
Pragmatic Type Interoperability
�

Sébastien Baehni
�

Patrick Th. Eugster
�

Rachid Guerraoui
�

Philippe Altherr
�

Swiss Federal Institute of Technology in Lausanne�
Distributed Programming Laboratory�

Programming Methods Laboratory�
Sebastien.Baehni, Patrick.Eugster, Rachid.Guerraoui, Philippe.Altherr � @epfl.ch

Abstract

Providing type interoperability consists in ensuring that,
even if written by different programmers, possibly in dif-
ferent languages and running on different platforms, types
that are supposed to represent the same software module
are indeed treated as one single type. This form of interop-
erability is crucial in modern distributed programming.

We present a pragmatic approach to deal with type in-
teroperability in a dynamic and distributed environment.
Our approach is based on an optimistic transport proto-
col, specific serialization mechanisms and a set of implicit
type conformance rules. We experiment the approach over
the .NET platform which we indirectly evaluate.

1 Introduction

Context. There are different forms of interoperability
and these differ according to their abstraction level. Inter-
operability at the hardware level is typically about devising
an operating system, e.g., Linux, that runs on different ma-
chines, e.g., Pcs, Laptops, Pdas, Macs. Interoperability at
the operating system level ensures that the programming
language, e.g., Java through its bytecode and virtual ma-
chine, is independent from the underlying operating sys-
tem, e.g., Linux, Unix, Windows, MacOS. Interoperability
at the programming language level guarantees that a class
written in a specific language, e.g., C++, can be used in
another language, e.g., Java, transparently. This is for in-
stance what .NET aims at offering.

This paper focuses on an even higher level of interop-
erability: type interoperability. The goal is to make trans-
parent for the programmer the use of one type for another,

�
The work presented in this paper was supported by the National Com-

petence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Sci-
ence Foundation under grant number 5005-67322.

even if these types do not exactly have the same methods
or names, as long as they aim at representing the same soft-
ware module. These types might be written in the same lan-
guage but by different programmers, they might be written
in different languages, or even running on different plat-
forms.

We address the issue of type interoperability in a dis-
tributed environment where objects of new types are in-
troduced and exchanged in the system (either remotely or
directly). Typically, different software modules might need
to be assembled in a distributed application. Some of these
modules represent a single logical entity.

Motivation. Type interoperability has been studied in
centralized applications [5]. However, as we discuss in
Section 2, the proposed solutions are too rigid for a dy-
namic distributed environment. In short, such solutions as-
sume a priori knowledge of the type hierarchy. Our aim is
to provide a transparent solution to this problem in a dis-
tributed environment. Basically, we are interested in de-
vising a flexible scheme to allow objects of different types,
that aim at representing the same module, to be remotely
exchanged (not only passed-by-reference, but especially
also passed-by-value) as if they were of the same type,
even if these types (a) have different methods or names, (b)
are written in different languages or (c) running on differ-
ent platforms. The challenge here is to provide this trans-
parency with acceptable performance.

Contribution. This paper presents our approach to “dis-
tributed” type interoperability based on an optimistic trans-
port protocol (that saves network ressources) as well as
serialization mechanisms (that guarantee the efficiency of
type comparison between objects). To experiment our ap-
proach in a concrete setting, we have implemented it over

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147909606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a popular object-oriented platform: .NET1. This platform
has been chosen because it provides the highest level of in-
teroperability “underneath” type interoperability: language
interoperability. We extend .NET to allow for type confor-
mance and we provide associated structural conformance
rules, themselves implemented via .NET dynamic prox-
ies. Our approach requires a small overhead for invoking
a type conformant object received from a remote host, and
we precisely measure this overhead through our prototype
implementation. Indirectly, through our performance mea-
sures, we evaluate the .NET serialization (XML (eXtended
Markup Language), SOAP (Simple Object Access Proto-
col) and binary) mechanisms together with its reflection
capabilities.

