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Abstract

Theoretical and numerical aspects of multi-scale problems are investigated.

On one hand, mathematical analysis is done on a new method for numerically solving

problems with multi-scale behavior using multiple levels of not necessarily nested grids. A

particularly flexible multiplicative Schwarz method is presented, requiring no conformity

between the meshes at the different scales. The relaxed iterative method consists in

calculating successive corrections to the solution in regions where the variations of a

problem are too strong to be captured by a coarse initial mesh. In these sub-domains

patches of finite elements are applied. A priori and a posteriori error estimates are

given and an exact spectral analysis of the iteration operator describing the algorithm is

presented. Computational issues are addressed and numerical methods to obtain optimal

convergence are given. Crucial implementation matters are discussed with special regard

to usage of memory and CPU-time.

On the other hand, the efficiency of the introduced correction method is demonstrated

on Laplace model problems, either with changing Dirichlet-Neumann boundary conditions

or in a polygonal domain with entrant corner. The regularity of the solutions is studied

as well as the improvement of the convergence order in the mesh size using various sizes

of patches. The correction algorithm is also applied to improve the accuracy in the

simulation of the stress field in glacier modeling. A simple model to obtain the effective

stress field in the ice mass of a glacier is presented and concluding results are obtained

using patches in the regions where changes in the basal boundary conditions are involved.
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Version abrégée

Nous nous intéressons à quelques aspects théoriques et numériques de problèmes multi-

échelles.

Dans la première partie de cette thèse, nous effectuons une analyse mathématique

d’une nouvelle méthode pour résoudre numériquement des problèmes avec données multi-

échelles utilisant plusieurs niveaux de grilles non nécessairement embôıtées. Nous pré-

sentons une méthode multiplicative de type Schwarz, particulièrement souple dans le

sens qu’elle ne requiert pas de conformité entre les maillages aux différents niveaux. La

méthode itérative relaxée consiste à calculer des corrections successives de la solution par

régions où les variations du problème sont trop importantes pour être résolues sur une

grille grossière initiale. Dans ces sous-domaines nous appliquons des patchs d’éléments

finis. Nous donnons des estimations d’erreur a priori et a posteriori, et présentons une

analyse spectrale complète de l’opérateur d’itération décrivant l’algorithme. Nous con-

sidérons les problèmes de calcul et proposons des méthodes numériques pour obtenir la

convergence optimale. Nous discutons les points cruciaux dans l’implantation avec une

attention particulière quant à l’utilisation de la mémoire et du temps CPU.

Dans la seconde partie de cette thèse, nous démontrons l’efficacité de la méthode

de correction sur des problèmes modèle de Laplace, avec changement de conditions au

bord du type Dirichlet-Neumann ou dans un domaine polygonal avec coin entrant. Nous

étudions la régularité des solutions ainsi que l’amélioration de l’ordre de convergence

dans la taille des éléments de la grille en utilisant différentes grandeurs de patchs. Nous

appliquons également l’algorithme de correction pour améliorer la précision de la sim-

ulation du champ des contraintes dans la modélisation de glaciers. Un modèle simple

pour obtenir la contrainte effective dans la masse de glace d’un glacier est présenté et

nous obtenons des résultats concluants en utilisant des patchs dans les régions où des

changements dans les conditions de bord à la base sont impliqués.
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Introduction

Despite increasing computational power making simulations faster, and available memory

enabling the treatment of larger problems, the need for efficient computational methods is

always of crucial importance. Simulating more complex systems with always better pre-

cision is primary for many industries and scientific applications, naming only the widely

known issues of the airplane industry or meteorologic forecast and air quality manage-

ment.

Very often a great or better precision is required in certain regions of the computational

domain in which the solution is defined. In order to fix the ideas, let us focus on a couple

of model problems.

First, consider situations with multi-scale data, in the form of a sharp right-hand side

or sharp coefficients in the differential operator in a small region of the domain. Point

sources for example give rise to models needing careful examination of the space-scale.

Getting an accurate simulation on large scales is linked to a simulation in subregions

around the sources using finer grids.

