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Abstract

This paper presents a multicast algorithm for peer-to-
peer dissemination of events in a distributed topic-based
publish-subscribe system, where processes publish events of
certain topics, organized in a hierarchy, and expect events
of topics they subscribed to. Our algorithm is “data-aware”
in the sense that it exploits information about process sub-
scriptions and topic inclusion relationships to build dy-
namic groups of processes and efficiently manage the flow of
information within and between these process groups. This
“data-awareness” helps limit the membership information
that each process needs to maintain and preserves processes
from receiving messages related to topics they have not sub-
scribed to. It also provides the application with means to
control, for each topic in a hierarchy, the trade-off between
the message complexity and the reliability of event dissem-
ination. We convey this trade-off through both analysis and
simulation.

1. Introduction

Many distributed applications are best supported by pub-
lish/subscribe infrastructures that ensure the dissemina-
tion of eventsfrom publisherprocesses tosubscriberones.
The matching between publishers and subscribers is typi-
cally achieved through eventtopics. All topic-based pub-
lish/subscribe systems, including the very early ones,
e.g., TIBCO [24] and Vitria [23], as well as more re-
cent ones, e.g., TPS [7] and JORAM [16], organize
these events in a hierarchical manner. Ideally, we ex-
pect from a topic-based publish/subscribe infrastruc-
ture that all processes that subscribe to a given topic
receive all events produced on that topic (i.e.,reliabil-
ity), and no process receives any event of a topic it is not
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interested in1 (i.e., avoiding “parasite” messages). Fur-
thermore, we would like to minimize the total number
of messages sent in the system (i.e.,message complex-
ity), while reducing the size of the membership knowledge
each process needs to maintain (i.e.,memory complex-
ity).

Gossip-based (or so called epidemic) information dis-
semination algorithms ([13, 2]) are appealing candidates
to support some of these requirements. They indeed limit
the total number of messages sent in the system and can
be tuned to limit the memory complexity of every pro-
cess [8], while ensuring good overall reliability. Neverthe-
less, gossip-based algorithms are inherently best suited for
broadcastingwithin a group of processes. When viewing
the set of publisher and subscriber processes involved in an
application as such a group, processes receive many parasite
messages regarding events of topics they are not interested
in. A breakdown of this group into smaller groups, corre-
sponding each to a topic, is an appealing alternative, but
it increases memory complexity. Indeed, by mapping top-
ics arranged in a hierarchyto groups, every group gathers
either exactly (1) thepublishersof a topic, or (2) thesub-
scribersof a topic. With (1), a subscriber for a topicTi has
to become member, not only of the group representingTi,
but also of every group representing a subtopic ofTi. As a
consequence, this subscriber has also to be informed about
the creation of any new subtopics ofTi. With (2), a pub-
lisher of a topicTi has to publish its events not only within
the group representingTi, but within every group repre-
senting a supertopic ofTi. This increases the load on the
publishers and makes of these single points of failures. Per-
forming selective gossiping based on messagecontents(and
viewing topics as a particular instance thereof), as in [6],
might look like a viable alternative at first glance. However,
this approach makes it impossible to reduce memory com-
plexity without introducing parasite messages, i.e., without
forcing processes to receive and participate in the dissemi-
nation of events beyond their own interests.

We present in this paper a decentralized multicast algo-

1 A processpl is said to beinterestedin a topicTi, if pl either wants to
publish an event of topicTi, or if pl has subscribed toTi.
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rithm that isdata-awarein the sense that it makes use of
information about the hierarchical disposition of topics2 to
dynamically create groups of processes, according to their
interests, and interconnect these groups based on inclusion
relations between topics. Published events are propagated
within every group in a gossip-based manner, and dissemi-
nated between groups following a bottom-up approach im-
posed by the topic hierarchy. Thisdata-awareness, com-
bined with an underlying membership technique, ensures
the following properties. (1) The complexity memory of
each process interested in a topicTi is in the order of
ln(STi) + cTi + zTi (hereSTi denotes the number of pro-
cesses which are interested in the topicTi andcTi , zTi de-
note constant values for eachTi and are explained in more
details later); (2) The application can trade, for every topic
of the hierarchy, the message complexity of the dissemina-
tion with the reliability of this dissemination; (3) The num-
ber of messages required for the publication of an event
(i.e., message complexity) of topicTi grows only in the
order ofO(STmax

· ln(STmax
)), whereTmax denotes the

(super-)topic ofTi with most subscribers; (4) No parasite
message is ever received; (5) No central server is relied
upon. In the extreme case where no topic relationship in-
formation is available (or if there is only one topic of in-
terest in the system) ourdata-aware multicastalgorithm
(daMulticast for short) falls back into a traditional mem-
bership algorithm (e.g., [2, 8, 10]) with no degradation (in
terms of reliability, memory complexity, message complex-
ity and latency complexity).

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 describes our model. Sec-
tion 4 describesdaMulticast. Section 5 analysis our algo-
rithm by comparing its performance with alternative ap-
proaches. Section 6 gives some simulation results, and Sec-
tion 7 some concluding remarks. For space limitations, the
complete description ofdaMulticastand exhaustive evalua-
tion is given in [1].

