View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Tight Lower Bounds on Early Local Decisions in Uniform Consensus
[Extended Abstract]

Partha DuTTA Rachid GUERRAOUI Bastian PoOcHON

Distributed Programming Laboratory
Swiss Federal Institute of Technology in Lausanne (EPFL)

Abstract

When devising a (uniform) consensus algorithm, it is common to minimize the time complexity
of global decisions, which is typically measured as the number of communication rounds needed for
all correct processes to decide. In practice, what we might want to minimize is the time complexity
of local decisions, which we define as the number of communication rounds needed for at least one
correct process to decide. We investigate tight lower bounds on consensus local decisions in crash-stop
message-passing model.

In the synchronous model where ¢ processes may fail, we show that in runs with at most f <t—1
failures, there is a run in which no correct process decides before round f + 1, and there is a run in
which at most one correct process decides before round f + 2. This result generalizes the well-known
f+2 round global decision lower bound. Moreover, we point out a simple consensus algorithm which
achieves these lower bounds.

In the eventually synchronous model, we show that there is a synchronous run with f failures
in which no correct process decides before round f + 2; i.e., the local and the global decision lower
bounds are identical for synchronous runs. We describe a new algorithm which matches the f + 2
round lower bound for global decision (and hence, for local decision as well) in synchronous runs,
closing a challenging open question.

Category: Regular and student paper (Partha Dutta and Bastian Pochon are full-time PhD students)
Contact Author: Partha.Dutta@epfl.ch, EPFL-IC-LPD, CH-1015, Switzerland, tel: +41 21 693 8121

https://core.ac.uk/display/147909618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Motivation. Determining how long it takes to reach consensus! among a set of processes is an im-

portant question in distributed computing. For instance, the performance of a replicated system is
impacted by the performance of the underlying consensus service used to ensure that the replica pro-
cesses agree on the same order to deliver client requests [14]. Traditionally, lower bounds on the time
complexity of consensus have been stated in terms of the number of communication rounds (also called
steps) needed for all correct processes to decide [15] (i.e., global decision), or even halt [7], possibly as
a function of the number of failures f that actually occur, out of the total number ¢ of failures that are
tolerated.

From a practical perspective, what we might sometimes want to measure and optimize, is the number
of rounds needed for at least one correct process to decide, i.e., for a local decision. Indeed, a replicated
service can respond to its clients as soon as a single replica decides on a reply and knows that other
replicas will reach the same decision (even if they did not decide yet).

Background. Consider the synchronous crash-stop model where a set of n processes proceed by
exchanging message in a round by round manner [13]. In any run of the model, at most ¢ processes
might fail, and they can only do so by crashing. For any consensus algorithm, let R(f) denote the set of
runs in which at most f < t—1 processes fail. The global decision lower bound on consensus states that
there is a run in R(f) in which some correct processes decides in round f+2 or in a higher round [2, 12].
In other words, for all correct processes to decide, we need at least f + 2 rounds. However, a global
decision lower bound does not say whether some correct process can decide before f + 2 rounds in every
run in R(f), and if yes, how many processes may actually do so.

In the eventually synchronous model, from [8] we know that for any consensus algorithm there is
a run in R(f) which may take an arbitrary number of rounds for any process to decide. However, if
we define SR(f) as the set of synchronous runs,? then in SR(f) we can bound the number of rounds
needed for correct processes to decide. In fact, it is easy to see that the f + 2 round global decision
lower bound in synchronous model immediately extends to SR(f). However, unlike synchronous model,
a matching algorithm for f 4 2 round global decision lower bound has been an open problem [4, 11].

Contributions. This paper points out that, in the synchronous model, the local decision tight lower
bound is f 4+ 1. In other words, (1) for any consensus algorithm, there is a run in R(f) in which no
correct process decides in a round lower than f + 1, and (2) there is a consensus algorithm for which,
in every run in R(f) some correct process decides by round f + 1.

Moreover, we show that for every consensus algorithm, there is a run in R(f) in which either none
or exactly one process decides before round f + 2; this gives a bound on the number of correct processes
which can decide before the global decision lower bound. This result generalizes the global decision
lower bound of [2, 12] which states that there is a run in which at least one correct process decides in
round f + 2 or in a higher round, whereas, our result implies that there is run in which at least n —¢—1
correct processes decide in round f 4 2 or in a higher round (because there are at least n — t correct
processes and at most one of them can decide before round f + 2).

In the eventually synchronous model, we show that, for the synchronous runs SR(f), the local
decision lower bound is f + 2, the same as the global decision lower bound. We give a matching

'Tn this paper consensus always refers to the uniform variant of the problem. In the consensus problem [10, 16] processes
start with a proposal value and is supposed to eventually decide on a final value such that the following properties are
satisfied: (validity) if a process decides v, then some process has proposed v; (agreement) no two processes decide differently;
and (termination) every correct process eventually decides. Binary consensus is a variant of consensus in which the proposal
values are restricted to 0 and 1.

2Synchronous runs may be the most frequent runs in practice if process failures and unpredictable communication
delays are rare.

algorithm which globally decides (and hence, locally decides) by round f + 2 in every synchronous run
with at most f failures, for every 0 < f < ¢. The algorithm proceeds in a round-by-round manner. At
the end of round f+1 (for every 0 < f < t) the algorithm tries to detect whether the run is synchronous
and there has been at most f failures, and if so, it tries to decide in the next round.

Section 2 presents the lower bound results in the synchronous model. We give our lower bound
results for the eventually synchronous model in Section 3. Due to lack of space, the correctness proof of
the matching algorithm for the eventually synchronous case is described in the optional appendix A.2.
To strengthen our results, we provide our lower bound proofs for binary consensus and propose matching
algorithm for the multivalued case.

2 Consensus in the Synchronous Model

System Model. We assume a distributed system model composed of n > 3 processes, Il = {p1,p2,...,Pn}.
Processes communicate by message-passing and every pair of processes is connected by a bi-directional
communication channel. Processes may fail by crashing and do not recover from a crash. Any process
that does not crash in a run is said to be correct in that run; otherwise the process is faulty. In any
given run, at most ¢ < m processes can fail. Processes proceed in rounds [13]. Each round consists
of two phases: (a) in the send phase, processes are supposed to send messages to all processes; (b) in
the receive phase, processes receive messages sent in the send phase, update local states, and (possibly)
decide. If some process p; completes the send phase of the round, every process that completes the
receive phase of the round, receives the message sent by p; in the send phase. If p; crashes during the
send phase, then any subset of the messages p; is supposed to send in that round may be lost. We
denote the synchronous model by SCS.

Time complexity metrics. Consider any consensus algorithm in the synchronous model. We say
that a process decides in round k& > 1 iff it decides in the receive phase of round k. A run of an
algorithm globally decides in round k if all correct processes decide in round k or in a lower round, and
some correct process decides in round k. For every 0 < f < t, we define the global decision tight lower
bound gy, as the round number such that, every algorithm has a run with at most f failures, which
globally decides in round gy, or in a higher round, and there is an algorithm, which globally decides
by round g; in every run with at most f failures. A run of an algorithm locally decides in round k if
all correct processes decide in round k or in a higher round and some correct process decides in round
k. For every 0 < f < t, we define the local decision tight lower bound Iy, as the round number such
that, every algorithm has a run with at most f failures, which locally decides in round Iy or in a higher
round, and there is an algorithm, which locally decides by round /; in every run with at most f failures.

Proof Technique. Our lower bound proofs are devised following the layering technique of [17], also
used in [12]. Similar to [12, 17], we consider only a subset of runs in the model for showing lower bounds.
A subsystem is a subset of the set of all possible runs in the model. The first subsystem of SCS that
we consider is the set of runs in which at most one process crashes in every round, and we denote it
by subscs. If p; crashes at round k, then any subset of the messages that p; is supposed to send in that
round may not be received.?

