n)
11: for all proposed pj
= pl in BGproposer do
12: Suspectedr+1,i := Suspectedr+1,i ∪ { pj }

Figure 6: Second asynchronous phase Rr,2 (code for simulator simi)

agreement. This means also that a BG-agreement instance
is not a black box, but rather an “open” box. Any sim-
ulator may access the shared memory used in a particular
BG-agreement instance, without invoking BGpropose, e.g.,
to read all the proposals to this instance and determine the
resolution of this instance.

3.1 Overview
We first give here an intuitive idea of the lower bound

proof. In the simulation of each synchronous round of the
algorithm C(k, f), the k + 1 simulators use a series of BG-
agreements to decide which messages any processor pj re-
ceived and which messages pj did not receive (this deter-
mine the new state of pj). When a simulator simi decides,
in any of the BG-agreements, to fail a processor pj (we also
say that pj was chosen to be failed), this means that simi is
simulating a run of C(k, f) where processor pj crashes. The
exact simulation performed by simulator simi depends on
the particular BG-agreement, according to Figure 2. Any
simulator simi that blocks a BG-agreement does not let the
other simulators, involved in the same BG-agreement, de-
cide upon the state of processor pj ; as a simulator may block
at most one BG-agreement, then in each round at most k
BG-agreements may be unresolved. In the simulation, this
is translated into at most k new failures per round of the
synchronous run. If a BG-agreement in the “far past” is not
resolved, then a simulator is blocked in this BG-agreement,
which means that the simulation proceeds from some round
on with less than k + 1 simulators, and therefore generates
less than k failures per round. This, according to condition
1, will force the processors to decide, and allows the simula-

tors to read any processor decision, and then decide on the
same value. On the other hand, if no simulator is blocked
in any past BG-agreement, then the simulators will identify
a processor that is correct and which decides according to
condition 2. The simulators may read the decision of this
processor, and decide on the same value. The processor that
decides will not interfere with the simulation after it decides,
because the simulation ensures that this processor fails im-
mediately after deciding. Accomplishing that feat of guar-
anteeing an a-priori unknown processor to decide according
to condition 2 and failing it immediately after deciding, is
the crux of the proof.

3.2 Lower Bound Proof
The proof is divided into three parts. The first part in-

ductively explains how a synchronous round r of the algo-
rithm C(k, f), designed for the synchronous message-passing
model, may be simulated in the asynchronous shared-memory
model. The second part exploits the two conditions of The-
orem 1, so that each simulator can reach a decision with the
simulation of C(k, f) presented in the first part. The third
part shows how to initiate the simulation by instantiating
the first part with r = 1.

Proof. Assume by contradiction that such an algorithm
C(k, f) exists. We will exhibit how k + 1 simulators sim0,
. . . , simk, solve k-set agreement asynchronously in a wait-
free manner (i.e., while tolerating k simulator crashes) in
shared-memory, using C. This has been proved impossible
[3, 14, 17].

Part I: the simulation. The simulators execute 2 asyn-

chronous phases Rr,1 and Rr,2 for every synchronous round
r of algorithm C(k, f). In the first asynchronous phase Rr,1

simulating round r of C(k, f), the simulators will tentatively
agree on the state of each processor at the beginning of
round r + 1 (i.e., on what messages are received by each of
the processors in synchronous round r, if any). In the sec-
ond asynchronous phase Rr,2 simulating round r of C(k, f),
the simulators will tentatively agree on a correct processor,
and simulate this processor failure at the beginning of round
r+1. Asynchronous phases Rr,1 and Rr,2 are executed using
several BG-agreement instances. The simulation algorithm
is shown in Figures 3 to 7, and is detailed hereafter.