2. Related Work

2.1. The newsgroup propagation algorithm

NNTP (Network News Transfer Protocol, [12]) is the al-
gorithm commonly used for disseminating events in news-
groups. This algorithm takes into account the topics of
the events sent in the system to disseminate them to the
right set of subscribers. However, in NNTP, each pub-
lisher/subscriber must choose a server that will collect its
publications/subscriptions. This server ends up being a per-

2 Which is anyway available in most publish/subscribe systems we
know of [7, 16, 24, 23].

formance bottleneck and a single point of failure. In com-
parison,daMulticastis completely decentralized.

2.2. Gossip-based algorithms

Various gossip-basedalgorithms, (e.g., [2, 15, 8, 10])
have been proposed in the literature. As pointed in the intro-
duction, these offer good reliability while requiring a total
number of messages that is only in the order ofO(n · ln(n))
to disseminate an event in a group ofn processes. They
can thus be efficiently used to propagate events within sub-
groups representing topics. By not taking into account rela-
tionships between topics, they incur, however, large mem-
ory complexity overhead. The approach described in [11]
exploits overlapsbetween the groups of processes (when
processes are parts of several groups) to limit the participa-
tion of a process in gossiping events. This does not circum-
vent the issue of inclusion relations between topics that mo-
tivated our approach, but is useful when processes are inter-
ested in many distinct topics, and could hence be combined
with daMulticast.

2.3. P2P multicast algorithms

Publish/subscribe interaction can also be built on “tra-
ditional” P2P unicast algorithms, e.g., Scribe [22] (on
Pastry [21]) and HiCAN [20] (on CAN [19]). These al-
gorithms are all based on spanning trees and are sensi-
tive to failures of processes located at the nodes of those
trees. Even if fault-tolerance mechanisms can be used,
these are resource-consuming and the node processes must
have more bandwidth and processing power than regu-
lar processes. Moreover, just like the above-mentioned
gossip-based approaches, none of these algorithms consid-
ers the hierarchical disposition of topics, leading to high
memory complexity and/or parasite messages.

2.4. Content-based systems

SIENA [4] and Gryphon [17] are two examples of
Internet-scale event notification services based on content-
based routing mechanisms. None of them is comparable
with our algorithm. In our case, we limit the content in-
volved in filtering to a single topic. In addition, unlike in
[4, 17], our algorithm does not rely on any network of ded-
icated application-level routers (“brokers”) used to achieve
efficient content-based filtering. In [17], process subscrip-
tions are matched to IP multicast groups and therefore the
maintenance and the creation of the matching between in-
terests and IP multicast groups must involve all processes
and is maintained by a central server (a single point of fail-
ure). In [4], the published events are routed from the more



general filter to the most specific one: brokers responsi-
ble for a general filter are heavily loaded. In Hermes [18],
the propagation of events is also done with the help of bro-
kers and follows a top-down approach: a parent type
must keep a reference to all its descendants. This can be-
come cumbersome if the number of descendants changes
continuously (issue not raised withdaMulticast). In PM-
cast [6], the processes are arranged into a hierarchy to
(1) reduce the memory complexity of each process and
(2) to perform efficient filtering without the help of bro-
kers. However, the processes elected to accomplish the
actual filtering receive parasite messages and must be ca-
pable of handling a large number of events. Moreover,
while PMcast addresses the problem of routing and fil-
tering of messages based on theirindividual content,
daMulticastdeals with routing of messages associated ex-
plicitly with global topics.

3. System Model

3.1. Topics, processes and notations

A processpl is said to beinterestedin a topicTi (e.g.,
.dsn04.reviewers) if pl either wants to publish an event of
topic Ti, or if pl has subscribed to topicTi. For presenta-
tion simplicity, we assume that a process is interested in one
topic Ti in the topic hierarchy only (and as a consequence
to all subtopics ofTi). A processpl communicates with an-
other processpm via unreliable, i.e., best effort, channels
and processes might crash and recover (a process that is not
crashed is said to be “alive”). We denote byΠTi

the group of
all processes that are interested in topicTi. Theroot groupis
the group of processes interested in the root topic (i.e.,“.” ).
Overloading our symbols, we also denote byTi the group
of processes interested inTi. The number of processes in a
group is denoted bySTi

which represents the cardinality of
ΠTi

. The direct supertopic ofTi is denoted bysuper(Ti).
For instance, in.dsn04.reviewers, dsn04is the supertopic of
reviewers. Only the root topic has no supertopic. The depth
of a topic hierarchy is equal tot. In this paper, we talk about
inclusionsof topics when a topicTa is a supertopic (direct
or not) ofTb (in this caseTa includesTb). Finally, we say
thatpk (∈ ΠTj

) is asuperprocessof a processpl (∈ ΠTi
) if

pk is interested in a topicTj that includesTi (in whichpl is
interested).

A published event of a specific topicTi is denoted byeTi
.

The topic tablefor a specific topicTi of a processpl, de-
noted byTablelTi

, contains information about processes in-
terested inTi. Thesupertopic tablefor a specific topicTi of
a processpl, denotedsTablelTi

, contains information about
processes interested insuper(Ti) or, if no process is inter-
ested insuper(Ti) (i.e., no direct superprocess(es) exist(s)),
information about processes interested in the next immedi-

ate supertopic ofTi, according to the topic hierarchy level,
that includesTi.