We can also think of problems whose solution present singularities arising from chang-

ing Dirichlet-Neumann boundary conditions, alike for velocity of the ice of a glacier on

its basal surface where adhesion or free sliding conditions are to be found and give rise

to locally high stress fields. Computational domains with entrant corners inherit similar

irregularities.

Finally, engineering problems with complex geometry are of concern: take, e.g., an

aluminium production cell, where locally more precision is needed but the meshing of the

cell is provided a priori and re-meshing has to be avoided.

Efficient approaches in the above mentioned situations include for instance adaptive

mesh refinement techniques or domain decomposition methods. However, the first are

sometimes inappropriate as the meshing of the problem can be given once for all a priori,

or, e.g. in three dimensions, mesh generation can be time-consuming. The second cover

a broad spectrum of algorithms but many of them are not always as flexible as needed

(see [53] for an overview1).

1Note that many methods exist in the literature to treat suchlike problems by similar methods then
the one that will be presented in this thesis. References appearing in this work, although citing the most
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Introduction

In this work we investigate a new method for numerically solving elliptic problems with

multi-scale behavior using multiple levels of not necessarily nested grids. The algorithm

is a domain decomposition method and is closest to a Chimera method [25, 60]. Being a

multiplicative Schwarz method, it can be compared to the Fast Adaptive Composite grid

method by McCormick [49], a hierarchical method (introduced first by Yserentant [69]),

or the Successive Subspace Correction method by Xu [64]. However, by further and de-

tailed comparison done in this work, we claim that the presented method requiring no

conformity between the meshes is of much more flexible use. We have published this

algorithm originally in [37], and discussed and illustrated it in [36] and [35]. We consider

situations where the multi-scale behavior originates from one of the problems described

above. Our relaxed iterative method consists in calculating successive corrections to the

solution in critical regions where we apply finite element patches whose discretizations

are not necessarily conforming.

This thesis consists of two parts. In a first part we introduce the method and inves-

tigate its properties from a theoretical point of view. The second part focuses on the

application to model situations and the modeling of glaciers.

The first part of this thesis (Chapters 1 and 2) is devoted to theoretical studies related

to the presented algorithm.

The objective of Chapter 1 is to introduce the method. The algorithm which we first

described in [37] is a method for numerically solving elliptic problems with multi-scale

data using two levels of not necessarily nested grids. We use a relaxed iterative method

which consists in calculating successive corrections to the solution in patches of finite ele-

ments. First we introduce a two-scale setting and its notation. We next give a priori and

a posteriori error estimates for this situation and introduce the two-level algorithm itself

which consists in the following: first we solve the problem on a coarse mesh of the com-

putational domain. Therein we consider a patch with corresponding fine mesh wherein

we would like to obtain more accuracy. Thus we calculate successively corrections to the

solution in the patch. The latter, consecutively computed in the patch (fine correction)

and over the whole domain (coarse correction), are iteratively added to the solution using

a relaxation parameter. Finally, we are left with the analysis of the method. After con-

sidering a general setting of vector spaces and deriving properties for the spectral analysis

of the iteration operator describing the algorithm, we establish the spectral properties of

the operator and conclude with the convergence of the proposed algorithm including the

idea of how to optimize the relaxation with respect to the convergence speed. We consider

an alternative introducing two relaxation parameters for the coarse and fine corrections

pertinent, give only a non-exhaustive list of examples.

2



respectively and show that optimality requires both parameters to be equal.

In Chapter 2 we discuss the practical usage of the algorithm. Obtained results show

that the speed of convergence depends mainly on two parameters: the grids characterized

by an abstract angle between their respective finite element spaces, and the relaxation.

We give estimates for the first of the parameters in order to optimize the convergence

properties of the method. We illustrate the influence of nested and non-nested grid con-

stellations in one dimension. We give estimates in some particular two-dimensional cases

and briefly consider a particular 2D or 3D situation where the patch is entirely included

in one element of the coarse grid. Next we show how to evaluate numerically the best

relaxation parameter and what is the influence of patches size on the convergence of the

method. Finally, we care about implementation and computational issues, in particular

concerning integration of the scalar products, and assess the convergence of the method

in practice with respect to the usage of memory and CPU-time.