A configuration at (the end of) round £ > 1 in a run is the collection of the states of all processes
at the end of round k. The state of a process which has crashed in a configuration is a special symbol
denoting that the process has crashed. We say that a process p; is alive in a given configuration if p;

3Tt is important to notice that the subsystem in [12] contains runs with the additional restriction that, if a process p;
crashes in the send phase of round k, the round k messages may not be received by a prefiz of II. Thus the subsystem
in [12] is a subset of subscs.

has not crashed in that configuration. An initial configuration (or round 0 configuration) in a run is
the collection of initial states of all processes in that run. We denote the set of all initial configurations
as Init. A run of an algorithm is completely defined by its initial configuration and its failure pattern.
(The failure pattern for a run, states for each round &, the process which crashes in round & (if any),
and the set of processes which did not receive round k message from the crashed process.) Therefore,
for any configuration C' at round k (of a consensus algorithm), we can define 7(C) as the run in which
(1) round k configuration is C, and (2) no processes crashes after round k. We denote by val(C) the
decision value of the correct processes in 7(C). Note that a process p; is alive in C iff p; is correct in
r(C).

All our lower bound proofs start from the following lemma in subs.s or one of its variants. (A proof
of the lemma, slightly modified from [12], is presented in the optional appendix A.1.)

Lemma 1 For every binary consensus algorithm in subses and 0 < k < t, there are two configura-
tions y,y' € LF(Init) such that (1) at most k processes have crashed in each configuration, (2) the
configurations differ at exactly one process, and (3) val(y) = 0 and val(y') = 1.

Local decision lower bounds in synchronous model. Given that the global decision lower bound
is f + 2, intuitively it is easy to see that the local decision lower bound is f + 1: if some correct process
can decide at round f in every run in R(f), then it can broadcast the decision value, and thus, enforce
a global decision at round f + 1 in every run in R(f).

Proposition 2 Let 1 <t < n—1. For every consensus algorithm and every 0 < f <t —1, there is a
run with f failures in which no correct process decides before round f + 1.

From Lemma 1, deriving Proposition 2 is rather straightforward, and we present the proof in the
optional appendix A.l. It is also easy to design a matching algorithm, and we refer our readers to the
full-version of the paper [5] for a detailed description of such an algorithm.

From the above tight local decision lower bound we know that some correct process can decide in
round f +1 in every run in R(f). On the other hand, the global decision lower bound states that there
is a run in R(f) in which f + 2 rounds are needed for all correct processes to decide. It is natural to
ask whether it is possible for more than one process to decide before round f + 2. In the following
proposition we show that the answer is negative.

Before we present the proposition, we enlarge the subsystem used in the proof. The subsystem
subges1 consists of all runs in the synchronous crash-stop model, i.e., any number of processes can crash
in a round. (We revisit few definitions which were presented in the context of the subsystem subgs
in which at most one process can crash in a round.) We define the following in subs.1. For any
configuration C at round k of a consensus algorithm A, we define R(C) as the run in which (1) the con-
figuration at round k is C' and (2) no process crashes after round k. We denote by Val(C) the decision
value of the correct processes in R(C). Serial runs are those runs of A which are in subs.s (i.e., runs in
which at most one process crashes in every round). Similarly, serial configurations are the configurations
of the serial runs of A. As every run in suby., is a serial run sub,.s1, from Lemma 1 we immediately have:

Claim SCS1. For every binary consensus algorithm in subs.s1 and 0 < k < ¢, there are two serial
configurations ¥, 9’ € L¥(Init) such that (1) at most k processes have crashed in each configuration, (2)
the configurations differ at exactly one process, and (3) Val(y) = 0 and Val(y') = 1.

Proposition 3 Let 3 <t < n—1. For every consensus algorithm and every 0 < f <t — 3, there is a
run with f failures in which at most one correct process decides before round f + 2.

Proof: Suppose by contradiction that there is a binary consensus algorithm A in subs.s1 and a round
number f 4 1 such that 0 < f < ¢ — 3, and in every run of A with at most f failures, there are two
correct processes which decide before round f + 2.

From Claim SCS1 that at the end of round f there are two serial configurations of A, y and ¥, such
that, (1) at most f processes have crashed in each configuration, (2) the configurations differ at exactly
one process, say p;, and (3) Val(y) =0 and Val(y') = 1. Let z and 2’ denote the configurations at the
end of round f + 1 of R(y) and R(y'), respectively. From our initial assumption about A, in z, there
are two alive processes ¢; and g2 which have decided 0. Similarly, in 2/, there are two alive processes g3
and g4 which have decided 1. Since ¢; and ¢y are distinct, at least one of them is distinct from p;, say
q1- Similarly, without loss of generality we can assume that g3 is distinct from p;.

Thus we have (1) a f 4+ 1 round configuration z with f failures in which an alive process ¢; has
decided 0, (2) a f + 1 round configuration 2z’ with f failures in which an alive process g3 has decided 1,
and (3) process p; is distinct from both ¢; and g3. (Processes ¢; and g3 may or may not be distinct.)
There are two cases to consider.

Case 1. Process p; is alive in y and 3. Consider the following two non-serial runs:*

R1 is a run such that (1) the configuration at the end of round f is y, (2) p; crashes in the send phase
of round f + 1 such that only ¢; receives the message from p;, (3) ¢; and g3 crash before sending any
message in round f+2, and (3) no process distinct from p;, ¢1, and g3 crashes after round f. Notice that
q1 cannot distinguish the configuration at the end of round f + 1 in R1 from z, and therefore, decides 0
at the end of round f + 1 in R1. By agreement, every correct process decides 0. Since ¢t < n — 1, there
is at least one correct process in R1, say p;.

R2 is a run such that (1) the configuration at the end of round f is ', (2) p; crashes in the send phase
of round f + 1 such that only g3 receives the message from p;, (3) g1 and g3 crash before sending any
message in round f + 2, and (3) no process distinct from p;, ¢1, and g3 crashes after round f. Notice
that g3 cannot distinguish the configuration at the end of round f + 1 in R2 from 2z’, and therefore,
decides 1 at the end of round f + 1 in R2. However, p; cannot distinguish R1 from R2: at the end of
round f 4+ 1, the two runs are different only at p;, ¢1, and g3, and none of the three processes send mes-
sages after round f+1 in both runs. Thus (as in R1) p; decides 0 in R2; a contradiction with agreement.

Case 2. Process p; has crashed in either y or 3y'. Without loss of generality, we can assume that p; has
crashed in y, and hence, p; is alive in y'. (Recall that p; has different states in both configurations.)
Consider the following two non-serial runs:

R12 is a run such that (1) the configuration at the end of round f is y (and hence, p; has crashed before
round f + 1), (2) no process crashes in round f+ 1, and (3) ¢; and g3 crash before sending any message
in round f + 2. No process distinct from p;, g1 and g3 crashes after round f. Notice that ¢; cannot
distinguish the configuration at the end of round f + 1 in R12 from z because ¢; does not receive the
round f + 1 message from p; in both runs. Thus (as in z) ¢; decides 0 at the end of round f+1 in R12.
Due to agreement, every correct process decides 0 in R12. Since f <t —3 < n — 4, there is at least one
correct process in R12, say pj.

R21 is a run such that (1) the configuration at the end of round f is y’, (2) p; crashes in the send phase
of round f + 1 such that only g3 receives the message from p;, and (3) ¢; and g¢3 crash before sending
any message in round f + 2. No process distinct from p;, ¢; and g3 crashes after round f. Notice that
g3 cannot distinguish the configuration at the end of round f + 1 in R21 from 2z’ because it receives the
message from p; in both runs. Thus (as in 2’) g3 decides 1 at the end of round f + 1 in R21. However,
p; cannot distinguish R12 from R21: at the end of round f + 1, the two configurations are different only
at p;, q1 and g3, and none of them send messages after round f + 1 in both runs. Thus (as in R12), p;

AThe runs are not serial because in round f + 2, two processes crash in each run.

decides 0 in R21; a contradiction with agreement. O

As mentioned in the introduction, the above proposition can be seen as a generalization of the
f + 2 round global decision lower bound. Interestingly, this proposition differs from most synchronous
model consensus lower bounds in one respect. In most lower bound results on consensus in synchronous
model [13, 1, 2, 12], the proofs are done in a restricted synchronous model where at most one process
can crash in a round (precisely subscs) or where at most k processes can crash in the first £ rounds, in
order to simplify and strengthen the result. However, notice that in the proof of Proposition 3, runs
R1 and R2 are not in subg.s: two processes crash in round f + 2. In fact, unlike most lower bound
results on consensus in synchronous model, Proposition 3 does not hold in subs.;. For example, there
is a binary consensus algorithm in subs.s, in every failure-free run of which two processes decide at the
end of round 1.