3.2. Topic/group pattern

Consider an event of topicTb published by a processpb,
and another processpa subscribing to topicTa, whereTa

is the supertopic ofTb. There are two straightforward ways
according to which an event of topicTb can be transmit-
ted topa: (1) a group is created for thepublishers of a topic
(this is done for each topic and corresponds to the dashed
arrows in Figure 1); a subscriber (pa) of topic Ta becomes
a member of the groupTa and member of all the groups
of the subtopics ofTa (in this caseTb). When an event of
topic Tb is published, this event is only disseminated in the
groupTb. (2) A group is created for thesubscribers of a
topic (this is also done for each topic and corresponds to
the plain arrows scenario of Figure 1); the subscriberpa for
topicTa becomes only a member of the groupTa and when
an event of topicTb is published, this event is disseminated
in the groupTb and to all the groups of all the supertopics of
Tb. The first solution overloads the subscribers, whereas the
second overloads the publishers (they must publish in sev-
eral groups).DaMulticastprovides an optimized variant of
the second pattern to achieve a better load distribution, for
both the publishers and the subscribers (dotted arrows of
Figure 1).

Tb

Ta

eTb

eTb

eTb

eTb

pb publish(eTb
)

pa subscribe(Ta)

Figure 1. Publication/subscription alterna-
tives.

3.3. Gossiping and membership protocols

DaMulticast relies on the gossiping technique of [14].
Basically, with this technique, each process gossips an event
to ln(STi) + cTi target processes and the probability that a

process receives the event goes toe−e
−cTi asSTi goes to

infinity. Thus, any membership protocol that maintains, at
each process, a membership table of minimal sizeln(STi

)+
cTi

(e.g., [14]), can be enhanced withdaMulticast, to sup-
port topic hierarchies. Throughout the paper, we will as-
sume such an underlying membership protocol.



4. The algorithm

In the following, we present ourdaMulticastalgorithm.
For space limitation we do not provide here the code of
the algorithm. The interested reader can refer to the full pa-
per [1].

4.1. Overview

4.1.1. Specification.In short,daMulticastis a probabilis-
tic multicast algorithm. In this sense, it ensures the fol-
lowing properties: (1) Validity: if a correct processpl (∈
ΠTi) gossips an eventeTi , then some correct processpk

(∈ ΠTj , whereTj includesTi, or Tj == Ti) eventually
deliverseTi

; (2) Probabilistic Integrity: for any eventeTi
,

there is a high probability such that every correct process
pk (∈ ΠTj

, whereTj includesTi, or Tj == Ti) deliverseTi
,

at most once, and only ifeTi
was previously multicast by

pl (∈ ΠTi). (3) Probabilistic Agreement: If a correct pro-
cesspl (∈ ΠTi) deliverseTi , then there is a high probabil-
ity such that every correct processpk (∈ ΠTj

, whereTj in-
cludesTi, or Tj == Ti) eventually deliverseTi

.

4.1.2. Process grouping and membership.We take into
account the hierarchy of the topics to limit the membership
information a process maintains. The processes are split into
groups representing the topics they are interested in. These
groups are created and maintained dynamically when the
processes join or leave the system. To join a group, a pro-
cess goes through an initialization phase to initialize the
topic and the supertopic tables (that compose the member-
ship table) for that process (see Section 4.2.1). Once the pro-
cess has joined a group, the underlying membership algo-
rithm takes care of maintaining consistent topic tables and a
pro-active algorithm is used to keep the supertopic table up-
dated (see Section 4.2.2). Processes can dynamically join
and leave the groups.

4.1.3. Event dissemination.The dissemination of an
event is depicted in Figure 2. Namely, a processp1 sends
its events to at least one process,p2, from its super-
topic table and thenp1 gossips the event to the processes
(p3, p4) in its group. When a process (p2, p3 or p4) re-
ceives the event for the first time, it gossips the event
within its group and, with a certain probability, dissem-
inates the event to some process in its supertopic table.
As long as there is a supertopic with interested pro-
cesses, the event shifts up to the next supertopic group.
When the event reaches the root group, the processes re-
ceiving the event only gossip it in their group. Note that it
is not mandatory for a publisher (p1) to ensure the propaga-
tion of the events into its supergroup. If it fails to do so, an-
other process (herep4) from the group does the job for
it. This implies that, once a publisher (p1) has transmit-

ted its event to at least another process in its group, it can
leave this group.

Tb

Tc

Ta

p3

p4p1

p2
Tb

Tc

Ta

Topic hierarchy

Figure 2. Dissemination in daMulticast .

4.2. Membership

4.2.1. Membership tables.In daMulticast, every process
interested in a topicTi maintains information about other
processes interested in the topicTi and the direct super-
topic super(Ti). The identifiers (IDs) of processes inter-
ested inTi are stored in a topic table (TablelTi

) and is main-
tained by the underlying membership algorithm. The sec-
ond table (supertopic table,sTablelTi

) contains IDs of sev-
eral processes interested in the supertopic of the topic of in-
terest.3 This table has a constant sizezTi

.