Roadmap. Section 2 puts our work in the perspective of
general approaches to language and type interoperability.
Section 3 overviews the problem of type interoperability
in a distributed environment and our approach to address
it. Section 4 presents our type conformance rules. Sec-
tion 5 describes how types are represented and Section 6
presents our mechanisms for serializing objects. Section 7
gives some performance measurements of our prototype.
Finally, Section 8 draws some conclusions. More details
on our .NET based prototype can be found in [1].

2 Related Work

2.1 Safe structural conformance for Java

Type interoperability was addressed for a centralized
context in [5] through the notion of structural confor-
mance. The structural conformance rules are based on the
Java type hierarchy (a type is conformant with another type
if it implements each method of the second type) which
narrows the scope of structural conformance. Moreover
only types that are tagged as being structural conformant
can pretend to do so, meaning that legacy interfaces can
never be used with structural conformance. Our approach
has the aim to extend the structural approach in a decen-
tralized environment such that structural conformant types
do not need to share the same type hierarchy, neither to be
tagged as being structural conformant enabled.

1Of course the choice of the .NET platform implicitly fixes the operat-
ing system (Windows �

�
) and runtime environment (common language

runtime–CLR) respectively, while the set of programming languages is
fixed through our choice of supporting only those supported by .NET.
However, our approach could be implemented in another platform like
CORBA or Java RMI.

2.2 Compound types for Java

The idea of providing compound types for Java [2] aims
at simplifying the composition and reusability of Java types
without having to change them or agree on a common
design. A new way to express a type was introduced:
[TypeA,TypeB,...,TypeN]. This new notation defines all the
types declared to implement TypeA, TypeB,..., TypeN. With
compound types the programmer can express a “kind” of
structural conformance as the implemented methods of a
type are taken into account instead of only its name. How-
ever these compound types are more about composition
than about structural conformance i.e., making type inter-
operable.

2.3 Interoperability in Corba

CORBA [9] addresses the language interoperability
problem through an interface definition language (IDL).
This IDL provides support for pass-by-reference semantics
which make it possible to call a specific method from one
language to another. Pass-by-value semantics for object
types have been added to CORBA quite recently through
value types to enable the passing of invocation arguments.
The adopted solution is rather tedious to use, as devel-
opers are required to implement such types in all poten-
tially involved languages. In particular, this makes it hard
to add value (sub)types with new behavior at runtime.
Note that CORBA implementations provide various mech-
anisms, such as the dynamic skeleton interface and dy-
namic invocation interface, as well as the concept of smart
proxies found in many ORB implementations, which en-
able to some extent the realization of implicit structural
conformance. Pass-by-value semantics with object types
would however be strongly limited because of the lack of a
general protocol for transferring efficiently objects as well
as type interoperability rules.

2.4 Interoperability in Java RMI

Java RMI enables the transfer of objects by value as ar-
guments of remote invocations, thanks to its built-in serial-
ization mechanism. By virtue of subtyping, an instance of
a new class can be used as invocation argument, provided
that it conforms to the type of the corresponding formal
argument. By transmitting the corresponding class (byte-
code) to an invoked object previously unaware of that class,
one can implement a scheme where new event classes are
automatically propagated. The underlying dynamic code
loading and linking ensured by the Java virtual machine
would also make it possible to extend/alter the behavior of
existing resource types at runtime. Though the Java vir-
tual machine has been used to run code written in vari-

ous languages, the exploiting of its type safe dynamic code
loading and linking [7, 10] is problematic outside of Java.
Like CORBA, this dynamic linking mechanism could be
used for implementing type interoperability, but again, to
our knowledge, no efficient protocol an type interoperabil-
ity rules have never been proposed.

2.5 Microsoft .NET

Just like CORBA, .NET aims at unifying several object-
oriented languages through a common type system (CTS).
The advantage here is that the programmer does not need
to reimplement the type of interest in all programming lan-
guages in order to use the pass-by-value semantics. Nev-
ertheless, .NET does not address the issue of transparently
unifying types that are not identical but that aim at repre-
senting the same module, i.e., types which conform to each
other implicitly (see Section 4 for our definition of implicit
conformance).