The second part of this thesis (Chapters 3 and 4) treats applications to model prob-

lems and contributes to part of the problem of glacier modeling.

In Chapter 3 we use the introduced correction method and consider regularity and con-

vergence order issues for problems with singularities due to changing Dirichlet-Neumann

boundary conditions or domains with entrant corners: we consider a Laplace problem

with changing Dirichlet-Neumann boundary conditions and a Poisson-Dirichlet problem

on a polygonal domain with entrant corner. In both cases, we study the regularity of the

solutions. We analyze how the application of patches improves the quality of the solution

efficiently with respect to the usage of memory. We also study the convergence orders in

the mesh sizes obtained for the two models and various types of patches.

The objective of Chapter 4 is to introduce the correction algorithm into the modeling

of glaciers. Following the work of Reist [56] we consider a 2D vertical cut in the direction

of the motion of the glacier and present a model to simulate the velocity field of the ice

mass and the effective stress field. Basal boundary conditions are a crucial issue of the

study of glaciers and the model involves Dirichlet and Neumann boundary conditions.

With the knowledge acquired through the model problems treated in Chapter 3 we apply

patches in certain regions on the glacier domain. We present an improvement in the

precision of the stress field on the model of the Gries glacier (Swiss Alps).

3



Introduction

Note.

This thesis is supplemented with an appendix out of context. A short review of research

done in Theoretical Physics on a class of solutions of the continuity and Euler’s equations

for inviscid and compressible fluids is presented. The work aims to describe the dynamics

of conservative, very large and dense systems experiencing strongly correlated motion

of their constituents which interact via long range potentials, and this, by means of

canonically conjugated collective variables.

4



Chapter 1

Two-scale algorithm

The objective of this chapter is to introduce a new method first described in [37]. It is

an algorithm for numerically solving elliptic problems with multi-scale data using two

levels of not necessarily nested grids. We use a relaxed iterative method which consists

in calculating successive corrections to the solution in patches of finite elements. Some

parts of this chapter concerning the analysis of the spectral properties of the iteration

operator are extracted from [36], a paper in collaboration with Glowinski, He, Lozinski

and Rappaz. We conclude with the convergence of the algorithm.

The outline of this chapter is the following:

1.1 Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 A priori and a posteriori error estimates . . . . . . . . . . . 9

1.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Some properties of vector spaces . . . . . . . . . . . . . . . . 18

1.5 Spectral analysis of the iteration operator . . . . . . . . . . 22

1.6 Convergence of the algorithm . . . . . . . . . . . . . . . . . . 32

In Section 1.1 we introduce a two-scale setting and its notation. In the next section we

give a priori and a posteriori error estimates for the introduced situation. In Section 1.3

we introduce the two-level algorithm. Hence we are left with the analysis of the latter.

We consider in Section 1.4 a general setting of vector spaces. We derive properties used

afterwards in the spectral analysis of the iteration operator describing the algorithm. In

Section 1.5 we establish the spectral properties of the operator and, finally, in Section 1.6

we prove the convergence of the proposed algorithm.
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Two-scale algorithm

1.1 Situation

In numerical approximation of elliptic problems by finite element method, a great preci-

sion of solutions is often required in certain regions of the domain in which the solution

is defined. Our objective is to present a method to solve numerically elliptic problems

with multi-scale data using two levels of not necessarily nested grids.

Consider a multi-scale problem with sharp data in small sub-domains. We solve the

problem on a coarse mesh of the computational domain Ω. Therein we consider a patch Λ

(or multiple patches, see [36, §5]) with corresponding fine mesh wherein we would like to

obtain more accuracy. Thus we calculate successively corrections to the solution in the

patch. The coarse and fine discretizations are not necessarily conforming, as illustrated

in two dimensions in Figure 1.1.

Λ

Ω

Figure 1.1: Two-scale situation: Computational domain Ω and patch Λ.