4.2.2. Linking topics and supertopics.If a process in
groupTi receives an event, it is responsible for disseminat-
ing this event to other processes of that group. The events
are also disseminated to the processes interested in topic
super(Ti), because events of topicTi are also of topic
super(Ti). The question here is how to make the link be-
tween the groupTi and the groupsuper(Ti).4 This prob-
lem can be separated into two sub-problems: (1) creating
links between the different groups, in initializing the super-
topic tables (Figure 3) and (2) maintaining the information
of the supertopic tables consistent.

Taking care of only its direct supertopic is very appealing
because in this case, new subtopics can be added dynami-
cally into the system in a completely transparent manner for
the superprocesses (the superprocesses do not have to main-
tain any membership information about subprocesses to re-
ceive events from them). Moreover, the processes have to

3 It may happen that the supertopic table does not contain IDs of pro-
cesses interested in the direct supertopic of the topic of interest. See
Section 4.2.2 for a complete explanation.

4 Two groups (Ti andsuper(Ti)) are said to be linked if there exists at
least one process inTi that can send a message to a member in group
super(Ti).



take care of only two membership tables, irrespective of the
total number of topics in the same topic hierarchy and al-
lows dynamic changes of the topic hierarchy. If this hierar-
chy contains only one topic,daMulticastdoes not use the
initialization (1) and maintenance (2) algorithms and hence
simply falls back into the underlying membership algorithm
with no degradation.

Bootstrapping.If a process that wants to join the system is
provided with contacts belonging to the groupsuper(Ti),
then the link is directly established. This bootstrap mecha-
nism is unfortunately not always feasible in dynamic sys-
tems. The second possibility is for the process to ask, via an
initialization message specifying the topic of interest, other
processes, about processes that are interested insuper(Ti)
and so on recursively until a process interested insuper(Ti)
is found (the initialization message can contain a time to
live indication (TTL) to not flood the network). As soon as
a process is found, the supertopic table can be initialized.

Of course, it may happen that no such process ex-
ists. In this case, the fact that no process is interested in
super(Ti) does not imply that no process is interested in
super(super(Ti)) or any of its supertopics.5 A new initial-
ization message is sent and it specifies two topics of inter-
ests:super(Ti) and super(super(Ti)). Again, if no pro-
cess interested in eithersuper(Ti) or super(super(Ti))
has been found, after the timeout of the message, the
scope of the search is enlarged by adding, to the initial-
ization message, the supertopic of the previous topic of
interest, and so on until the root topic is contained in the ini-
tialization message.

As soon as a process interested in one of the topics spec-
ified in the initialization message is found, the supertopic
table is initialized with this process.6 However, it may hap-
pen that this process is not interested insuper(Ti) but in-
stead in a supertopic ofsuper(Ti). In this case the process
interested inTi keeps searching for processes interested in
topicsuper(Ti). Figure 3 presents the bootstrapping proto-
col.

1.
pl

timeout

Tb
3.
pl

Tb

pl

2.
pm

Tb,Ta

Ta

pl ∈ ΠTc

pm ∈ ΠTa

Figure 3. Bootstrapping.

Once a process has an initialized supertopic table, this
information is disseminated, using the updates of the un-
derlying membership algorithm, to the other processes of

5 In some sense, there is a lack of interested processes at a specific topic
in the topic hierarchy.

6 In other words, the process keeps on sending initialization messages
until it founds some other processes.

the group. When a process receives a message containing
a supertopic table, it merges that information with its own
supertopic table. This bootstrapping technique relies here
only on a weakly consistent global membership. A consis-
tent overlay network ([21, 19]) would also make it easier to
find processes interested in a specific topic.

Maintaining supertopic tables.Once the supertopic table
of a processpl has been initialized, it has to be maintained.
Indeed, it may happen that processes, whose IDs are stored
in the supertopic table ofpl, crash or leave the group they
have joined. In this case the supertopic table of processpl

is out-dated and it is not possible anymore forpl to prop-
agate events to its supergroup. For that purpose, each pro-
cess, with a probabilitypsel

Ti
(see Section 4.3 for a precise

definition of this probability)7, tries to find out if the pro-
cesses in its supertopic table are alive8. If the number of su-
perprocesses that are alive is smaller than a certain threshold
τ (0 ≤ τ ≤ zTi), then the process asks all alive processes
in its supertopic table to provide it with information (iden-
tifiers) aboutzTi

− τ “new” processes belonging to the su-
pergroup. This information is then disseminated using the
underlying membership algorithm. A pro-active protocol is
used to avoid restarting the bootstrapping protocol if we de-
tect that no superprocess is available when an event is pub-
lished. The use of a reactive protocol would have implied
a bigger dependency between the propagation of an event
and the availability of the process responsible for that prop-
agation (as the bootstrapping protocol can take some time).
For the sake of reliability and load-balancing, it is also pos-
sible to replace superprocesses in the supertopic table even
if those are available, to balance the propagation among all
processes.