3 Consensus in the Eventually Synchronous Model

System model. Intuitively, the eventually synchronous model ES is a model that is guaranteed to
become synchronous, but only after an unbounded period of time. In ES, computation proceeds in
rounds. We consider “communication-open” rounds: messages sent to correct processes are eventually
received.’

In a round of ES, every process sends a message to all processes and waits for other messages sent
in the round. The model notifies the processes when to stop waiting for the messages in each round.
However, unlike the synchronous model, messages may be delayed (not received in the same round in
which they were sent) by an arbitrary number of rounds, provided that the following conditions are
met in every run: (1) messages sent to a correct process are eventually received, (2) in every round
k, if some process p; completes the round, then p; has received at least n — ¢ messages of that round,
and (3) there is an unknown round number K, such that, in every round k > K, for any process p;, if
some process completes round k without receiving round k message from p;, then p; has crashed before
completing round k. We say that a run in ES is synchronous if in every round k& > 1, for any process
p;, if some process completes round k£ without receiving round k£ message from p;, then p; has crashed
before completing round k.

From [8], it is easy to see that, for every consensus algorithm, and for every 0 < f <t (¢ > 1), there
is a run of the algorithm with at most f failures which takes an arbitrary number of rounds for a local
decision. Hence, we define Iy and gy in this model as bounds on the synchronous runs of the algorithm
with at most f failures.

Local decision lower bound in eventually synchronous model. In synchronous runs of any
consensus algorithm in ES we show that there is a run with at most f failures in which no correct
process decides before round f + 2; i.e., the local decision lower bound is identical to the global decision
lower bound. This one round difference between local decisions in SCS and that of synchronous runs
in ES, can be seen as a price paid by algorithms in ES to tolerate an “unreliable model” [4].

The subsystem sub.s consists of all runs in ES. Let A be any consensus algorithm in subes. Syn-
chronous configurations are the configurations of synchronous runs of A. For any synchronous config-
uration C at round k of A, we define R(C) as the synchronous run in which (1) the configuration at
round k is C and (2) no process crashes after round k. We denote by Val(C) the decision value of
correct processes in R(C). As every run in suby.s1% is a synchronous run in sub.,, from Claim SCS1 we

SES is one of the round based partial synchrony models in [6], and it can emulate an asynchronous round-based model
augmented with an eventually perfect failure detector OP [3]. In [4] we specify the eventually synchronous model based
on round-by-round fault detector framework [9] and denote it by RFop.

5The subsystem used in the proof of Proposition 3.

immediately have:

Claim ES1. For any consensus algorithm in subeg, there are two synchronous configurations, y and ¥/,
at the end of round f (0 < f < t), such that, (1) at most f processes have crashed in each configuration,
(2) the configurations differ at exactly one process, and (3) Val(y) = 0 and Val(y') = 1.

Proposition 4 Let1 <t <mn—1. For every consensus algorithm in ES and every 0 < f <t —3, there
is a synchronous run with at most f failures where no correct process decides before round f + 2.

Proof: Suppose by contradiction that there is a binary consensus algorithm A in sub.s and an integer f
such that 0 < f <¢—3 and in every synchronous run of A with at most f failures, some correct process
decides by round f+1. From Claim ES1, we know that at the end of round f there are two synchronous
configurations of A, y and ¢/, such that (1) at most f processes have crashed in each configuration, (2)
the configurations differ at exactly one process, say p;, and (3) Val(y) = 0 and Val(y') = 1. Let z and
Z' denote the configurations at the end of round f + 1 in synchronous runs R(y) and R(y'), respectively.

From our initial assumption on A, in z, there is at least one alive process, say g1, which has decided
0. Similarly, in 2’, there is at least one alive process, say g3, which has decided 1. There are three cases
to consider.

Case 1. p; ¢ {q1,q93}. This case is exactly similar to the case in the proof of Proposition 3. We can
derive a contradiction by constructing the same runs R1, R2, R12, and R21.

Case 2. p; € {q1,q3} and p; is alive in both y and y’. Notice that if p; = ¢; then R1 is not in ES;
p; cannot crash in the send phase of round f + 1, and decide at the end of round f + 1. (Similarly, if
p; = g3 then R2 is not in ES.) Thus we construct non-synchronous runs of A to show the contradiction.
Without loss of generality we can assume that p; = ¢;. (Note that the proof holds even if p; = ¢1 = ¢3.)
Consider the following synchronous run R3 and two non-synchronous runs, R4 and R5.

R3 is a run such that (1) the configuration at the end of round f is y, (2) p; crashes in round f + 1
before sending any message, (3) if g3 # p; then g3 crashes before sending any message in round f + 2
and every message sent by g3 in round f + 1 is received in the same round, and (4) no process distinct
from p; and ¢3 crashes after round f. Since ¢ < n — 1, there is at least one correct process in R3, say
p;- Suppose p; decides v € {0, 1} in some round K’ > f + 1.7

R4 is a run such that (1) the configuration at the end of round f is y, (2) p; crashes before sending any
message in round f + 2, such that, in round f + 1, every message from p; to any process distinct from p;
and g3 is delayed until round K’ +1, (3) if g3 # p; then g3 crashes before sending any message in round
f + 2 and every message sent by g3 in round f + 1 is received in the same round, and (4) no process
distinct from p; and g3 crashes after round f. Notice that p; cannot distinguish the configuration at
the end of round f + 1 in R4 from z (because p; receives its own message in round f + 1), and thus, p;
decides 0 at the end of round f 4+ 1 in R4. However, p; cannot distinguish the configuration at the end
of round K’ in R4 from that in R3 because (1) at the end of round f the two runs are different only at
pi, and every round f + 1 messages from p; to processes distinct from p; and g3 are delayed until round
K'+1, and (2) p; and g3 do not send messages after round f + 1. Thus (as in R3) p; decides v at the
end of round K.

R5 is a run such that (1) the configuration at the end of round f is ¢/, (2) p; crashes before sending any
message in round f + 2, such that, in round f + 1, every message from p; to any process distinct from p;

"To see that p; cannot decide before round f + 1 in R3, notice that the state of p; at the end of round f is the same
in runs R(y), R(y') and R3. If p; decides v before round f + 1 in R3 then it also decides v in R(y) and R(y'). However,
Val(y) # Val(y').

and g3 is delayed until round K’ +1, (3) if g3 # p; then g3 crashes before sending any message in round
f + 2 and every message sent by g3 in round f + 1 is received in the same round, and (4) no process
distinct from p; and q3 crashes after round f. Notice that g3 cannot distinguish the configuration at the
end of round f + 1 in R5 from 2’ (because g3 receives the message from p; in round f + 1), and thus, g3
decides 1 at the end of round f + 1 in R5. However, p; cannot distinguish the configuration at the end
of round K’ in R5 from that in R3 because, (1) at the end of round f the two runs are different only
at p;, and all round f + 1 message from p; to processes distinct from p; and ¢3 are delayed until round
K'+1, and (2) p; and g3 do not send messages after round f + 1. Thus (as in R3) p; decides v at the
end of round K'.

It is easy to see that either R4 or R5 violates agreement: p; decides v in both runs, however, p;
decides 0 in R4 and ¢35 decides 1 in R5.

Case 3. p; € {q1,q3} and p; has crashed in either y or y’. Notice that the case p; = ¢1 = g3 is not
possible because, in that case, p; is alive in z and 2’, and hence in y and 3’. We show the contradiction
for the case when p; = ¢q1 # g3. (The contradiction for p; = g3 # ¢1 is symmetric.)