Before presenting the algorithm, we introduce a two-scale setting and its notation.

Let Ω ⊂ Rd, d = 2 or 3, be an open polygonal or polyhedral domain and consider a

bilinear, symmetric, continuous and coercive form

a : H1
0 (Ω) ×H1

0 (Ω) → R. (1.1)

Here and in the sequel we use standard notation for the Sobolev spaces: H1(Ω) denotes

the usual Sobolev space of functions with first derivatives in L2(Ω). The subscript 0

indicates the subspace of functions with trace zero on the boundary ∂Ω.

The usualH1(Ω)-norm inH1
0 (Ω) is equivalent to the a-norm defined by ||v|| = a(v, v)

1
2 ,

∀v ∈ H1
0 (Ω). If f ∈ H−1(Ω), due to Riesz’ representation Theorem there exists a unique

u ∈ H1
0 (Ω) such that

a(u, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ H1
0 (Ω), (1.2)

where 〈·|·〉 denotes the duality H−1(Ω) −H1
0 (Ω). Let us point out that (1.2) is the weak

formulation of a problem of type{
L(u) = f in Ω,
u = 0 on ∂Ω,

(1.3)

6



1.1 Situation

where L(·) is a second order, linear, symmetric, strongly elliptic operator. In the following

we consider problems of the form (1.3) with homogeneous Dirichlet boundary conditions.

If the Dirichlet boundary conditions of the initial problem are not homogeneous, we ex-

tend the discussion of the current situation. In Section 3.2 we also consider a situation

with non-homogeneous Dirichlet and homogeneous Neumann boundary conditions.

For instance, an operator L(·) for problem (1.3) can be given by

L(u)(x) = −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)

)
, (1.4)

where aij ∈ L∞(Ω), aij(x) = aji(x), 1 ≤ i, j ≤ d, and
∑d

i,j=1 aij(x)ξiξj ≥ α|ξ|2, ∀ξ ∈
Rd, ∀x ∈ Ω, where α is a positive constant. In this case the form a(·, ·) is defined by

a(ψ, ϕ) =
d∑

i,j=1

∫
Ω

aij
∂ψ

∂xj

∂ϕ

∂xi

dx, ∀ψ, ϕ ∈ H1
0 (Ω). (1.5)

Our objective is to find an approximation of the solution u ∈ H1
0 (Ω) of problem (1.2).

A Galerkin approximation consists in

• building a finite dimensional subspace VHh ⊂ H1
0 (Ω), and

• solving the problem: Find uHh ∈ VHh satisfying

a(uHh, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ VHh. (1.6)

In the following the construction of the space VHh is presented. Firstly, we introduce

a regular family of triangulations TH of Ω (see Ciarlet [28, Sect. 7] or [29, Sect. 17]), a

union of triangles K of diameter less than or equal to H .

Consider now in two dimensions a multi-scale situation with a solution that is very

sharp, i.e. varies rapidly, in a small polygonal sub-domain Λ of Ω, but smooth, i.e. varies

slowly, in Ω\Λ. This means that the solution can be well approximated on a coarse mesh

in Ω \Λ but needs a fine mesh in Λ. We would like to stress that Λ is not necessarily the

union of several triangles K of TH . Besides Λ can be determined in practice by an a priori

knowledge of the solution behavior or an a posteriori error estimator (Proposition 1.2),

for example. Let Th be a regular family of triangulations of Λ with triangles K such that

h = maxK∈Th
diam(K).

In a first step we approximate u by a finite element method of order r on the trian-

gulation TH of Ω by using

VH = {ψ ∈ H1
0 (Ω) : ψ|K ∈ Pr(K), ∀K ∈ TH}, (1.7)

7



Two-scale algorithm

Λ
Ω

(a) Nested elements.

Λ
Ω

(b) Non-nested elements.

Figure 1.2: Linear finite elements in 1D on Ω (plain lines) and Λ (dotted lines).

where Pr(K) is the space of polynomials of degree ≤ r on triangle K. In a second step

we rectify the solution on the finite element space

Vh = {ψ ∈ H1
0 (Ω) : ψ|K ∈ Ps(K), ∀K ∈ Th and ψ = 0 in Ω \ Λ}, (1.8)

where Th is the triangulation of Λ.