4.3. Dissemination

Assuming that the membership has been successfully
initialized, a process willing to disseminate an event of topic
Ti proceeds as follows: the event is disseminated (1) to the
processes of its supertopic table and (2) to the processes
of its topic table. The superprocess dissemination (1) can
be summarized as follows: with a probabilitypsel

Ti
= gTi

STi

(1 ≤ gTi ≤ STi , wheregTi represents the number of pro-
cesses that try to contact processes that are in the super-
topic table of the process), a process decides to take part
in the dissemination of the event to its supergroup (the pro-
cess elects itself to do so). If a process decides to act as link
for a given event, the process sends the event to each of the
processes of its supertopic table with probabilitypa

Ti
= aTi

zTi

(1 ≤ aTi
≤ zTi

, whereaTi
determines the number of pro-

7 Thesel in psel
Ti

stands for selected.

8 The detection of alive processes is done via timeouts.



cesses in the supertopic table that receive the event). The
parameteraTi can be set according to the average probabil-
ity of successful transmission. The dissemination of events
within a group (2) can be summarized as follows: the pro-
cess sends the event toln(STi

) + cTi
processes, randomly

selected in its topic table. When receiving a new event for
the first time, every process (of either the supergroup or the
group in which the event was initially published) forward
once the event using the dissemination algorithm. This dis-
semination scheme (also called “infect and die”) let the pub-
lisher crash or leave the group as soon as it has published its
events and consequently does not impose any restriction on
the availability of such processes.

5. Analysis

We discuss here the scalability of our algorithm with re-
spect to message complexity, memory complexity, reliabil-
ity and latency complexity. We compare our algorithm with
three alternative approaches.

We consider a topicTi (here,i ∈ N∗) that has a super-
topic super(Ti) = Ti−1, which itself has also a supertopic
super(super(Ti)) = Ti−2, and so on recursively until the
root topicT0. The maximal number of levels in the topic hi-
erarchy ist, and the bottom-most topic isTt−1. We assume
in the analysis that each group representing a topic contains
at least one process.9

5.1. Message complexity

We determine the total number of events sent in the sys-
tem with our algorithm. First, in groupTi, all processes re-
ceive an event that is disseminated, in the ideal case (ac-
cording to [5], cf. also [14]). Moreover, each process sends
ln(STi) + cTi events thus the overall number of events sent
in the groupTi is upper bounded bySTi

· (ln(STi
) + cTi

).
In Ti, several processes additionally disseminate the events
to the processes interested in the supertopic. The number of
events sent from one groupTi to the next supergroupTi−1

is: nbSuperMsgTi
= STi · psel

Ti
· pa

Ti
· zTi · psucc

Ti
.

This corresponds to the average sum of events sent by
the processes ofTi (STi), which have decided to act as links
(psel

Ti
), to the processes chosen (pa

Ti
) within those from the

supergroup (zTi
) and effectively received (psucc

Ti
)10. The to-

tal number of events sent from the groupTi, all the way up
to the group of processes interested in the root topic, is then:∑0

i=t−1(STi
· (ln(STi

) + cTi
)) +

∑0
i=t−2(STi

· psel
Ti

· pa
Ti
·

9 This is required for measuring message complexity, reliability and la-
tency complexity.

10 This probability depends on the availability of the processes together
with the reliability of the links. For the sake of generality, we have de-
cided to make this probability depend on the topic to simulate weakly
interconnected groups.

psucc
Ti

· zTi).
11 In the worst case (in terms of message com-

plexity), the values forpsel
Ti

, pa
Ti

andpsucc
Ti

are equal to 1. We
also upper bound the equation byzmax (wherezmax repre-
sents the maximal value for allzTi

), by STmax
(which de-

notes the number of processes in the biggest groupTmax

corresponding to the topic with the most subscribers) and by
cmax (wherecmax denotes the maximal value for allcTi

).
As STmax > 1, we can upper bound the equation again (by
ln(STmax)): maxNbMsgSent≤ t · STmax · (ln(STmax) +
cmax)+t·STmax

·ln(STmax
)·zmax ≤ t·STmax

·ln(STmax
)·

(1 + cmax + zmax). As t can be upper bound by a con-
stant, we have:maxNbMsgSent∈ O(STmax

· ln(STmax
)).

Of course this holds ifft is constant (otherwisemaxNbMs-
gSent∈ O(t · STmax · ln(STmax))), which is not a limiting
hypothesis (according to [25]). Note that we consider here
the message complexity and not the actual value of the to-
tal number of messages sent: this value depends ont.

5.2. Memory complexity

In the pattern we consider, topics include one another
and each process interested in a topic maintains two tables.
The only exception is for the processes interested in the root
topic: these care about one table only. The size of the topic
table depends logarithmically upon the number of processes
interested in the topic. The supertopic table is of sizezTi ,
which is constant. The number of membership tables de-
pends neither on the number of supertopics of a topic of in-
terest, nor on the number of its subtopics. The memory com-
plexity of every process is:ln(STi

) + cTi
≤ totalMbInfo≤

ln(STi) + cTi + zTi .