2.6 Renaissance

The Renaissance system [8] implements an interesting
RPC scheme where types with different methods or names
can be invoked as if they were the same type, as long as
they conform implicitly to each other. The idea is based
on structural conformance rules as means to compare such
types. The approach is however limited in that it relies on
an explicit type definition language called lingua franca
(even though mainly for the purpose of generating typed
proxies), and does not support pass-by-value semantics
with object types. Our approach for type interoperability
is not bound to any intermediate language but rather to the
type system of the platform itself. Moreover, our approach
encompasses pass-by-value semantics as well as pass-by-
reference semantics.

3 Overview

This section overviews the problem of type interoper-
ability in a distributed environment and our approach to
address it.

3.1 The problem

Usually, types are implemented either through inter-
faces or classes. Consider a type Person [1] with a field
name. A first programmer can implement this type with
a setter method named setName() and a getter method
named getName(). Another programmer can implement
the same type with the following setter and getter respec-
tively: setPersonName() and getPersonName().

Clearly, even if the two implementations provide the same
functionalities, they are not compatible, i.e. the program-
mers cannot use the two implementations transparently. In
“static” environments (where all the types of objects are
known at the start of the system) this problem is easy to
solve because the translation rules can be hardcoded into
the system.

However, when the system is distributed and “dynamic”,
i.e. where new events of new types can be put into the
system through remote locations at runtime, this problem
is not trivial. A set of general rules that can be compatible
with every type must be created and implemented into the
system. This implementation must be compatible with the
pass-by-reference and the pass-by-value semantics in order
to achieve full distribution interoperability.

3.2 Our approach

We implement the general rules needed for ensuring
type interoperability as well as a set of corresponding se-
rialization mechanisms. A distributed and “dynamic” en-
vironment is assumed. We do not tackle the problem in a
local setting, because it raises static type safety issues that
are difficult to resolve without proving the type soundness
of the solution. This is out of the scope of this paper. Our
general protocol to achieve type interoperability in a dis-
tributed environment is depicted in Figure 1.

When the middleware receives an object, it tries to check
for the type information of this object. Once the middle-
ware obtains the type information, it can check for type
conformance with respect to types of interest. If the check
is successful, the code of the object is downloaded in order
to deserialize the object. The object can then be used as if
it were of the type of interest. This protocol is optimistic in
the sense that the code of the object as well as its type rep-
resentation are not always send with the object itself, but
only when needed. The general protocol of Figure 1 can
be decomposed into three distinct subprotocols, namely (1)
object serialization, (2) type description creation and (3)
type conformance checking.

Peer

Peer

1. Receiving an object

3. Receiving type information, rules check

5. Receiving the code, object usable

2. Asking for the new object type information

4. Types conform, asking for the code

Figure 1. Ensuring conformance between two
types

4 Type Conformance

This section presents our type conformance rules. We
first make a classification of the different categories of con-
formance before giving our specific conformance rules.

4.1 Conformance categories

Hardware conformance aims at devising an operating
system to work on different computers. Operating system
conformance ensures that the programming language is in-
dependant from the underlying operating system. Another
category, now provided by the .NET platform allows to use
a type described in one programming language (C# for ex-
ample) in another language (VB.NET). We call this cate-
gory language conformance.

Type conformance focuses on the interoperability be-
tween types. This category gathers two subsets: implicit
structural type conformance and implicit behavioral type
conformance. Implicit structural type conformance encom-
passes what we call explicit type conformance. Namely,
explicit type conformance takes into account the type hier-
archy to which a type belongs, i.e. subtyping issues. The
combination of the implicit structural type conformance
and the implicit behavioral type conformance results in a
“strong” implicit type conformance.

The implicit behavioral type conformance is based on
the behavior of the type, i.e., based on the result of its meth-
ods. This type of conformance is very difficult to analyse in
the sense that the body of the methods cannot just be com-
pared but these methods must also be executed in order to
compare their results for corresponding inputs. That should
be feasible for types dealing only with primitive types but
for more complex types it is rather tricky. Finally, the im-
plicit structural conformance strictly relies on the structure
of the type. By structure, we mean the type name, the name
of its supertypes, the name and the type of its fields and the
signature of its methods2.

In this paper we focus on implicit structural type con-
formance only. For presentation simplicity, we say implicit
structural conformance instead of implicit structural type
conformance.