Consequently we set VHh = VH + Vh. We observe that in practice, it is generally not

possible to determine a finite element basis of VHh. Hence it is impossible to compute

directly uHh. The goal of our method is to evaluate efficiently uHh without having a basis

of VHh, but only a basis of VH and a basis of Vh.

Let us mention that a priori VH ∩ Vh does not necessarily reduce to the element zero

as shown in Figure 1.2(a) where a one-dimensional situation is illustrated by the “hat”

functions in Ω and in Λ. In the case when TH and Th are not nested, as illustrated by

Figure 1.2(b) where we have translated the patch, it is not possible to easily exhibit a

finite element-basis of VHh from the bases of VH and Vh. Note also that moving from

the situation depicted in Figure 1.2(a) to the one in Figure 1.2(b), the dimension of VHh

increases by 1. For a more detailed discussion on these issues, we refer the reader to

Section 2.1.

All these difficulties impose an iterative method for solving problem (1.6). We intro-

duce the algorithm in Section 1.3 and analyze it through Sections 1.4–1.6.

8



1.2 A priori and a posteriori error estimates

1.2 A priori and a posteriori error estimates

Before showing how to compute uHh (Section 1.3), we investigate the convergence orders

through an a priori estimate (Proposition 1.1), and the local quality of the solution by

introducing an a posteriori error estimator (Proposition 1.2).

We use the norm || · || based on the scalar product a introduced in (1.1) and equiv-

alent in H1
0 (Ω) to the usual H1(Ω)-norm. Recall that H = maxK∈TH

diam(K) and

h = maxK∈Th
diam(K).

Proposition 1.1 (A priori error estimate, see [36]). Let q = max(r, s) + 1 and

suppose that the solution u of (1.2) is in Hq(Ω). Then the approximation uHh to u

satisfies the a priori error estimate

||u− uHh|| ≤ C
(
Hr||u||Hq(Ω\Λ) + hs||u||Hq(Λ)

)
, (1.9)

where C is a constant independent of H, h and u.

For reader’s convenience, we establish the proof below:

Proof. The boundary ∂Λ being locally Lipschitz, due to the Stein Extension Theorem

(see Adams and Fournier [5], Thm. 5.24), there exists a bounded extension operator

E : Hq(Ω \ Λ) → Hq(Ω), i.e. Ev|Ω\Λ = v|Ω\Λ, ∀v ∈ Hq(Ω \ Λ). Let u be the solution of

(1.2). We define ũ the extension of u|Ω\Λ to Ω such that ũ = Eu if ||Eu||Hq(Λ) ≤ ||u||Hq(Λ)

and ũ = u otherwise. We have that ũ = u in Ω \ Λ,

||ũ||Hq(Ω) ≤ C||u||Hq(Ω\Λ), (1.10)

where here, like in the sequel, C denotes a generic constant, and

||ũ||Hq(Λ) ≤ ||u||Hq(Λ). (1.11)

Note that u − ũ ∈ Hq
0(Λ). Let rH and rh be the standard interpolants to the spaces VH

and Vh respectively. We introduce ũH = rH ũ and ũh = rh(u− ũ). Define ũHh = ũH + ũh

and vHh = uHh − ũHh. By the definitions of u and uHh we have a(u, vHh) = a(uHh, vHh).