5.3. Reliability

By reliability, we mean here the probability thatevery
process interested in topicTi receives a given event pub-
lished forTi. According to [5], if all the processes interested
in the same topicTi disseminate an event toln(STi) + cTi

processes, then the probability that every process interested

in Ti receives the event ise−e
−cTi . The worst case is when

the events are disseminated at all levels of the topic hier-
archy (i.e., in thet levels). This occurs when an event is
of the bottom-most topic and has to be disseminated up to
the group of processes interested in the root topic. This is
the worst case because it sums the passing between topics
and supertopics over the established links. Before measur-
ing the reliability ofdaMulticast, we first compute the num-
ber of processessusceptibleto send an event from one group
Ti to its supergroup:nbSuscProcTi = STi ·psel

Ti
·πTi . We de-

note byπTi the proportion of processes that actually receive

11 There are two sums because the processes interested in the root topic
do not need to disseminate events to any higher level.



the event through the underlying membership algorithm for
a groupTi (cf. [9]) and hence are able to propagate the
event tosuper(Ti). The probability that no event is received
by a member ofsuper(Ti) can now be calculated based
on the number of susceptible processes (nbSuscProcTi

):

pbNoIntGrpMsgTi
= (1− psucc

Ti
)nbSuscProcTi

·pa
Ti
·zTi . We

recall here thatpsucc
Ti

is the probability that an event sent
from one group of processes is received in the supergroup
and for the definition of the other values, we refer to Sec-
tion 4. The probability of the propagation of the message to
a supergroup is:pitTi

= 1−pbNoIntGrpMsgTi
. In this case,

the probability that all processes belonging to a groupTj re-

ceive the event is:reliability =
∏j

i=t−1(e
−e
−cTi · pitTi

).

The first term of the reliability equation (i.e.,e−e
−cTi )

comes from the gossiping technique we use (i.e., [14]). It
determines the reliability of the dissemination of an event
of topicTi in the groupTi and we can tunecTi

to trade the
reliability of the dissemination in the groupTi and the to-
tal number of messages sent in the topic group of this dis-
semination. The second term of the reliability equation (i.e.,
pitTi

) comes from the specificity ofdaMulticast(i.e., “data-
awareness”). We can also tune this parameter (viapsel

Ti
,

pa
Ti

andzTi
) dynamically to trade the number of messages

sent between a groupTi and its supergroup. This tunabil-
ity might turn out to be important in dynamic systems where
the number of processes are constantly changing. For exam-
ple, if the number of processes is growing in a group, we can
reducepitTi

to reduce the total number of intergroup mes-
sages sent but without hampering the reliability (as there are
a lot of processes). If the number of processes in a group be-
comes very small, we enforce all the processes to propagate
the events to their supergroup.

5.4. Latency

By latency we mean here the number of rounds needed
by our algorithm to infect the entire system. To measure
the latency of a specific topic, we assume that the event is
propagated from one subtopic to its supertopic with proba-
bility 1 (pitTi

).12 According to [3], the number of rounds
needed to infect a group ofSTi processes is:RSTi

=
ln(STi

)

ln(ln(STi
)) +O(1). Applying this equation to our algorithm,

we compute three cases: (1) the best case, (2) the average
case and (3) the worst case.

In (1), the event is directly propagated from one group to
a supergroup. In this case, to propagate an event from group
Tj to groupTi (i ≤ j): latencymin = (j − i) + RSTi

≤
t − 1 + RSTmax

and hence,latencymin ∈ O(t + RSTmax
)

and if t is a constant,latencymin ∈ O(RSTmax
).

12 It does not make sense to calculate a latency of an event if this event
is never received by a process.

In (3), the event is propagated entirely to one
group before being sent to its supergroup. This
means that:latencymax =

∑i
k=j RSTk

+ (j − i) ≤
t · RSTmax

+ (t − 1) ≤ t · (RSTmax
+ 1) and hence,

latencymax ∈ O(t · (RSTmax
+ 1)). If t is a con-

stant:latencymax ∈ O(RSTmax
).

Finally, we compute the average latency (2) in which we

assume that, after
RSTi

2 rounds, the event is propagated to

the supergroup. In this case:latencyavg =
∑i

k=j

RSTk

2 +

(j − i) ≤ t · (RSTmax

2 + 1) and hence,latencyavg ∈ O(t ·
(

RSTmax

2 + 1)). If t is constant:latencyavg ∈ O(RSTmax
).

These results do not depend ont if t can be upper
bounded by a constant. However, it is clear that the value
of the latency depends ont.

5.5. Comparisons with other algorithms

We comparedaMulticast with three alternative ap-
proaches: (a) gossip-based broadcast, (b) gossip-based
multicast and (c) hierarchical gossip-based broadcast. For
the sake of fairness, all approaches use the same gossip-
ing technique (i.e., that of [14]). According to (a), each
time an event is sent, it is broadcast in the entire sys-
tem. This uses membership tables of sizeln(n) + c, as
explained in [5]. According to approach (b), the pro-
cess has one membership table for every topic of interest
(this is the approach where a group is created for the pub-
lishers of a topic, see Section 3.2). This approach is com-
monly used in several algorithms ([10, 2, 15]), which
do not take into account the topic inclusion relation-
ships of the events. Approach (c) corresponds to the “hi-
erarchical” technique presented in [14]. The basic idea is
to createsmall subgroups (that do not depend on the in-
terests of the processes in each group) and connect these
groups to reduce the overall memory complexity. The sys-
tem is split into two levels. The first level contains groups
of processes that exchange events between them (in-
tra group events). The second level is responsible for
propagating the events between the groups. Our com-
parison focus on: (1) message complexity, (2) memory
complexity, (3) reliability and (4) latency complex-
ity.