4.2 Type conformance rules

We first introduce here several basic notations and defi-
nitions that will help us explain the different aspects of con-
formance. Finally we present the implicit structural confor-
mance rule.

2Structural conformance has been studied in [5] and is in between
what we call explicit type conformance and implicit structural type con-
formance.

General definitions and notations. To make things
clearer, and in order to be able to describe the different
aspects making all together the implicit structural confor-
mance rule, several terms are defined. Figure 2 presents
those terms, notations and the implicit structural confor-
mance rules. First some notations that are used in the rules
are defined. Then a definition of the general conformance
rules is given3. The second definition describes the equality
of two types. The third definition explains the equivalence
between two types. The fourth and the fifth definitions de-
note the notation for the superclass and the interfaces of
a certain type. The sixth definition defines the ������� �	�
method used in the conformance rules. Finally Figure 2
presents the implicit structural conformance rules.

Decomposing implicit structural conformance. We de-
fine different aspects of conformance as follows:

Name (i): This aspect takes into account the name of the
different types to compare to. A name of a type
 is said
to conform to the name of a type
�� if the names are the
same (i.e. the Levenshtein distance (LD) [6] is equal to
0). The names are considered to be case insensitive. In
order to be more general, wildcards could be allowed but
this is not the aim of this paper.

Fields (ii): A field of type
�� (���
��) defined in a type

 is said to conform to a field �� of type
���� , defined in
a type
 � , if
�� and
�� � are implicitly structurally con-
formant.

Supertypes (iii): This aspect takes into account the super-
types of the type and its interfaces (if any)4. A type

is said to conform to a type
�� , with respect to
�� ’s type
hierarchy (i.e. supertypes), if the superclass and the in-
terfaces of
 conform respectively, in the implicit struc-
tural sense, to the superclass and the interfaces of a type

�� .
���������� and
��! #"$��� denote the superclass and the set
of interfaces of type
 respectively.

Methods (iv): Conformance between methods is a bit more
tricky. First, the modifiers of the methods are supposed
to be the same (this assumption is implicitly assumed
in the rule). Then, to describe the corresponding rule,
three parameters for each method are taken into account:
the name of the method, the arguments of the method
and the return type of the method. To understand this
rule, one must think which uses the (1) return parameter

3Implicit conformance is noted %'& , while explicit conformance is
noted %'(, and the implicit structural conformance is noted: % &*) . Fi-
nally, +,%-+�. denotes the fact that instances of + can be used safely
whenever an instance of + . is expected.

4The distinction between the type and its supertypes is done in order
to make things clearer.

���
" � " � � � ����
�*
�
"$� � � " � ��� ��
	�������
�*
�
"$� � "

�
� ��� ��� ������� � #� � � � � � �� " � � � �*� � � " � ��� �� �

��
�
"$�*� ��� � " ����� �� � � � �� � "$�*� ��� � � " � � � " � �� �

 �
�
� ��� � � ��! �"#� ��$ �! %� ��! � ��$ �! %� ��! &(')� �*$ �! +,� �

- � � ��� �!" � ���.).!� � � � � ��	/����!.).0� �	/�1��- � � �32 �4� �� � � ��! 5� ��6 � � %� $ �578� � (case for
 �"

iff T’==T)

9
������� �:�;� �*� �� '=<�>�?=@ 7BA;� ��C � � �������*� �:�3� �*� � � �EDF
 "$��� � �G� �*� ��EH3IKJ ?L@ 7MAON�� �1C � � � "$��� � �K� � � � ��P�D� �4� � �A
 �4� � A;QRD C QTSTN��EU � U � � � P�D/7 �4� � � � QA � � �)��� �*� � �*�� �*� " �;2 � � " � � � � �	��� �*� �� " � " � � D� �4� � � � � � � ��� � � A � D ��! &IRVXW ?(' � �*$ZY\[A �4� � A3�+D(U �4� � A;� � D]D/.%^_
� � � � � � � � � ��� � � A �!� D ��!)` H ?=acb(' � ��$ed � � � � ` � Sf� �Rg � � � ` ST� C � ` &�'�� ` �

9
������� " � ��� � � � � � � ��� � � A � �!� D ��! �h�H ?L@(' � ��$ A3� 'L<�>�?L@ +�'�� � '=<�>�?=@ 6 �+H�IRJ ?=@ &�'�� � H�IRJ ?=@ D
i
� "
����� � � � � � ��� � � A �32 D ��! &W ? JOh(' � �*$ed � � A;j ��� � A �Kk � � � k � UXlclclcU � I � � � I � D]D � � @ � ST� �g � A3j ��� � A � k � � k UmlclclcU � I � � I D]D � ��@nS�� C �4� � A � D/.). �4� � A � � D 6d � Spo q4U r A3� H � �' � H D 6 � @ �' � @ �� �
 ��" � � � " � � � � � � � �f� � � A 2 D ��! �sLt:I '(' � �1$ed � � � A3j ��� � A � k � � k U�lclclcU � I � � I D]D+S��g � � � A;j ��� � A � k � � � k � UXlclclcU � I � � � I � D]D+S�� ��C �4� � A � � � D/.u. �4� � A � � � D 6vd � Spo q4U r A3� H � &�'&� H DF � � � � � �!" � " � � � " ��� ���R� � � � � ��� � � A 2 � D ��! (' � ��w A3�! &IRVXW ?(' � �x6 �! �h�H ?L@(' � �x6 �8 �` H ?:acb�' � �36�! &W ? JOh(' � ��6 �! �sLt:I '(' � � D�yf��.).!� � yf�8 " � �

Figure 2. Conformance rules

and the (2) the arguments of the method: the instance of
the type expected to be received (depicted as the “real”
object) or the object received that must implicitly struc-
turally conforms (depicted as the implicitly structurally
conformant object). In (1) the “real” object uses the re-
turn parameter, meaning that the return parameter
 � of
the method � must implicitly structurally conform to the
return parameter
 � � of the method � � . In (2), the im-
plicitly structurally conformant object uses the parame-
ter given by the “real” object. In this case, the argument

 � � of the method � � must implicitly structurally con-
form to the argument
 � of the method � . Note that the
permutations of the arguments of the methods (denoted
by z �x{ � � � q�| �*} |K~;~3~;| �

�
) are taken into account.

Constructor (v): The final step before defining the implicit
structural conformance rule is to describe the confor-

mance rule for the constructors. This rule is quite the
same as the one for the methods except that there are no
return values (hence no return type).

Implicit structural conformance (vi). We now describe
the implicit structural conformance (� F �). A type
 im-
plicitly structurally conforms to a type
�� iff
 conforms
to type
�� in all the aspects defined before or if
 and
��
are equivalent or if
 conforms explicitly to
�� .

One could think of having a weaker rule taking into ac-
count only the name of the types for example. However,
not taking into account the whole set of aspects breaks the
type safety and might lead to receive an error while trying
to call a specific method onto the object.

What if a field, a method or a constructor of a type

match several fields, methods or constructors of a type
 �
of which it implicitly conforms (e.g., a method with a sin-
gle argument � q of type
 q in
 can match an arbitrary
number of methods with a single argument � q � for as long
as
 q �
 q �)? In this case, the rules do not impose any
criterion, it is up to the programmer to decide what is more
suitable.

5 Type Representation

This section discusses the representation of types. Our
objective is to make the comparison between two types pos-
sible, according to the rules described in Section 4, without
having to transfer the implementation of them. To achieve
this goal, we rely on introspection mechanisms (that are
provided in platforms like Java or .NET).

5.1 Overview

Once the object, as well as a handle to its type descrip-
tion (see Section 6), are received on a given host, a test
must be performed to check if this object can be used as is
within a given variable. This means that the type descrip-
tion of the received object must conform to the type of the
variable. Downloading directly the package/assembly con-
taining the type of the object is not an option, because this
would consume too many network and memory resources,
especially if it appears that the types do not conform. For
that reason, only a type description is downloaded.