This and the previous definitions lead to the equality a(vHh, vHh) = a(u− ũHh, vHh), from

which we derive using the Cauchy-Schwarz inequality that ||vHh||2 ≤ ||u − ũHh||||vHh||.
Thus

||uHh − ũHh|| ≤ ||u− ũHh||. (1.12)

With u− uHh = (u− ũHh) + (ũHh − uHh) and (1.12), we have

||u− uHh|| ≤ ||u− ũHh|| + ||uHh − ũHh|| ≤ 2||u− ũHh||. (1.13)

9



Two-scale algorithm

Writing u− ũHh = (ũ− ũH) + [(u− ũ) − ũh], we get by standard interpolation results

||u− ũHh|| ≤ ||ũ− ũH|| + ||(u− ũ) − ũh|| (1.14)

≤ C
(
Hr||ũ||Hq(Ω) + hs||u− ũ||Hq(Λ)

)
, (1.15)

and furthermore, with ||u− ũ||Hq(Λ) ≤ ||u||Hq(Λ) + ||ũ||Hq(Λ) and using the relations (1.10)

and (1.11), we obtain

||u− ũHh|| ≤ C
(
Hr||u||Hq(Ω\Λ) + hs||u||Hq(Λ)

)
. (1.16)

Hence, combining the results (1.13) and (1.16) completes the proof.

Let us outline an illustration of the a priori error estimate (1.9). For doing this, we

consider a two-dimensional Poisson problem with sharp right-hand side and suppose that

we have computed an approximation uHh ∈ VHh to the solution u.

More precisely, consider the problem{
−Δu = f in Ω = (−1; 1)2,
u = 0 on ∂Ω.

(1.17)

Set f = f0 + f1, where f0 = −Δu0 and f1 = −Δu1, such that the exact solution to

the problem is given by u = u0 + u1. Take u0(x, y) = cos(π
2
x) cos(π

2
y) and u1(x, y) =

ηχ(R) exp ε−2
f exp(−1/|ε2f − R2|), where R(x, y) =

√
x2 + y2 and χ(R) = 1 if R ≤ εf ,

χ(R) = 0 if R > εf ; η and εf are parameters. We choose η = 10 and εf = 0.4.

Away from the origin (0, 0) the solution is smooth and varies slowly. In a region close

to (0, 0) the solution has a peak, we want to apply a patch for more precision.

For the triangulation TH of Ω, we use a coarse structured, respectively unstructured,

grid and linear finite elements for VH (r = 1). We consider the patch Λ = (−0.25; 0.25)2

with a fine structured triangulation and set s = 1. We set H = 2/N and h = 0.5/M ,

N,M being the number of intervals on one side of the squares Ω and Λ respectively. An

illustration of the grid constellations with N = 8 and H/h = 4 is given in Figures 1.3(a)

and 1.4(a) resp. for structured and unstructured TH , nested and non-nested Th.

We compute the approximation uH on the coarse grid (without patch) and evaluate

uHh using the method defined in Section 1.3. We follow the implementation details spec-

ified in Sections 2.2 and 2.3. For the evaluation of the errors, we consider the associated

a-norm to the problem (1.17), induced by the scalar-product

a(ψ, ϕ) =

∫
Ω

∇ψ · ∇ϕ dx, ∀ψ, ϕ ∈ VHh. (1.18)

We evaluate numerically the integral terms appearing in the iterative method following

the discussion in Section 2.3, and more precisely using the formulas (2.31) and (2.32).

10



1.2 A priori and a posteriori error estimates

(a) Structured coarse TH

and nested fine Th.
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(b) Convergence of uHh to u in the mesh size
H with H/h = 4 for the triangulations in (a).
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(c) Convergence of uHh to u in the mesh size
H with h fixed for the triangulations in (a).
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(d) Convergence of uHh to u in the mesh size
h with H fixed for the triangulations in (a).

Figure 1.3: Illustration of the a priori error estimate for linear finite elements on nested
grids.
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(a) Unstructured coarse TH

and structured fine Th.
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(b) Convergence order in the mesh size of uHh

to u for the triangulations in (a).
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(c) Convergence of uHh to u in the mesh size
H with h fixed for the triangulations in (a).
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(d) Convergence of uHh to u in the mesh size
h with H fixed for the triangulations in (a).

Figure 1.4: Illustration of the a priori error estimate for linear finite elements on non-
nested grids.