Since, p; = q1, p; is alive in 2z, and hence, alive in y. Thus p; has crashed in 9. Consider the following
non-synchronous run.
R6 is a run such that (1) the configuration at the end of round f is y, (2) p; crashes before sending any
message in round f + 2, such that, in round f + 1, every message from p; to a process distinct from
i, is delayed until round f + 2, and (3) no process distinct from p; crashes after round f. At the end
of round f + 1 in R6, p; = ¢1 cannot distinguish the configuration from z (because p; receives its own
message in round f 4 1), and therefore, decides 0 at the end of round f + 1 in R6. However, g3 does
not receive the round f + 1 message from p; in R6 (the message is delayed until the next round), and
furthermore, even in 2’ g3 does not receive the round f + 1 message from p; (because p; has crashed in
y"). Thus g3 cannot distinguish the configuration at the end of round f + 1 in R6 from 2’, and hence,
decides 1 in R6; a contradiction with agreement. O

A closer look at the proof of Proposition 4 reveals that the non-synchronous runs we construct (R4,
R5, and R6) have the following “weak synchrony” property: if a message from any process p; is delayed
in round k then p; crashes before sending any message in round k + 1. It is easy to see that such runs
are also valid runs in synchronous send-omission model as well as in an asynchronous round-by-round
model enriched with a Perfect failure detector. Thus the f+ 2 local decision lower bound in synchronous
runs also extend to these two models.

A matching algorithm in the eventually synchronous model. Figure 1 gives a consensus algo-
rithm Ay o in the eventually synchronous model which matches the f + 2 round global decision lower
bound (and hence, matches the local decision bound) in synchronous runs. Namely, the algorithm sat-
isfies the following property: (Fast Early Decision) For 0 <t < n/2, in every synchronous run of Ay o
with at most f failures (0 < f < t), every process which decides, decides by round f + 2.

For simplicity of presentation, A; o assumes an independent consensus algorithm C 8 accessed by
procedure proposec (). The fast decision property is achieved by A, regardless of the time complexity
of C. More precisely, our algorithm assumes: (1) the model ES with 0 < ¢t < n/2, (2) messages sent
by a process to itself is received in the same round in which it is sent, (3) an independent consensus
algorithm C in ES, and (4) the set of proposal values in a run is a totally ordered set, e.g., every process
p; can tag its proposal value with its index ¢ and then the values can be ordered based on this tag.

The processes invoke propose(*) with their respective proposal values, and the procedure progresses
in round. Every process p; maintains three primary variables:

8This algorithm can be any ©P-based or ¢S-based consensus algorithm (e.g., the one based on ¢S in [3]) transposed
to ES.

at process p;

1: procedure propose(v;)

2:

— =

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:

start Taskl; start Task 2

Task 1
STATE; < SYNCI ; est; < v;; Halt; < 0
for 1<k <t+2
send(k;, est;, STATE;, Halt;) to all
wait until received messages in this round
if received(k;, est’, DECIDE, *) then
send(k; + 1, est’, DECIDE, 0) to IT\p;; return(est’) {decision}
if STATE; € {SyNcCl, sYNC2} then
Halt; < Halt;U {p; | (p; received(k;, *, NSYNC, *) from p;) or
(pi received(k;, *, *, Halt;) from p; s.t. p; € Halt;) or (p; did not receive round k; message from p;)}
msgSet; < { m | m is a round k; message received from p; ¢ Halt;}
est; < Min{est | (k;, est, x, *) € msgSet;}
if (STATE; = SYNC2) and (|Halt;| < t) and (STATE = SYNC2 for every message in msgSet;) then
send(k; + 1, est;, DECIDE, @) to II\p;; return(est;) {decision}
if |Halt;| < k; — 1 then
STATE; 4— SYNC2
if k; < |Halt;] <t then
STATE; < SYNCI1
if |Halt;| >t then
STATE; ¢ NSYNC
if (STATE = NSYNC) and (received(k;, est’, SYNC2, x)) then
est; «+ est’
return(proposec (est;))

Task 2
upon receiving (k', est’, DECIDE, *) do
when k; = k' + 1: send(k;, est’, DECIDE, () to II\p;; return(est’) {decision}

Figure 1: A Consensus algorithm Ay o in ES

e STATE; at the end of a round denotes the fact that p; considers (a) the run to be non-synchronous
(STATE = NSYNC), (b) the run to be synchronous but p; cannot decide at the next round (STATE =
SsYNC1), (c) the run to be synchronous with a possibility of deciding at the next round (STATE =
SYNC2).

e est; is the estimate of the possible decision value, and roughly speaking, the minimum value seen
by p;.

e Halt; is a set of processes. At the end of a round, Halt; contains p; if any of the following holds
in the current round or in a lower round: (1) p; did not receive a message from p;, (2) p; receives
a messages from p; with STATE = NSYNGC, or (3) p; receives a messages from p; with p; € Halt;.

In the first £+ 2 rounds, the processes exchange these three variables and then updates their variable
depending on the messages received. We say that a message is a state S’ message, if it is sent with
STATE = S'. Figure 2 (optional appendix A.2) shows the rules for updating STATE in each round k.
At the end of round t + 2, if a process has not yet decided, then it invokes the underlying consensus
C with its est as the proposal value. The algorithm ensures the following elimination property: if a
process completes some round k < ¢t + 2 with STATE = SYNC2 and est = est’ and no process decides
in round £ or in a lower round, then every process which completes round k£ with STATE = SYNC1 has
est > est’, and every process which completes round k with STATE = SYNC2 has est = est’. (Processes
which complete round k with STATE = NSYNC may have est < est'.)

We now briefly discuss the agreement property of our algorithm assuming the elimination property.
(We give a detailed proof of correctness in optional appendix A.2.) If every process which decides, decides
at a round higher than ¢ 4+ 2 then agreement follows from the corresponding property of algorithm C.
Consider the lowest round k' < ¢ + 2 in which some process p; decides, say d. From line 14, at least
n — t processes (a majority) completes round k¥ — 1 with STATE = SYNC2, and hence, every process
which completes round k' receives a message with STATE = sYNC2 and est = d. From the elimination
property, processes which complete round k' — 1 with est < d have STATE = NSYNC. Notice that while
updating est for the next round, processes with STATE = SYNC1 or STATE = SYNC2, ignore messages
from processes with STATE = NSYNC (line 11, line 12). Therefore, every process with STATE = syncl
or STATE = SYNC2, updates est to d in round k' (line 13). Since a majority of processes sends round
k' messages with est = d and STATE = SYNC2, every process which completes round k' with STATE =
NSYNC receives such a message and updates est to d (line 22). Consequently, every process which
completes round k', does so with est = d, and no value distinct from d can be decided at round &’ or at
a higher round.

References

[1] Aguilera M. K. and Toueg S., A Simple Bivalency Proof that ¢-Resilient Consensus Requires ¢ + 1 Rounds.
Information Processing Letters (IPL), 71(3-4):155-158, 1999.

[2] Charron-Bost B. and Schiper A., Uniform Consensus Harder than Consensus. Technical Report
DSC/2000/028, Swiss Federal Institute of Technology in Lausanne, 2000.

[3] Chandra T. D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the
ACM (JACM), 43(2):225-267, 1996.

A

Dutta P. and Guerraoui R., The Inherent Price of Indulgence. Proc. 21st ACM Symposium on Principles of
Distributed Computing, (PODC’02), ACM Press, pp- 88-97, Monterey (CA), 2002.

Dutta P., Guerraoui R. and Pochon B., Early Local Decisions in Distributed Agreement. Technical Report ID:
200324, School of Computer and Communication Sciences, Swiss Federal Institute of Technology in Lausanne
(EPFL). Available at: http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_200324.pdf.

Dwork C., Lynch N. and Stockmeyer L., Consensus in the Presence of Partial Synchrony. Journal of the
ACM (JACM), 35(2):288-323, 1988.

Dolev D., Reischuk R and Strong R., Early stopping in byzantine agreement. Journal of the ACM (JACM),
37(4):720-741, 1990.

Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM (JACM), 32(2):374-382, 1985.

Gafni E., A Round-by-Round Failure Detector: Unifying Synchrony and Asynchrony. Proc. 17th ACM
Symposium on Principles of Distributed Computing, (PODC’98), ACM Press, pp. 143-152, Puerto Vallarta
(Mexico), 1998.