In the first asynchronous phase Rr,1, any simulator simi

takes a snapshot, and gathers in a set Fr,i the processors (a)
for which the state at the beginning of round r is not deter-
mined, or (b) for which the state at the beginning of round
r is determined and indicates that the processor is faulty.
Simulator simi proposes, in a first series of BG-agreements
to determine the state of each of the processors in Fr,i at the
beginning of round r +1, to fail each processor in Fr,i. Sim-
ulator simi, after finishing all these BG-agreements (many
of which are possibly unresolved), then takes another snap-
shot, and gathers in a set FinalFaultyr+1,i ⊆ Fr,i the pro-
cessors in Fr,i which are faulty at the beginning of round
r + 1. (These are the processors decided to fail by resolved
BG-agreements, plus the processors in Fr,i for which all pro-
posals are to fail them in the corresponding BG-agreement.)
For any processor pj in the complement set Correctr+1,i =
Π − FinalFaultyr+1,i, simi obtains the state of pj at the
beginning of round r, either from the first or the second
snapshot in Rr,1. Simulator simi writes FinalFaultyr+1,i in
shared memory, and then proposes, in a second series of
BG-agreements in Rr,1 to determine the state of each of the
processors in Correctr+1,i at the beginning of round r + 1,
that each processor in Correctr+1,i receives a message from
every other processor in Correctr+1,i.

Simulator simi now moves to the second asynchronous
phase Rr,2; simi first takes a snapshot to observe the state
of the processors at the beginning of round r+1. Then simi

proposes a correct processor, using a single BG-agreement,
whose purpose is to agree upon a correct processor. simi

chooses a correct processor to propose as follows:

1. there is a simulator simq in the snapshot taken by simi,
such that simq sees f or more processor failures, and

2. simi has not yet chosen a correct processor, nor ob-
served such a processor being chosen, nor guaranteed
to be chosen,1 in a previous asynchronous phase Rs,2,
s < r.

Otherwise there is no such processor and simi proposes a
special “no processor” value. The idea is to simulate the
failure of the processor agreed upon, at the beginning of
round r + 1.

Following the BG-agreement of Rr,2 (not necessarily re-
solved yet), simulator simi takes a snapshot of the proposals
to the BG-agreement of Rr,2, and starts to simulate syn-
chronous round r + 1. For each correct processor that ap-
pears in the last snapshot taken, that is, a correct processor

1For instance, because a BG-agreement, though not yet re-
solved, may guarantee that a processor will be chosen, if all
propositions are to fail the same processor, and no proposi-
tion is to fail no processor.

that may be chosen as the result of the BG-agreement in
Rr,2, its state at the beginning of synchronous round r+1 is
not determined until the BG-agreement of Rr,2 is resolved
(we say that the processor is “suspected”). Consequently,
in Rr+1,1, all the simulators propose to fail these processors
at the beginning of synchronous round r + 2, that is, in the
first series of BG-agreements in Rr+1,1.

Part II: finding a decision. Throughout the simula-
tion, simulator simi continuously reads the shared memory
in order of increasing rounds starting at round 1, to deter-
mine the first processor pl that has been agreed upon as the
result of Rr,2, for some round r. Because all simulators have
the same rule to determine this processor, they will all agree
on the same pl (if one exists). There are two cases however,
in which there may never be such a processor:

(i) the simulation goes almost lockstep and less
than f processors fail in the simulation, or

(ii) the simulators cannot determine pl because a
past BG-agreement is not yet resolved.

In any of these cases, there will eventually be less than k
faulty processors per round. Therefore, the synchronous
simulated processors eventually have to decide, according
to the algorithm C(k, f).

Now, suppose that none of these cases happen, i.e., every
BG-agreement is eventually resolved, but there are forever
synchronous rounds with k failures in each round (i.e. the
opposite of eventually strictly less than k failures per round).
Thus, the number of faulty processors grow without bound
as the simulation proceeds far enough. In this case, when
reading the shared memory, the simulators will all deter-
mine a round m such that m is the first round in which
f or more processors are faulty at the beginning of round
m. Since for each simulator simi each processor in the set
FinalFaultym−1,i is faulty at the beginning of round m, it
follows that in round m−2 or less, no correct processor was
chosen to fail in Rm−2,2.

2

Since at the beginning of round m, there are f failures
or more, and at the beginning of round m − 1, there are at
most f −1 failures, there must be, at the beginning of round
m, a processor pj that fails, and all correct processors at the
beginning of round m receive a message from pj in round
m − 1. There are two cases:

(i) A correct processor pl is chosen by the BG-
agreement in Rm−1,2.

(ii) No correct processor is chosen by the BG-
agreement in Rm−1,2.