To create such a type description, the reflective capabil-
ities of the object-oriented platform are used as a basics, as
they provide some useful mechanisms that help to achieve
our goal. Those reflection classes help us to get informa-
tion about the variables, the methods and the attributes of
the type to represent.

5.2 Types as XML messages

Types in our system are represented as XML structures.
One obtains the information necessary to construct a type
description by means of introspection. Such a type descrip-
tion includes explicit supertype information as well as sig-
natures of methods, attributes, and type identity5.

Recall that the serialization mechanisms of the main
object-oriented platforms we think of (.NET or Java) are
not able to serialize/deserialize an object (even its reflec-
tion fields) without knowing in advance its type. For that
reason, our own introspection for representing fields, meth-
ods, constructors, interfaces and superclass of objects need
to be created and serialized. To create such instances of
our introspection classes, the introspection classes of the
chosen object-oriented platform are used.

Since it is not feasible (for resource reasons) to send
these introspection objects trough the network, one by one,
a special type (called TypeDescription) which imple-
ments the ITypeDescription interface is introduced.
The ITypeDescription interface presents the methods
necessary to acquire the information about the type of the
object to serialize. Two specific methods (equals() and
conforms()) are defined and are used to test the confor-
mance between types. In order to serialize a new Type-
Description object a basic XML serialization mecha-
nism is sufficient.

As mentioned before, the TypeDescription class
gives a description of the type it reflects (i.e. its fields,
methods including the arguments of the methods, construc-
tors, etc). But there is no description of the fields or the
methods of the types of the formal arguments of the meth-
ods or of the fields themselves. There is no recursion in the
type description for two main reasons, namely (1) for sav-
ing time during the creation of the XML message and (2)
for keeping this message small because a subtype descrip-
tion might already be available at the receiver side, so there
is no need to transport redundant information.

6 Object Serialization

In this section, we elucidate how objects are represented,
conveyed (pass-by-value semantics), and invoked (pass-by-
reference semantics) between components in our approach.
We first introduce the different issues addressed in this sec-
tion and explain our pass-by-value and pass-by-reference
approaches.

5We rely on the concept of type identity provided by the underlying
platform. As a matter of example, .NET provides globally unique identi-
fiers (GUID) of 128 bits long for types.

6.1 Overview

For the same reasons presented in Section 5, it is not
desirable to send the type representation of the object with
the object itself. Indeed, objects of the same type might
have already been received before, and there might not be
any need to download again the type representation of the
object. For that reason, when an object is sent through the
network, it is sent only with a description of the download
path where to get the complete type representation of it.

6.2 XML-SOAP approach

We describe here how to send/use an object through the
network. Our approach is hybrid in the sense that, to send
objects, we rely on a combination of the XML and some
other serialization mechanisms (SOAP or binary). The
XML serialization is used to provide a human readable type
description of the sent object as well as download paths in-
formation to get the code of it. The SOAP or binary seri-
alizations are used to serialize efficiently the whole object
(including the private fields). For connecting objects re-
motely, our approach assumes and uses the remoting mech-
anisms of the choosen object-oriented platform.

Pass-by-value semantics. As presented in Section 5, it
is not possible to serialize an object and send it through the
network just as is. This is because the receiver of the object
may not have the necessary information used to deserialize
the object (if this is the first time he receives the object). To
prevent knowing the type of the object sent, specific seri-
alization and deserialization mechanisms are used. That is,
an XML message encompassing the object is sent instead
of only the object itself. This XML message consists of
information about the types of the object (type names and
download paths of their implementations) and includes the
SOAP or binary serialized object.

When such an XML message is received, it is deseri-
alized in order to get the corresponding type information.
A check is done to know if the corresponding classes or
interfaces implementing the types are locally available. If
this is the case, the deserialization of the object can be eas-
ily achieved. Otherwise, the type description of the object
must be downloaded with the help of the information of
the download paths. If the type of the object and the type
of interest conform, the different classes and interfaces that
implement the types can be downloaded and loaded into the
memory in order to deserialize cleanly the object. To deal
with such conformant objects, dynamic proxies are used
(see [1]). Figure 3 illustrates the serialization of an object
of type A containing an object of a type B.