Hadzilacos V., On the relationship between the Atomic Commitment and Consensus problems. Proc. 9th
International Workshop on Fault- Tolerant Computing, Springer Verlag (LNCS 448), pp. 201-208, 1987.

Keidar I. and Rajsbaum S., Open Questions on Consensus Performance in Well-Behaved Runs. Future
Directions in Distributed Computing (FuDiCo), Springer Verlag (LNCS 2584).

Keidar I. and Rajsbaum S., A Simple Proof of the Uniform Consensus Synchronous Lower Bound. Informa-
tion Processing Letters (IPL), 85(1):47-52, 2002.

Lynch N., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

Lamport L., The Part-Time Parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133-169,
1998.

Lamport L. and Fischer M., Byzantine generals and transaction commit protocols. Technical Report 62, SRI
International, 1982.

Lamport L., Shostak R. and Pease M., The Byzantine Generals Problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382-401, 1982.

Moses Y. and Rajsbaum S., A Layered Analysis of Consensus. STAM Journal on Computing, 31(4):989-1021,
2002.

Optional Appendix

A.1 Proofs of Lemma 1 and Proposition 2

All

discussions in this section are in the context of subs.s: the model is synchronous and at most one

process can crash in every round. We denote a one round extension of a round k configuration C as
follows: for 1 < i < mand S C II, C.(3,S) denotes the configuration reached by crashing p; in round
k + 1 such that any process p; does not receive a round k + 1 message from p; if any of the following
holds: (1) p; = pi, (2) p; is crashed in C, or (3) p; € S; C.(0,0) denotes the one round extension of C
in which no process crashes. Obviously, (z,S) for i > 0 and S C Il is an applicable extension to C' if at
most ¢ — 1 processes have crashed in C' and p; is alive in C.

SC

A layer L(C) is defined as {C.(4, S)|i € II, S C II, (4, S) is applicable to C'}. For a set of configurations
at the same round, L(SC) is another set of configurations defined as UccscL(C). LF(SC) is

recursively defined as follows: L°(SC) = SC and for k > 0, L¥(SC) = L(L*1(SC)).

10

Two configurations C' and D at the same round are similar, denoted C' ~ D, if they are identical or
there exists a process p; such that (1) C and D are identical except at p;, and (2) there exists a process
p; # p; that is alive in both C' and D. A set of configurations SC' is similarly connected if, for every
C,D € SC there are states C = Cy, ..., Cy = D such that C; ~ Cjy1 for all 0 < ¢ < m.

All our lower bound proofs start from the following lemma, in subss or its variants. We present a
proof of the lemma, slightly modified from [12].

Lemma 1 For every binary consensus algorithm in subs.s and 0 < k < ¢, there are two configurations
y,y' € L¥(Init) such that (1) at most k processes have crashed in each configuration, (2) the configu-
rations differ at exactly one process, and (3) val(y) = 0 and val(y') = 1.

Proof: The proof of the lemma proceeds through two claims:

Claim 1(a): Let SC = L°(SC) be a similarly connected set of configurations in which no process has
crashed, then for all k¥ < t, L¥(SC) is a similarly connected set of states in which no more than k
processes are crashed in any configuration.

Proof: (A simple modification of the proof of [12].?) The proof is by induction on round number k.
The base case k = 0 is immediate. For the inductive step, assume that L¥~1(SC) is similarly connected
and in every configuration at most £ — 1 processes have crashed. Notice that in every extension which
is applicable to any configuration in L¥~1(SC), at most one new process can crash. Therefore, in every
configuration in L¥(SC) at most k processes have crashed.

We now show that for any configuration C' € L¥~1(SC), L(C) is similarly connected. Consider any
two configurations in L(C), C1 = C.(i,S1) and C2 = C.(j,52), where S1,52 C II, and p; and p; are
alive in C. We will show that C1 and C.(0,() are similarly connected. Using the same procedure,
we can show that C2 and C.(0,() are similarly connected, thus showing that C1 and C2 are similarly
connected.

C.(i,0) ~ C(0,0) since the configurations only differ at p;. If S1 = () then we are done. Otherwise,
let S1 = {q1,92,---,9m}. For 1 <1 < m, let S1; = {q1,...,q}, and S1p = 0. For 0 < [< m,
C.(4,81;) ~ C.(i,51;51) because the two configurations differ only at g;11. Thus C(%,0) = C.(i,S1p)
and C1 = C.(i, S1,,) are similarly connected.

It remains to be shown that if C ~ D and C, D € L¥~1(SC) then there are configurations C’ € L(C)
and D' € L(D) which are similar. Let p; be the process such that C' and D are different only at p;.
Then, configurations C.(z,1I) and D.(z,II) are identical because no process receives message from p; in
round k + 1.

Claim 1(b): In a similarly connected set SC of states, if there are states C' and D such that val(C) #
val(D), then there are two states C1, D1 € SC such that (1) C1 ~ D1 and (2) val(C1) # val(D1).

Proof: Suppose, by contradiction, in a similarly connected set SC' of states there are two states C and
D such that val(C) # val(D) and for every pair of similar states C'1,D1 € SC, val(C1) = val(D1).
Since C and D are similarly connected, there exist a set of sets, C' = Cy,C4,...,Cy, = D, such that,
for 0 <1 < m, C; ~ Cj31. From our initial assumption, and a simple induction, it follows that
val(Cy) = val(Cy) = ... =val(Cy,); a contradiction.

Proof of Lemma 1 continued. We use the well-known lemma that Init is similarly connected [8, 12].
Thus from Lemma 1, L¥(Init) is similarly connected. Consider the configuration C at round & of the

9The statement of the Claim is the same, however, the proof is different because we consider a subsystem different from
that of [12].

11

failure-free run in which all processes propose 1. Obviously, C € L¥(Init), and from consensus validity,
val(C) = 1. Similarly, consider the configuration D at round £ in the failure-free run in which all
processes propose 0. We have, D € L¥(Init) and val(D) = 0. Thus from Claim 1(a) and Claim 1(b),
at the end of round k there exists two configurations y and 3’ such that (1) at most k processes have
crashed in each configuration, (2) the configurations are similar, and (c) val(y) = 0 and val(y') = 1.
Since, val(y) # val(y'), the configurations cannot be identical. Thus they differ at exactly one process.
O

Proposition 2 Let 1 <t < n — 1. For every consensus algorithm and every 0 < f <t — 1, there is a
run with f failures in which no correct process decides before round f + 1.

Proof: Suppose by contradiction that there is a binary consensus algorithm A in subg.s and a round
number f such that 0 < f <t¢—1, and in every run with at most f failures, some correct process decides
before round f + 1. Consider the set of configurations of A at the end of round f: L(Init). From our
assumption it follows that in every configuration z € L7 (Init), there is an alive process p; which has
already decided. (Otherwise, since every correct process in r(z) is an alive process in z, 7(z) is a run
with f crashes in which no correct process decides before round f + 1.) Furthermore, p; decides val(z)
in z because p; is a correct process in r(z).

From Lemma 1 we know that there are two configurations v, 1y’ € L (Init) such that (1) at most f
processes have crashed in each configuration, (2) the configurations differ at exactly one process, say p;,
and (3) val(y) = 0 and val(y') = 1. From our assumption it follows that, in y, there is an alive process
g1 which has decided 0, and, in 3/, there is an alive process go which has decided 1. There are two cases
to consider.

(1) ¢1 # pi: As y and y' are identical at all processes different from p;, in y', ¢; is alive and has decided
0. Thus in r(y'), ¢1 is a correct process and decides 0. However, in r(y') every correct process decides
val(y') = 1; a contradiction.

(2) ¢1 = pi: We distinguish two subcases:

- g2 = p;: Thus p; = q1 = qo, and hence, p; is alive in y and y'. Consider a run 71 which extends y
and in which p; crashes before sending any message in round f + 1; i.e., 71 = r(y.(¢,II)). (Recall
that f <t —1). As p; has decided 0 in y, from agreement, it follows that every correct process
decides 0 in rl. Since ¢ < n, there is at least one correct process, say p; in rl. Now consider
a run r2 which extends ¢’ and in which p; crashes before sending any message in round f + 1;
i.e., 2 = r(y'.(i,II)). Notice that no correct process can distinguish between r1 and r2: no alive
process which is distinct from p; can distinguish y from 3/, and p; crashes before sending any
message in round f 4+ 1. Thus every correct process decides the same value in r1 and r2, in
particular p; decides 0 in 2. However, p; = g2 decides 1 in r2; a contradiction with agreement.