In the latter case, there necessarily exists at least one sim-
ulator simi which proposes that nobody be chosen in that
BG-agreement, i.e. simulator simi observes no other sim-
ulator simq with FinalFaultym−1,q ≥ f . Since simi fin-
ished all the BG-agreements in Rm−1,1, no simulator simq

with FinalFaultym−1,q ≥ f imposed its proposal in any BG-
agreement of Rm−1,1. Consequently, all processors do not
receive messages from at most a set FinalFaultym−1,j < f ,
for some simulator simj . Since there are now more than f
faulty processors, the set of faulty processors at the begin-

2To see why, suppose by contradiction that a correct pro-
cessor was chosen to fail at round m − 2. Then at least
one simulator simq has FinalFaultym−2,q ≥ f . Since these
processors will be faulty at the beginning of m − 1, and
additionally one correct processor was chosen to fail, there
are more than f failures at the beginning of round m − 1,
contradicting the assumption that m is the first such round.

ning of round m must contain a processor from which all
messages are received by correct processors. This processor
is chosen to be pl by all the simulators (ties broken by the
lowest processor identifier in case of two such processors.)

In both cases, pl is a correct processor, and we may add or
withdraw enough messages to pl from other faulty processors
in the simulation, to get exactly f failures. (Every simulator
can do that in the same deterministic way.) This is possible,
since at the beginning of round m − 1, there are at most f
failures.

As round m is the first round in which we choose a correct
processor to fail in the second asynchronous phase Rm−1,2,
there are at most k failures per round until round m, as the
result of asynchronous simulators being late in a phase. Pro-
cessor pl has to decide at the beginning of m, exactly when
we fail pl. Its decision may now be read by all the simula-
tors, which can decide on the same value. This concludes
the simulation.

Notice that proposing and chosing a correct processor in
one of the second asynchronous phases Rr,2, in order to sim-
ulate its failure, is a transient phenonemon, as a result of the
second condition in the choice of pl. Eventually no proces-
sor will be proposed to be faulty after round s for s large
enough (in fact in case the number of failures is greater than
f then s = m + 1). Thus, if a simulator is forever late, then
eventually the number of failures in each round is less than
k since failures occur only because of asynchrony of simu-
lators, and less than k + 1 simulators proceed thereafter in
the simulation.

Part III: starting the simulation. To start the simula-
tion, each simulator proposes in a series of BG-agreements,
one for each processor, its simulator identifier as the value
proposed by this processor in code C(k, f). Following these
BG-agreements, a simulator starts R1,1. The initial state
of a processor is determined when the corresponding BG-
agreement is resolved.

4. AN EARLY-DECIDING ALGORITHM
Figure 8 presents an early deciding k-set agreement algo-

rithm. For t < N − k (or equivalently, t ≤ n − k), this al-
gorithm achieves the following bounds: (1) for 0 ≤ �f/k� ≤
�t/k� − 2, every processor that decides, decides by round
�f/k� + 2, and (2) for �f/k� ≥ �t/k� − 1, every processor
that decides, decides by round �f/k� + 1. Note that this is
a strict generalization of the upper bound on consensus [5,
15],3 and of (non early deciding) set agreement [7].

4.1 Overview
The algorithm works as follows. Each processor pi keeps

an estimate value esti, initialized with its proposal value.
Processor pi sends its estimate in every round. At the end
of every round, pi updates esti with the minimum estimate
received from any other processor. Processor pi also records
in halti the processors from which it does not receive any
message. At the end of any round r, if |halti| < rk, then
the estimate of pi is a possible decision value. In the next
round, pi sends this estimate with a special Dec decision
tag, and decides on its estimate at the end of the round.
Any processor pj that receives a Dec message, adopts the

3For uniform consensus, which we consider by default in this
paper, the tight lower bound is f +2, for 0 ≤ f ≤ t− 2, and
f + 1, for f ≥ t − 1 [5].