Serialization
Mechanism

Object A <XML message>

<SOAP serialized object A>

<A Type information>
<Assembly A information>
<Assembly B information>

Object B

Figure 3. A hybrid serialization scheme

Pass-by-reference semantics. Though the main object-
oriented platforms (e.g. .NET), already provide several
mechanisms for pass-by-reference semantics (.NET remot-
ing), they are in our case, just like basic serialization
mechanisms, not usable as such. Indeed, the current im-
plementation can not be applied straightforwardly, due to
our desire for interoperability not only at the program-
ming language level, but also at the type level, meaning
that we want to be able to provide some flexible form
of type conformance. Imagine a component querying a
type
�� , and
�� happens to match a lent remote server’s
type
 Y implicitly (only), i.e.,
 Y is not a subtype of

�� . The invocation of
�� can not be performed straight-
forwardly on a remoting proxy; the interposing of a dy-
namic proxy as a wrapper is necessary since
�� and
 Y
are not explicitly compatible. This mismatch increases
with the depth of the matching of the two types
�� and

 Y (requiring similar wrappers on the sharing component
as well). This concept of dynamic proxies is available
in object-oriented platforms like .NET by extending the
the RealProxy class (even in Java by extending the
java.lang.reflect.Proxy class and in using the
java.lang.reflect.InvocationHandler inter-
face). Our pass-by-reference approach is, in fact, quite
the same as the pass-by-value approach, in the sense that
for both approaches, the concept of dynamic proxies is
massively used. The only difference between the two ap-
proaches is that for the pass-by-value approach our own se-
rialization mechanisms and dynamic proxies are used and
for the the pass-by-reference approach, the basic remot-
ing mechanisms enhanced with dynamic proxies (see [1]
to have a look at our .NET implementation) are used.

7 Performance

We present here some performance results of our proto-
type implementation. All our results are based on simple
types (see [1]) and obtained with a HP Omnibook XT6050,
Pentium 3, 256 MB Ram, HDD 30GB, Windows 2000
SP2, Visual Studio .NET Enterprise Architect 2002 version
7.0.9466.

7.1 Invocation time

We first consider the invocation time taken to invoke a
method using a dynamic proxy and compare it with a di-
rect invocation. The method called is getName() of the
type Person. This type is described in [1]. The testbeds
were the following: 100 repetitions of 1000000 invocations
to the method either directly or indirectly (using a dynamic
proxy). We have made repetitions to see if, over the time,
the overall slope was constant or not. The average direct
invocation time is about 0.000142 milliseconds. The aver-
age indirect invocation time is about 0.03 milliseconds. A
huge difference can be seen in comparing these two results.
Moreover, the overall time for making an indirect call de-
pends upon the number of indirect calls performed on the
dynamic proxy as well as its implementation. However,
this amount of time still remains negligible with respect to
the time taken for checking type conformance or for trans-
fering objects, type descriptions and assemblies.

7.2 Creation, serialization and deserialization of
type descriptions

We consider here the time taken to create a type de-
scription of a simple type (in this case the type Per-
son). The type description of an instance of Person was
(de)serialized 1000 times. We also average over 100 runs.
The average time for the creation and the serialization into
an XML message of a Person description is about 6.14
milliseconds and the time taken to deserialize such a mes-
sage is 2.34 milliseconds. Even if this cost is small, we
must note that, again, the time depends upon the serialized
type. However, we must also note that this serialization is
done only once for a specific type. The time taken to send
many objects of the same type will not be significantly af-
fected by this (de)serialization time.

7.3 Serialization and deserialization of an object

We have measured the time taken to serialize and dese-
rialize an instance of type Person. More precisely, we
have measured the duration of serializing and deserializing
this instance 1000 times. The average time to serialize the
object is of 16.68 milliseconds and to deserialize it of 1.32
milliseconds. This difference could be explained by the
fact that creating a SOAP structure from an object is more
complex than the opposite.

7.4 Conformance testing

Finally, we also measured the cost of the verification
of the conformance rules. These tests were done on very

“simple” types [1]. We have performed 100 times 1000
verifications. The average time to test the implicit structural
type conformance is of 12.66 milliseconds. Even if this
time does not reflect the overall time for all types, it gives,
in some sense, a lower bound.