- @2 # p;: Then, go has the same state in y and 3/. Thus in y, ¢o is alive and has decided 1. In any
extension of y, p; = q1 has decided 0 and ¢ has decided 1; a contradiction with agreement.

A.2 Correctness of the consensus algorithm in Figure 1

The validity and termination properties of Ay 5 easily follow from the corresponding properties of the
underlying consensus algorithm C. We focus here on the agreement and the fast early decision proper-
ties. For presentation simplicity, we introduce the following notation. Given a variable val; at process

12

pi, we denote by val;[k] (1 < k <t+ 2) the value of the variable val; immediately after the completion
of round k; val;[0] denotes the value of val; immediately after completing line 4 (i.e., before sending any
message in round 1). We assume that there is a symbol undefined which is distinct from any possible
value of the variables in the algorithm Af o. If p; crashes before completing round k, then val;[k] =
undefined; if p; crashes before completing line 4, then val;[0] = undefined. In other words, if for any
variable val, val;[k] # undefined then p; has completed round k.

Lemma 5: Consider a process p; and a round 1 < k < t+ 2, such that STATE[k] € {SYNCI, SYNC2}
(pi completes round k with STATE = SYNCI or STATE = SYNC2). Let senderM Si[k] be the set of
processes which have sent the messages in msgSet;[k]. Then, sender M Si[k] = II — Halt;[k].
Proof: Process p; completes round k& with STATE = SYNC1 or STATE = SYNC2, and hence, updates
Halt and msgSet at line 11 and line 12 of round k, respectively. Consider any process p, € II.
There are two exhaustive and mutually exclusive cases regarding the message from p,, to p; in round k
(1<k<t+2):

- If p; does not receive the messages from p,, in round k, then from the third condition in line 11,
Pm € Halt[k], and from line 12, p,, € sender M S;[k].

- If p; receives the round the message from p,, in round k, then from line 12, p,, € sender M S;[k]| iff
Pm & Halt)[k]. O

Lemma 6. (Agreement) No two processes decide differently.

Proof. If no process ever decides then the lemma is trivially true. If every process which decides,
decide in algorithm C, then the lemma follows from the agreement property of C. Thus we consider
the case where some process decides within the first ¢ + 2 rounds. Consider the lowest round number in
which some process decides, say round k' +1 (< ¢+ 2). It is easy to see that, if some process decides v
in line 9 or line 27, then some other process has decided v in a lower round. Thus some process decides
at line 15 of round &’ + 1. We claim the following;:

Claim 6.1: (Elimination) If there are two processes py and p, such that STATE.[k'] € {SyNc1,sYNC2}
and STATEy[k'] = SYNC2 then esty[k'] > esty[k'].

[Proof of Lemma 6 cont.] We now complete the proof of agreement assuming Claim 6.1. We later
give the proof of Claim 6.1. Suppose that some process p,, decides d at line 15 of round ¥’ + 1. From
line 14 it follows that p,, has completed round k' with STATE = sYNC2 and est = d. Consider another
process p, which completes round &’ with STATE = SYNC2 and est = d'. In Claim 6.1, if we substitute
Pz by pw and py by p, then, d > d'. Similarly, if we substitute p, by p, and p, by p, then, d' > d.
Thus d' = d, and any process which completes round &' with STATE = SYNC2, does so with est = d.
Notice that every process which decides at line 15 in round &’ + 1, completes round &’ with STATE =
SsYNC2 and decides on its own est (line 14, line 15). Thus every process which decides in round k + 1
decides d. It remains to be shown that no process decides a different value in a higher round.

From line 14 we have |Halt,,[k' +1]| < ¢, and hence, Lemma 5 implies that msgSet,, [k’ + 1] contains
at least n — t messages, i.e., messages from a majority of processes. Furthermore, the last condition in
line 14 requires that all messages in msgSet,, [k’ + 1] has STATE = sYNC2. Applying Claim 6.1, we have,
in round k&’ + 1, messages from a majority of processes have STATE = SYNC2 and est = d, and every
message with STATE = SYNC1 has est > d.

Now consider the est value of any process p; at the end of round k' + 1. If STATE;[k’ + 1] = NSYNC,
then p; has received at least one message with STATE = SYNC2 and est = d (because a majority of
processes send such messages, and in every round, p; receives messages from a majority of processes),
and therefore, updates its est to d (line 22). If STATE;[k’ + 1] # NSYNC then Halt;[k' + 1] < ¢ (line 20).
Therefore, msgSet;[k' + 1] contains at least n — ¢ messages (Lemma 5). Furthermore, msgSet;[k’ + 1]

13

3. k-1 < | Halt | <t+1

m m» Halt | < k
4, k-1 <| Halt | <t+1
SYNC1 SYNC2
J 2.] Halt | <k \\
2. Rule 1

1. revd. DEC
5. | Halt|>
4.| Halt |>t
1. rcvd. DEC
A
NS:N\ /DEC
rcvd. DEC
not rcvd. DEC al ways

Rule 1: (| Halt | < t+1) and (every nsg. rcvd. has STATE = SYNC2)

At a given STATE, transition conditions are evaluated in the order of their nunbering

Figure 2: Rules for updating STATE at round k for process p; (algorithm Ay o)

contains no message with STATE;[k’ + 1] = NSYNC (line 11, line 12). Therefore, from Claim 6.1, every
message in msgSet;[k’' + 1] has est > d and at least one message with STATE = SYNC2 and est = d
(because a majority of processes sent messages with STATE = SYNC2 and est = d in round k' + 1).
Therefore, at line 13, p; updates est to d.

Thus every process which completes round k' + 1 updates its est to d, and every process which
decides at line 15 of round k' + 1, decides d. Now notice that the est value of a process at the end of
some round k is est value of some process at the end of round k¥ — 1 (1 < k <t + 2). Therefore, for
round k such that ¥’ +1 < k < ¢+ 2, no process completes round k with est different from d (D1).
Notice that if a process decides d’ at line 15 of round k such that ¥’ +1 < k <t + 2, then its est is d’
at the end of round k — 1. Therefore, from D1, d' = d. Furthermore, proposal value for the underlying
consensus algorithm C' at a given process p; is the est value of p; at the end of round ¢+ 2. Hence, from
D1, every proposal value for algorithm C is d, and from validity property of C, every process which
decides in algorithm C, decides d. O

Claim 6.1: If k' +1 < t + 2 is the lowest round in which some process decides then: if there are two
processes py and py such that STATE.[K'] € {SYNC1,SYNC2} and STATE,[k'] = SYNC2 then est,[k'] >
esty[k'].

Proof: Suppose by contradiction that there are two processes p, and p, such that

Assumption Al: STATE[K'] € {SYNCL,SYNC2}, STATE,[K'] = SYNC2, estz[k'] = ¢, esty[k'] = d, and

14

c <d.
We show Claims 6.1.1 to 6.1.7 based on the definition of k' and the assumption Al. Claim 6.1.4 con-
tradicts Claim 6.1.7, which completes the proof of Claim 6.1 by contradiction.

Let us define the following sets for 1 < k < k' + 1:

e Clk] = {pilestilk] < ¢} (Set of processes which complete round k with est < ¢.)
e crashed[k]= set of processes which crashes before completing round k.

e NSYN[k] = {pi|STATE;[k] = NSYNC}.

e Z[k] = C[k] U crashed[k] U NSY N|[k].

Additionally, let us define, C[0] to be the set of processes whose proposal value is less than or
equal to ¢, crashed|0] to be the set of processes which crash before sending any message in round 1,
NSYNJ[0] = 0, and Z[0] = C[0] U crashed[0] U NSY N[0]. We make the following observation:
Observation A2: |C[0]| > 1, and hence, |Z[0]| > 1. Otherwise, if every process proposed a value greater
than ¢, then estz[k'] > ¢ (contradicts Al).