5.5.1. Message complexity.The message complexity is
O(STmax

· ln(STmax
)) for all algorithms except for the

gossip-based broadcast which has a message complexity of
O(n · ln(n)). In other words, enhancing a membership al-
gorithm withdaMulticastdoes not hamper its overall mes-
sage complexity performance.

5.5.2. Memory complexity.
Gossip-based broadcast (a):An event is disseminated to all

the processes in the system. Thus every process has one



membership table only, but this table is of sizeln(n)+ c,
wheren represents the number of processes in the sys-
tem (andn � STmax

).
Gossip-based multicast (b):Every process maintains a

membership table for each topic it is interested in. With
a maximum oft levels in a topic hierarchy, and assum-
ing that each subtopic has exactly one supertopic (ex-
cept the root), a process deals with at mostt tables. As
each table is of sizeln(STi

)+cTi
, the total memory com-

plexity of each process is:
∑j

i=t−1(ln(STi) + cTi).
Hierarchical gossip-based broadcast (c):Each process

maintains two membership tables: one for dissemi-
nating the events to the processes that are randomly
selected to “represent” their group, and a second mem-
bership table to disseminate events in the group itself.
The first table has a size ofln(N) + c2 and the sec-
ond table has a size ofln(m) + c1, whereN represents
the total number of groups (i.e., topics) andm the num-
ber of processes inside a group. So each process has a
memory complexity of:ln(m) + c1 + ln(N) + c2.
As shown in Section 5, the maximal number of member-

ship tables indaMulticastis 2 (1 if the process is interested
in the root topic). This number does not depend on the num-
ber of topics a process is interested in, when these include
one another. If we try to compare our algorithm with the
gossip-based broadcast one (i.e., (a)), the number of tables
is just majored by one, which can be neglected given the
huge gain obtained withdaMulticastby avoiding any par-
asite messages (see Section 6). Finally, the memory com-
plexity for a process in groupTi is ln(STi

) + cTi
+ zTi

in
daMulticast. This means that the memory complexity of a
process is always smaller in our algorithm than in the other
algorithms.

5.5.3. Reliability.
Gossip-based broadcast (a):With the memory complexity

presented in Section 5.5.2, the reliability is:e−e−c

.
Gossip-based multicast (b):With the memory complexity

presented in Section 5.5.2, the reliability is:∏j
i=t−1 e−e

−cTi .
Hierarchical gossip-based broadcast (c):As explained

in Section 5.5.2, the reliability is (see [14] for a com-
plete analysis):e−Ne−c1−e−c2 .
As shown in Section 5.3, the reliability ofdaMulticast

is
∏j

i=t−1(e
−e
−cTi · pitTi

). In comparison with other algo-
rithms, the probability thatall processes receive an event
is smaller withdaMulticast, in the general case, especially
for the processes interested in the root topic.13 This comes
from the fact that, indaMulticast, the reliability depends on

13 If we considered theaveragenumber of processes that receive an
event, we would have a much better result (because we would make
an average over the reliability of each group instead of a multiplica-
tion).

the event propagation between groups. However, it is possi-
ble to tune this and achieve, in specific cases, the same reli-
ability as other algorithms:14

Gossip-based broadcast (a): daMulticastachieves the
same reliability as (a) when0 ≤ c ≤ −ln(−t · ln(pit)).
Herec denotes the constant used to determine the number
of processes to disseminate events to, in the gossip-based
broadcast algorithm (e.g.,ln(n) + c), see [1]. In this
case, the memory complexity ofdaMulticast is smaller
iff: z≤ ln(n)+ ln(1+ t · ec · ln(pit))− ln(ST )− ln(t).

Gossip-based multicast (b): daMulticastachieves the same
reliability as (b) when0 ≤ c ≤ −ln(−ln(pit)). Here,
c denotes the constant used to determine the number of
processes to disseminate events to, in the gossip-based
multicast algorithm (e.g.,ln(STi

) + cTi
, where allcTi

are the same and equal toc), see [1]. In this case, the
memory complexity ofdaMulticast is smaller iff: z ≤
(t− 1) · (ln(ST ) + c) + ln(1 + ec · ln(pit)).

Hierarchical gossip-based broadcast (c): daMulticast
achieves the same reliability as (c) when
−ln( t·(1−ln(pit))

N+1 ) ≤ c ≤ −ln(−t·ln(pit)
N+1 ). Here c de-

notes the number of processes that disseminate events
in the hierarchical algorithm, see [14, 1]. In this case,
the memory complexity ofdaMulticast is smaller iff:
z≤ c + ln(N) + ln(N + 1 + t · ec · ln(pit))− ln(t).
Achieving the same reliability than the other algorithms

is only possible if we tune the parameters ofpitTi
, namely

psel
Ti

, pa
Ti

andzTi . Of course, increasing those values impact
the total number of intergroup messages sent as well as the
total memory complexity.