8 Concluding Remarks

This paper addresses the issue of type interoperability
in a distributed environment. We make transparent for the
programmer the use of one type for another, even if these
types do not exactly have the same methods or names, as
long as they aim at representing the same software mod-
ule. We believe this form of interoperability to be crucial
in modern distributed computing where several software
modules, possibly developed by different programmers, on
different languages and systems, need to be unified. Our
approach can also be used to extend CORBA or Java RMI
with type interoperability capabilities.

One obvious application of type interoperability is type-
based publish/subscribe (TPS) [4]. With TPS, subscribers
express their interest in events of a given type and publish-
ers produce events of specific types. The main issue with
TPS is that the subscribers and the publishers must agree a
priori on the types they want to transfer/receive. Enhanc-
ing TPS with type interoperability would simply alleviate
this problem. Another possible application of this form of
interoperability is the borrow/lend (BL) abstraction [3]. In
this application lenders can lend resources to borrowers via
specific criteria. A possible criterion is type conformance,
for a type
�� with which the lent resource’s type
 Y must
conform.

In general, combining type interoperability with lan-
guage interoperability makes the use of object-oriented
middleware systems more attractive. One of the main is-
sues in such systems is indeed that the different program-
mers must agree on a common type system or, at least, on
a common way of describing types. This kind of assump-
tion is far from being trivial in distributed dynamic systems
where new types can be defined and exchanged on the fly,
which changes the type hierarchy continuously.

Our approach is based on implicit structural type confor-
mance rules and rely on an optimistic transport protocol as
well as serialization mechanisms for marshalling the type
description and the object itself. In our prototype, the XML
serialization has been used to describe the type representa-
tion of objects and the SOAP/binary serialization has been
used to serialize objects themselves. The implicit struc-
tural type conformance we have defined relaxes the strong
assumptions of a type system. However, even if our rules
have been written in a general way, we are aware that we
cannot ensure complete conformance for all the possible

cases.
Finally, we have pointed out that the price for having

type interoperability in a distributed system is not so high
in comparison with the possibilities offered by such an en-
hanced system.

References

[1] S. Baehni, P. Th. Eugster, R. Guerraoui, and P. Al-
therr. Pragmatic Type Interoperability. Technical Re-
port EPFL/IC/TR-200308, Swiss Federal Institute of
Technology-LAUSANNE, February 2003.

[2] M. Büchi and W. Weck. Compound Types for Java. In
Proceedings of the 13th ACM Conference on Object-
Oriented Programming Systems, Languages and Ap-
plications (OOPSLA ’98), pages 362–373, October
1998.

[3] P.Th. Eugster and S. Baehni. Abstracting Remote
Object Interaction in a Peer-2-Peer Environment. In
2002 Joint ACM Java Grande - ISCOPE Conference,
November 2002.

[4] P.Th. Eugster, R. Guerraoui, and C.H. Damm. On
Objects and Events. In Proceedings of the 16th ACM
Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA 2001),
pages 131–146, October 2001.

[5] K. Läufer, G. Baumgartner, and V.F. Russo. Safe
Structural Conformance for Java. Technical Report
CSD-TR-96-077, Department of Computer Sciences,
Purdue University and West Lafayette, December
1996.

[6] V. I. Levenshtein. Binary codes capable of correct-
ing deletions, insertions and reversals, volume 163,
chapter 4. Doklady Akademii Nauk SSSR, 1965.

[7] S. Liang and G. Bracha. Dynamic Class Loading in
the Java Virtual Machine. In Proceedings of the 13th
ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’98),
pages 36–44, October 1998.

[8] P. A. Muckelbauer and V. F. Russo. Lingua franca:
An IDL for structural subtyping distributed object
systems. In Proceedings of the USENIX Conference
on Object-Oriented Technologies (COOTS’95), pages
117–133, June 1995.

[9] OMG. The Common Object Request Broker: Archi-
tecture and Specification. OMG, February 2001.

[10] Sun. Java Core Reflection API and Specification,
1999.