Claim 6.1.1: (a) For 0 < k < k' — 1, (crashed[k] U NSY N[k]) C (crashedlk + 1] U NSY N[k + 1]).
(b) For 0 < k <K' —1,if p; ¢ (NSYN[k]U crashed[k]) then p; sends messages with STATE € {syNcl,
SYNC2} in round k and in the lower rounds.

Proof: (a) Suppose by contradiction that there is process p; such that p; € crashed[k] U NSY N|[k]
and p; ¢ crashedlk + 1] U NSY N[k + 1]. Obviously, crashed[k] C crashed[k + 1], and hence,p; ¢
crashedlk + 1] U NSY N[k + 1] implies p; ¢ crashed[k]. Then,p; € crashed[k] U NSY N[k] implies
p; € NSYNI[k], i.e., p; completes round k with STATE = NSYNC. Notice that by the definition of &'
(i.e., k' + 1 is the lowest round in which some process decides), p; does not decide in round &k + 1. Thus
the STATE of p; remains NSYNC at the end of round &k + 1, i.e., p; € NSY N[k + 1]; a contradiction.
(b) If p; ¢ (NSY N[k] U crashed[k]), then from 6.1.1.a, it follows that, p; ¢ (NSY N[k1] U crashed[k;])
for 0 < ky < k; i.e., p; completes every round lower than round k with STATE # NSYNC. Thus p; cannot
send message with STATE # NSYNC in round & or in a lower round. |

Claim 6.1.2: Z[k] C Z[k+1] (0 < k < k' — 1).

Proof: Suppose by contradiction that there is a process p; and a round number k such that p; € Z[k]
and p; ¢ Z[k+1]. Since p; ¢ Z[k+ 1], then p; ¢ crashed[k+1]UNSY N[k+1]. Applying Claim 6.1.1.a,
we get p; ¢ crashed[k] U NSY N[k]. However, p; € Z[k] = C[k] U crashed[k] U NSY N[k], and hence,
p; € C[k].

Since p; ¢ crashed[k], p; ¢ NSYN[k], and p; € C[k], p; sends round k + 1 message m' with est < ¢
and STATE # NSYNC. As p; ¢ crashed[k+1]UNSY N[k+1], so p; evaluates est in line 13 of round &'+ 1.
From Claim 6.1.1.b and p; ¢ NSY N[k], it follows that p; never sends a message with STATE = NSYNC at
round k or at a lower round. Since a process always receives the message sent to itself without a delay
and p; never sends a message with STATE = NSYNC at round k or at a lower round, p; ¢ Halt;[k + 1].
Applying Lemma 5 we have, p; € sender M S;[k + 1], and therefore, m’' € msgSet;[k + 1]. Thus when p;
evaluate est in round k + 1, it consider message m' with est < ¢, and hence, adopts a values less than
equal to c as the new est. Thus p; € C[k + 1] C Z[k + 1]; a contradiction. O

Claim 6.1.3: 0 < k < k' — 1,Vp; ¢ Z[k + 1], Z[k] C Halt;[k + 1].

Proof: Consider a process p; € Z[k] and a process p; ¢ Z[k + 1]. In round k + 1, msgSet;[k + 1] either
contains a message from p; or does not contain any message from p;. In the second case, Lemma 5

15

implies that p; € Halt;[k + 1]. Consider the case when msgSet;[k + 1] contains a message m from p;.
From line 11 and line 12, it follows that, m has STATE # NSYNC, and hence, p; ¢ NSY N[k]. Further-
more, p; sent a message in round k + 1, and so, p; ¢ crashed[k]. Thus p; ¢ crashed[k] U NSY N[k] but
pj € Z[k]. So, p; € C[k]. Thus m has est < ¢, and hence, est;[k+1] < c. Thus p; € Clk+1] C Z[k+1];
a contradiction. Thus msgSet;[k + 1] does not contain a message m from p;. O

Claim 6.1.4: |Z[K' —1]| <k —1.

Proof: Suppose by contradiction |Z[k' — 1]| > k' — 1. From Al, it follows that p, ¢ Z[k']. Therefore,
from claim 6.1.3, Z[k' — 1] C Halt,[k"]. Hence, |Halt,[k']| > k' — 1. However, STATE,[k] = SYNC2 im-
plies that |Halt,[k']] < k' — 1 (line 16, line 17), a contradiction.]

Claim 6.1.5: p, € Z[k] and p, ¢ Z[K' —2].
Proof: As estz[k'] = ¢, so py € C[K'] C Z[K'].

For the second part of the claim, suppose by contradiction that p, € Z[k' — 2]. From Claim 6.1.3,
for every process p; ¢ Z[k' —1], py € Halt;[k' —1]. Therefore, in round &', if any process in I — Z[k' — 1]
sends a message m, then p, € m.Halt (where, m.Halt denotes the Halt field of m). If p, receives m
then it includes the sender of m in Halt, (condition 2, line 11), and even if p; does not receive m then
it includes the sender of m in Halt, (condition 3, line 11). Thus II — Z[k' — 1] C Halt,[k']. Using,
Claim 6.1.4, |Halt,[K']| > |11 — Z[K' —1]| > n— (K’ — 1). Since k' +1 < t+ 2 and t < n/2, we have
|Halty[k']| > n —t > t. However, |Halt,[k']| > ¢ implies that STATE,[k'] = NsYNC (line 20, line 21); a
contradiction. O

Claim 6.1.6: (1) For every k such that 0 < k < k' —3: Z[k] C Z[k + 1]. (Z[k] is a proper subset of
Zk+1]). (2) |1Z[K' - 2]| > K — 1.
Proof: (1) Recall from Claim 6.1.2 that Z[k] C Z[k + 1] (0 < k < k' — 1). Suppose by contradiction
that there is a round number s (0 < s < k' — 3), such that Z[s] = Z[s + 1].

We first show by induction on the round number k that, for s+1 < k <k —1, C[k] - (NSYN[k]U
crashed[k]) D Clk + 1] — (NSY N[k + 1] U crashed[k + 1]).

Base Case (k = s+1): C[s+1]—(NSY N[s+1]Ucrashed[s+1]) D C[s+2]—(NSY N[s+2]Ucrashed[s+2]).
Suppose by contradiction that there is a process p; such that p; € C[s+2]—(NSY N[s+2]Ucrashed[s+2])
(A4) and p; ¢ C[s + 1] — (NSY N|[s + 1] U crashed[s + 1]) (A5).

A4 implies that p; ¢ NSY N[s+2]Ucrashed[s+2]. Applying Claim 6.1.1, we have p; ¢ NSY N[s+
1]Ucrashed[s+1], and therefore, from A5 it follows that p; ¢ C[s+1]. Thus p; completes round s+1 with
est > c. Furthermore, A4 implies that p; € C[s + 2], and hence, p; completes round s + 2 with est < c.
So, msgSet;[s + 2] contains a message with est < ¢ from some process p; (i.e., p; € sender M S;[s + 2]).
From the definition of Z[s + 1], it follows that p; € C[s 4+ 1] C Z[s + 1].

As p; ¢ NSY N[s + 1] U crashed[s + 1] and p; ¢ C[s + 1], so from the definition of Z[s + 1] we have
p; ¢ Z[s+1]. Claim 6.1.3 implies that Z[s] C Halt;[s + 1]. Recall that we assumed Z[s] = Z[s+ 1] and,
from line 11, Halt;[s+1] C Halt;[s+2]. Therefore, Z[s+1] C Halt;[s+2]. Thus p; € C[s+1] C Z[s+1]
implies that p; € Halt;[s + 2]. Therefore, p; € sender M S;[s + 2] N Halt;[s + 2].

As p; ¢ NSY N|[s + 2] U crashed|[s + 2], then p; completed round s + 2 with STATE = SYNC1l or
STATE = SYNC2. From Lemma 5 it follows that senderM S;[s + 2] N Halt;[s + 2] = (. However,
pj € sender M S;[s + 2] N Halt;[s + 2]; a contradiction.

Induction Hypothesis (s+1 <k <r <k'—1): Clk]—(NSY N[k]Ucrashed[k]) 2 Clk+1]—(NSY N[k +
1] U crashed[k + 1]).