At processor pi:

1: halt := ∅ ; decided := deciding := false
2: Sr := ∅, 1 ≤ r ≤ �t/k� + 1

3: procedure propose(vi)
4: esti := vi

5: for r from 1 to �t/k� + 1 do
6: if decided or deciding then
7: send (r,Dec, esti) to all
8: else
9: send (r,Est, esti) to all

10: if deciding then
11: decide(esti) ; return
12: else if decided then
13: return
14: else if received any (r,Dec, estj) then
15: esti := estj ; deciding := true
16: else
17: Sr := {(estj , j) | (r,Est, estj) is received

in round r from pj}
18: halt := Π\ ∪(estj ,j)∈Sr {j}
19: esti := min{estj |(estj , j) ∈ Sr}
20: if r = �t/k� and |Sr| ≥ N − k�t/k� + 1 then
21: decided := true ; decide(esti)
22: else if |halt| < rk then
23: deciding := true
24: decide(esti)
25: return

Figure 8: An early deciding k-set agreement algo-
rithm (code for processor pi)

decision value as its new estimate, sends a Dec message
in the next round with the decision, and decides on the
estimate at the end of that round.

The intuition behind how the algorithm achieves set agree-
ment is as follows. In round r, if pi observes that |halt| < rk,
this means that there exists one round r′ ≤ r where pi sees at
most k − 1 processor crashes.4 Hence processor pi “knows”
all but at most k − 1 values among the smallest values re-
maining in the system. Processor pi can thus safely decide
on esti if pi reaches the end of the next round. (As pi sends
its decision in the next round, we know that every processor
that reaches the end of the next round receives pi’s decision
if pi is able to decide.)

We give an intuition of why the algorithm is faster when
�f/k� = �t/k� − 1. Note that in this case, every processor
that decides, decides by round �f/k� + 1. At the end of
round �t/k� − 1, the processors have more than k distinct
estimate values only if there remain 2k−1 processors or less
that are still allowed to crash. In round �t/k� − 1, every
processor that detects k − 1 or less new crashes may safely
decide at the end of round �t/k�. The reason is the following.
First, if k − 1 or less processors crash in round �t/k�, then
at most k− 1 distinct estimate values remain in the system,
and it is safe to decide for any processor. In contrast, if
more than k− 1 processors crash in round �t/k�, then k− 1
or less processors may still crash. Denote by x the number
of processors that detect less than k−1 processor crashes in

4An alternative way to detect the same situation is when pi

sees k − 1 or less new crashes in round r.

round �t/k�. These x processors decide at the end of round
�t/k�. Assume that they immediately crash after deciding.
Thus there are at most k − 1 − x processors that may still
crash in the last round �t/k� + 1. At the end of round
�t/k�+ 1, at most k − x values may be decided (if k − 1− x
processors crash). In total, the processors decide at most on
x + (k − x) distinct values.

4.2 Proof of Correctness
In the following, we denote the local copy of a variable

var at processor pi by vari, and the value of vari at the end
of round r by varr

i . crashedr denotes the set of processors
that crash before completing round r, estsr denotes the set
of estimate values of every processor at the end of round r.
By definition, round 0 ends when the algorithm starts. No
processor decides by round 0. We first prove three general
claims about the algorithm of Figure 8.

Claim 2. estsr ⊆ estsr−1.

Proof. The proof of the claim is straightforward: for any
processor pi, estri ∈ estsr−1.

Claim 3. If at the end of round 0 ≤ r ≤ �t/k� no pro-
cessor has decided, and at most l processors crash in round
r + 1, then |estsr+1| ≤ l + 1.

Proof. Consider that the conditions of the claim hold
and assume by contradiction that |estsr+1| ≥ l + 2. By as-
sumption, there are l + 2 processors with distinct estimate
values at the end of round r+1. Denote by q0, . . . , ql+1 these
processors, such that estr+1

qi
≤ estr+1

qi+1 , for 0 ≤ i ≤ l + 1.

Processors q0, . . . , ql do not send estr+1
q0 , . . . , estr+1

ql
in round

r + 1; otherwise, ql+1 receives one of the smallest l + 1 es-
timate values in round r + 1. Thus there are l + 1 proces-
sors which send values corresponding to estr+1

q0 , . . . , estr+1
ql

in
round r + 1 and which crash in round r + 1; otherwise, ql+1

receives one of the smallest l+1 estimate value in round r+1.
This contradicts our assumption that at most l processors
crash in round r + 1.

Claim 4. If, at the end of round 1 ≤ r ≤ �t/k�, no pro-
cessor has decided, and |estsr| ≥ k+1, then |crashedr| ≥ rk.