5.5.4. Latency complexity.The latency complex-
ity is O(RSTmax

) for all algorithms except for the
gossip-based broadcast which has a latency complex-
ity of O(Rn). This means thatdaMulticast is equivalent,
in terms of latency complexity, to all the other algo-
rithms.

6. Simulation

We present in this section simulation results of
daMulticast, conveying our claims of reliability and la-
tency and confirming the previous analytical evalua-
tion.

6.1. Setting

The number of levelst in the topic hierarchy is set to 3
(T0, T1, T2 andsuper(T2) = T1, super(T1) = T0, T0 be-
ing the root group). The number of subscribers,STi

, is 1000

14 For the sake of simplicity, we consider in the following of this analysis
the average case, where, for everyTi, zTi

is z, STi
is ST andpitTi

is
pit.



for T2, 100 forT1 and 10 forT0. The number of processes
any event is disseminated to,cTi , is equal to 5 for all groups
andgTi

(which determinespsel
Ti

) is set to 5 for all groups.
The numberaTi

(which determinespa
Ti

) is 1 for all groups.
The size of the supertopic table,zTi

, is 3 for all groups. The
probability for an event to be received is set to an arbitrary
value of 0.85, to simulate unreliable, e.g. best effort, chan-
nels. The probability for a process to crash varies. In the
simulation, the membership tables (topic table and super-
topic table) of a process are determined statically. These ta-
bles are initialized at the beginning of the simulation and do
not change, during the entire simulation. Pessimistically, we
assume that the membership algorithm does not “replace” a
crashed process, and that these crash at the very beginning
(except for results in Figure 5, see below).15 Note that the
events disseminated in the simulation belong to topicT2.
Our simulator (written inC#) simulates synchronous gos-
sip rounds among processes in a Windows task. We use a
Pentium 4, 2.6GHz, 512MBytes of RAM on Windows 2000
SP3.

6.2. Results

Figure 4 depicts the probability for all processes to re-
ceive an event according to the percentage of processes
having crashed.16 Not surprisingly, the reception probabil-
ity depends on the overall probability of a process having
crashed. Of course, the reliability is smaller for processes
interested inT0 as the reception of an event of topicT2, by
the groupT0, depends on the success of the dissemination
of this event in the groupT2 andT1.
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Figure 4. Reliability (stillborn processes).

Figure 5 depicts the same results as Figure 4, except that
now a process can appear to be crashed for a process while

15 We know that, according to Section 5, the weakest performance of
daMulticastare obtained when the supertopic tables are not updated.
Thus not replacing crashed processes will give the worst performance
of daMulticastand this is exactly what we want to measure in this sec-
tion.

16 We do not give the performance simulation for the maximal number
of events sent in a group as well as the maximal number of events sent
between group (in [1]).

appearing alive for another one (to simulate a weakly con-
sistent membership algorithm). We achieve a much better
reliability for a weakly connected system than in the pre-
ceding scenario (Figure 4). To achieve better reliability, we
can easily adjustzTi

, pa
Ti

andgTi
.
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Figure 5. Reliability (dynamically crashed processes).

We consider in Table 1 the average number of rounds
needed to disseminate an event from topicTj to topic T0.
Three different topologies are considered: (a)T2 = 1000,
T1 = 100 andT0 = 10, (b) Tj ..T0 = 100, j = 1..2 and (c)
Tj ..T0 = 100, j = 1..4. We compare (1) our approach with
(2) a general gossip-based protocol [5] and with (3) PM-
cast [6] (for (2) and (3), the values have been calculated us-
ing the analytical equations and are not taken from simu-
lations). The results confirm the analytical results given in
Section 5.4 and convey the impact of the number of hierar-
chies on the latency.

Tj ,Tj−1,...,T0
1000, 100, 10 100 (j = 2) 100 (j = 4)

(1) 8.91 8.83 13.08
(2) 4.63 4.39 4.31
(3) 6.61 5.44 5.89

Table 1. Average number of rounds.

In Table 2, we consider the average total number of par-
asite messages sent in the system. To calculate the maxi-
mal number of parasite messages, we assume that a pub-
lisher publishes an event of the root topicT0. For PMcast,
the results obtained come from analytical results. Table 2
depicts the gain ofdaMulticastwith respect to alternative
approaches.

Tj ,Tj−1,...,T0
1000, 100, 10 100 (j = 2) 100 (j = 4)

(1) 0 0 0
(2) 11216 1699 3739
(3) 453 369 615

Table 2. Total number of parasite messages.



7. Concluding remarks

This paper presentsdaMulticast, an algorithm to dis-
seminate events in a hierarchical peer-to-peer topic-based
publish/subscribe system. Our algorithm limits the mem-
bership information each process must maintain with re-
gard to the topics it has subscribed to, does not introduce
any single point of failure, and prevents processes from re-
ceiving events they have not subscribed to. In this paper
we tackled the case where a topic has only one direct su-
pertopic, mainly for presentation simplicity. Multiple su-
pertopics (i.e., multiple inheritance) could be easily sup-
ported by either adapting the membership algorithm or by
adding a supertopic table for each supertopic. This last so-
lution would not hamper the overall performance of the al-
gorithm, as it is typical in object-oriented programming lan-
guages that the maximal number of multiple supertopics is
usually bound, on average, to 2 ([25]).
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