16

Induction Step (k=r+1): C[r+1] — (NSYNJr + 1] U crashed[r +1]) D C[r + 2] — (NSY N[r + 2] U
crashed[r+2]). Suppose by contradiction that there is a process p; such that p; € C[r+2]— (NSYN[r+
2] U crashed[r + 2]) (A6) and p; ¢ C[r + 1] — (NSY N[r + 1] U crashed[r + 1]) (A7).

As in the base case, using A6, A7, and Claim 6.1.1, we can show p; ¢ NSY N|[r+2]Ucrashed[r + 2],
pi ¢ NSYN[r + 1] U crashed[r + 1], and p; ¢ C[r + 1]. Thus p; ¢ Z[r + 1]. Since s+ 1 < r + 1, from
Claim 6.1.2, we have Z[s + 1] C Z[r + 1], and therefore, p; ¢ Z[s + 1].

Applying Claim 6.1.3 on p; ¢ Z[s + 1] implies that Z[s] C Halt;[s + 1]. Recall that we assumed
Z[s] = Z[s + 1], and from line 11, Halt;[s + 1] C Halt;[r + 2]. Therefore, Z[s + 1] C Halt;[r + 2] (A8).

From induction hypothesis, we have (C[s + 1] — (NSY N([s + 1] U crashed[s + 1])) 2 (C[r + 1] —
(NSY N[r+1]Ucrashed[r+1])). From the definition of Z[s+1], C[s+1]—(NSY N[s+1]Ucrashed[s+1]) C
Cls+1] C Z[s+ 1], and therefore, C[r + 1] — (NSY N[r + 1] U crashed[r + 1]) C Z[s+ 1]. Applying A8,
we have (C[r + 1] — (NSY N|[r + 1] U crashed[r + 1])) C Halt;[r + 2] (A9).

As p; ¢ Z[r + 1], p; completes round r + 1 with est > c¢. Furthermore, A6 implies that p; € C[r + 2],
and hence, p; completes round r + 2 with est < c¢. Therefore, msgSet;[r + 2] contains a message with
est < ¢ from some process p; (i.e., p; € sender M S;[r + 2]). From the definition of Z[r + 1], it follows
that p; € Clr + 1] C Z[r + 1].

As the round r + 2 message of p; is in msgSet;[r + 2], so from line 11 it follows that the message
sent by p; had STATE # NSYNC. Therefore, p; ¢ NSY N[r + 1] and p; ¢ crashed[r + 1]. Therefore,
pj € C[r+1] — (NSY N|r + 1] U crashed[r + 1]). From A9 it follows that p; € Halt;[r + 2.

As p; ¢ NSYN|[r + 2] U crashed[r + 2] (from A6), so p; completed round r + 2 with STATE =
SYNCl or STATE = SYNC2. Lemma 5 implies that sender M S;[r + 2] N Halt;[r + 2] = 0. However,
pj € sender M S;[r + 2] N Halt;[r + 2]; a contradiction.

From the above result, we have (C[k' —2]— (NSY N[k’ —2]Ucrashed[k' —2])) D C[k']— (NSY N[K'|U
crashed[k'])). From Al, p, € C[k'] — (NSYNIK'] U crashed[k'])). From Claim 6.1.5, we have p, ¢
Z[K' —2] O (C[K - 2] = (NSYNI[K' — 2] U crashed[k’ — 2])). Therefore, there is process in C[k'] —
(NSY N[Kk'|Ucrashed[k']) which is not in C[k' — 2] — (NSY N[k’ — 2] U crashed[k’ — 2]); a contradiction.

(2) Part (1) of this lemma implies that for every k such that 0 < k <k’ —3,|Z[k + 1]| — |Z[k]| > 1.
From A4 that |Z[0]| > 1. Therefore, |Z[k' —2]| > k' — 1. 0

Claim 6.1.7: |Z[k' —1]| > k' — 1.

Proof: Suppose by contradiction that |Z[k' —1]| < k' — 1. Since Z[k' —2] C Z[k' — 1] (Claim 6.1.2) and
Z[K' — 2]| > k' — 1 (Claim 6.1.6.b), we have Z[k' — 2] = Z[k' — 1] and |Z[k' — 2]| = |Z[K' — 1]| = k' — 1
(A10).

From Claim 6.1.5 that p, ¢ Z[k' — 2] = Z[k' — 1]. Applying Claim 6.1.3, we have Z[k' — 2] C
Haltz[k' —1]. As Z[K' — 2] = Z[k' — 1] (from A10), it follows that Z[k' — 1] C Halt,[k' — 1].

Since, p, ¢ Z[k' —1], p, completes round k' —1 with est > ¢ and STATE # NSYNC. From A1, we also
know that p, completes round k' with est < ¢ and STATE # NSYNC. Therefore, msgSet,[k'] contains a
message, say from process p;, with est < ¢ (i.e., p; € sender M S;[k']). From the definition of C[k’ — 1],
pj € C[k' —1] C Z[k' — 1]. However, we showed earlier that Z[k' — 1] C Halt,[k' — 1], and from line 11,
it follows that Halt,[k' — 1] C Halt,[k"]. Thus Z[k' — 1] C Halt,[k'] and p; € Halt,[k'].

From A1, we know that p, completed round k' with STATE = SYNC1 or STATE = SYNC2. Therefore,
Lemma 5 implies that senderMS,[k'] N Halty[k'] = 0. However, p; € senderMS;[k'] N Halty[k']; a
contradiction. O

Lemma 7. In a synchronous run, consider any process p; which completes round k < t + 2. Ewvery
process in Halt;[k] crashes before completing round k.
Proof. Let H[l] (0 <1 <t+ 2) be the union of Halt;[l] such that Halt;[l] # undefined. We claim the

17

following which immediately implies the lemma: FEwvery process in H[l] (0 <1 < t+ 2) crashes before
completing round .

We prove the claim by induction on round [. For [= 0, the lemma is trivially true, because H[l] = ()
(base case). Suppose that the claim is true for 0 <1 <[1—-1 < ¢t+1: every process in H[l] crashes before
completing round ! (induction hypothesis). Consider H[I1] (induction step). If H[I1] — H[I1 - 1] =0
then the induction step is trivial. Suppose by contradiction that there is process p; € H[I1] — H[I1 — 1]
such that p; completes round /1. Thus there is a process p, such that p; ¢ H,[l1 — 1] and p; € H,[l1].

Since p; completes round /1 and the run is synchronous, in that round, p, must have received the
round /1 message m of p;. Since, p; € H,[m], m contains either (a) STATE = NSYNC or (b) Halt; such
that p, € Halt;. Now, we show both the cases to be impossible and thus prove the induction step by
contradiction.

From our assumption, for every round lower than /1, every process in Halt; has crashed. Since more
than ¢ processes cannot crash in a run, in rounds lower than /1, |Halt;| is never more than t. Thus p;
can not update its STATE to NSYNC in rounds lower than /1 (line 20). Thus the round /1 message from
pj does nor contain STATE = NSYNC.

If the round /1 message from p; contains Halt; such that p, € Halt; then p, € Halt;[l1 — 1] C
HJ[I1 — 1]. However, from our assumption, every process in H[l1 — 1] crashes before completing round
[1 — 1, which implies that p, crashes before completing round /1 — 1; a contradiction. O

Lemma 8. (Fast Early Decision) In every synchronous run of Ay o with at most f failures (0 < f <
t < n/2), every process which decides, decides by round f + 2.

Proof. Consider a synchronous run in which at most f processes fail. From Lemma 7, |Halt| at every
process is less than or equal to f in the first ¢ + 2 rounds (A11). Suppose by contradiction that some
process p; completes round f + 2 but does not decides in that round. Then, either (1) STATE;[f + 2] =
NSYNC, or (2) some process p; sent a message in round f + 2 with STATE = syNcl. For case 1 to hold,
|Halt;| >t in round f + 2 or a lower round (line 20), which clearly violates Observation All. For case
2 to be true, STATE;[f + 1] = sYNC1, and therefore, |Halt;[f + 1]| > f + 1 (line 18), which contradicts
A1l as well. m|

18