Proof. We prove the claim by induction. For the base
case r = 1, assume that the conditions of the claim hold.
That is, at the end of round 1, there exist k+1 distinct pro-
cessors q0, . . . , qk with distinct estimate values. By Claim 3,
|crashed1| ≥ k. Assume the claim for round r − 1, and as-
sume the conditions of the claim hold at round r. We prove
the claim for round r. By assumption, there are k + 1 pro-
cessors q0, . . . , qk at the end of round r with k + 1 distinct
estimates. By Claim 2, k + 1 processors necessarily reach
the end of round r − 1 with k + 1 distinct estimates. Thus
Claim 4 holds at round r − 1 (induction hypothesis), and
thus, |crashedr−1| ≥ (r−1)k. By Claim 3, at least k proces-
sors crash in round r. Thus |crashedr| ≥ k + |crashedr−1| ≥
rk.

The next proposition asserts the correctness of the algo-
rithm.

Proposition 5. The algorithm in Fig. 8 solves k-set agree-
ment.

Proof. Validity and Termination are obvious. To prove
k-ket agreement, we consider the lowest round r in which
some processor decides. Let pi be one of the processors that
decides in round r. We consider three mutually exclusive
cases: (1) pi decides in round 2 ≤ r ≤ �t/k� − 1, (2) pi

decides in round r = �t/k�, and (3) pi decides in round
r = �t/k�+1. (In the algorithm, no processor decides before
round 2.)

Case 1. pi necessarily decides at line 11, and thus executes
line 23 in round r−1, where deciding is set to true. (Because
no processor decides before pi, pi may not receive any dec
message before deciding; and because r ≤ �t/k� − 1, pi may
not decide at line 21.) In round r − 1, pi executes line 23
only if pi evaluates |crashedr−1| < rk at line 22. Thus, from
Claim 4, there are at most k distinct estimates at the end
of round r − 1, which ensures agreement.

Case 2. There are two cases to consider: (1) pi decides at
line 11, after executing line 23 at the end of round r−1, or (2)
pi decides at line 21. (Because no processor decides before
pi, pi may not receive any dec message before deciding.)
In case (1), pi executes line 23 in round r − 1 only if pi

evaluates |crashedr−1| < rk at line 22. Thus, from Claim 4,
there are at most k distinct estimates at the end of round
r − 1, which ensures agreement. In case (2), we consider
estsr−1. If |estsr−1| ≤ k, agreement is ensured thereafter.
Thus consider that |estsr−1| ≥ k + 1. By Claim 4, there
exist k + 1 distinct processors with different estimates at
the end of round r − 1 only if |crashedr−1| ≥ k(r − 1) =
k(�t/k� − 1) ≥ t − 2k + 1, or, equivalently, only if at most
2k − 1 processors may crash in the two subsequent rounds
(rounds �t/k� and �t/k� + 1). In round �t/k�, pi decides at
line 21 only if pi receives at least n − k�t/k� + 1 messages.
Thus, by Claim 3, the processors that decide at the end
of round �t/k�, including pi, decide on at most k distinct
values. Denote by x the number of processors that effectively
crash in round �t/k�, and by y the number of processors that
decide at the end of round �t/k�. We distinguish two cases:
(a) x ≤ k − 1, and (b) x ≥ k. In case (a), by Claim 3, k − 1
values or less remain in the system at the end of round �t/k�;
agreement is then ensured. In case (b), at most 2k−1−x ≤
k−1 processors may crash among the processors that decide
at the end of round �t/k� and the processors that take part
to round �t/k� + 1. We claim that the total number of
distinct decision values is at most k. Indeed, denote by ycrash

the number of processors that decide at the end of round
�t/k� and then immediately crash. In round �t/k� + 1, at
most k − 1 − ycrash may crash. By Claim 3 processors that
decide at the end of round �t/k�+ 1 may decide on at most
k − ycrash distinct estimate values. Hence the maximum
number of decided values is (k − ycrash) + ycrash = k.

Case 3. By contradiction, consider that, at the end of
round �t/k�+1, there exist k+1 distinct processors q0, . . . , qk

with different estimates, and which decide on their esti-
mates. By Claim 2, there exist k+1 processors with distinct
estimates at the end of round r−1. By Claim 4 and because
r = �t/k� + 1, |crashedr−1| > k(r − 1) = k�t/k� > t − k.
By Claim 3, there exist k processors that crash in round
�t/k�+1. Thus |crashedr| ≥ k+ |crashedr−1| = k+k�t/k� >
t. A contradiction.

The next proposition asserts the efficiency of the algo-
rithm.

Proposition 6. In any run with 0 ≤ f ≤ t failures, any

processor that decides, decides

1. by round �f/k� + 2, if 0 ≤ �f/k� ≤ �t/k� − 2, and

2. by round �f/k� + 1, if �f/k� ≥ �t/k� − 1.

Proof. We proceed by separating both cases.
Case 1. Assume a run with f failures, such that �f/k� ≤

�t/k�− 2. By contradiction, assume that there exists a pro-
cessor pi for which |haltri | ≥ rk, for r = �f/k� + 1. (If
|haltri | < rk, then pi decides at line 11 in the next round.)
Processor pi does not decide in round r; in particular, pi

does not receive any dec message in round r. We have
|haltri | ≥ rk = (�f/k�+ 1)k = �f/k�k + k > f . A contradic-
tion.

Case 2. Assume a run with f failures, such that �f/k� ≥
�t/k�− 1. First assume that �f/k� = �t/k�− 1, and assume
by contradiction that there exists a processor pi that does
not decide by round r = �f/k�+1. Thus pi does not receive
any dec message in round r. Assume by contradiction that
pi does not decide at line 21. Thus |Sr| < N−k�t/k�+1, and
f > k�t/k�−1. This implies in turn that �f/k� > �t/k�−1.
A contradiction. When �f/k� = �t/k�, then any processor
that decides, decides by round �f/k� + 1 = �t/k� + 1.

5. REFERENCES
[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and

N. Shavit. Atomic snapshots of shared memory. In Proceedings
of the 9th ACM Symposium on Principles of Distributed
Computing, pages 1–14, 1990.

[2] Y. Afek, G. Stupp, and D. Touitou. Long-lived and adaptive
atomic snapshot and immediate snapshot. In Proceedings of
the 19th ACM Symposium on Principles of Distributed
Computing, pages 71–80, 2000.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility
result for t-resilient asynchronous computation. In Proceedings
of the 25th ACM Symposium on the Theory of Computing,
pages 91–100. ACM Press, 1993.

[4] E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG
distributed simulation algorithm. Distributed Computing,
14:127–146, 2001.

[5] B. Charron-Bost and A. Schiper. Uniform consensus harder
than consensus. Journal of Algorithms, 51(1):15–37, 2004.

[6] S. Chaudhuri. More choices allow more faults: set consensus
problems in totally asynchronous systems. Information and
Computation, 105(1):132–158, July 1993.

[7] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle.
Tight bounds for k-set agreement. Journal of the ACM,
47(5):912–943, 2000.

[8] S. Cook. The complexity of theorem proving procedures. In

Proceedings of the 3rd ACM Symposium on the Theory of
Computing, pages 151–158, 1971.

[9] D. Dolev, R. Reischuk, and H.R. Strong. Early stopping in
Byzantine agreement. Journal of the ACM, 37(4):720–741,
1990.

[10] M. J. Fischer and N. A. Lynch. A lower bound for the time to
assure interactive consistency. Information Processing Letters,
14(4):183–186, June 1982.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, 1985.

[12] E. Gafni. Round-by-round fault detector–unifying synchrony

and asynchrony. In Proceedings of the 17th ACM Symposium
on Principles of Distributed Computing, 1998.

[13] M. Herlihy, S. Rajsbaum, and M. Tuttle. Unifying synchronous
and asynchronous message-passing models. In Proceedings of
the 17th ACM Symposium on Principles of Distributed
Computing, pages 133–142, 1998.

[14] M. Herlihy and N. Shavit. The topological structure of
asynchronous computability. Journal of the ACM,
46(6):858–923, 1999.

[15] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant
consensus when there are no faults – a tutorial. Technical
Report MIT-LCS-TR-821, 2001. (Preliminary version in
SIGACT News, Distributed Computing Column, 32(2):45–63,
2001).

[16] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann,
1996.

[17] M. Saks and F. Zaharoglou. Wait-free k-set agreement is
impossible: the topology of public knowledge. In Proceedings
of the 25th ACM Symposium on the Theory of Computing,
pages 101–110, 1993.