We are now able to report the relative error of uH and uHh to u for increasing N ,

N = 23, . . . , 29. First we take H/h = 4 fixed, i.e. M = N . The results in Figures 1.3(b)

and 1.4(b) exemplify the a priori error estimate of Proposition 1.1 in the nested case

resp. the case of an unstructured triangulation TH . In both cases, we observe optimal

convergence (order one) in the mesh size H , i.e. O(H)-accuracy for the a-norm which is

equivalent to the H1-norm. Furthermore, we observe that the error when using a patch is

smaller in comparison to the case without a patch. Finally, through Figures 1.3 and 1.4,

(c) and (d), we confirm Proposition 1.1. In the Figures 1.3(c) and 1.4(c) we show the lin-

ear convergence in H of uHh to u when keeping h fixed. In the Figures 1.3(d) and 1.4(d)

we illustrate the a priori convergence result with H fixed.

In practical problems, due to the nature of the data in certain regions, it happens that

12



1.2 A priori and a posteriori error estimates

the solution of a boundary-value problem is less regular. As discussed earlier, we would

like to increase the accuracy of the finite element approximation by applying patches

with refined grids in those sub-domains where it is needed. That is why we carry out

finite element calculations either on a provisional coarse grid, or on a given set of a grid

with patches placed by some a priori knowledge. Then we can compute an a posteriori

estimate for the error. The purpose is to indicate what part of which grid induces large er-

rors. Using this information, we apply a patch, and repeat the finite element computation.

To simplify our discussion, we restrict ourselves in the sequel of this section to the

case of the Laplace operator L = −Δ in two dimensions (d = 2), i.e. the Poisson equation

−Δu = f in Ω ⊂ R2, (1.19)

with homogeneous Dirichlet boundary conditions. We consider its finite element approxi-

mation in the setting introduced earlier. We solve the problem to find uHh ∈ VHh ⊂ H1
0 (Ω)

satisfying

a(uHh, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ VHh, (1.20)

where a(ψ, ϕ) =
∫

Ω
∇ψ · ∇ϕ dx. We suppose that the boundary ∂Λ is conforming with

edges of triangles of Th. Our objective is to give an estimate based on the triangulations

TH of Ω and Th of Λ.

Following [22, §8] and [54], our estimate uses the approach of residual estimators first

introduced in [13]. When we insert the finite element solution uHh of (1.20) in the differ-

ential equation in its classical form (1.19), we get a residual. Moreover the approximation

differs from the solution in that its gradient has jumps on the edges of the elements of

the triangulation. The error is bounded on an element K in terms of the size of the

area-based residual and the edge-based jumps on all inter-element boundaries, i.e. edges

of the triangles which lie in the interior of Ω resp. Λ.

For any triangle K of TH or Th with boundary ∂K, diameter hK and edges of length

hl,K , l = 1, 2, 3, we define the local quantity

η(K, u) = hK ||Δu+ f ||L2(K) +

3∑
l=1

√
hl,K

∣∣∣∣∣∣∣∣[∂u∂n
]∣∣∣∣∣∣∣∣

L2(∂K)

, (1.21)

where u is a polynomial and
[

∂u
∂n

]
denotes the jump of the normal derivative of u on ∂K

when we have fixed a normal direction n on each internal side of the triangulation. With

this notation, we set −1
2

[
∂u
∂n

]
= ∂u

∂n
on the sides of triangles which are on the boundaries

∂Ω of Ω and ∂Λ of Λ. We introduce T̂H , the restriction of TH to Ω \ Λ.

If rH and rh are the standard interpolants to the spaces VH and Vh respectively,

we introduce a decomposition of uHh ∈ VHh: we define ũH = rHuHh ∈ VH and ũh =

uHh − ũH ∈ Vh such that uHh = ũH + ũh.

13
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Proposition 1.2 (A posteriori error estimate). Let L = −Δ and consider the

boundary ∂Λ conforming with edges of triangles of Th. Then the approximation uHh to u

satisfies the a posteriori error estimate

||u− uHh|| ≤ C

⎛⎝√∑
K∈T̂H

η(K, ũH)2 +

√∑
K∈Th

η(K, uHh)2

⎞⎠ , (1.22)

where C is a constant independent of H and h, and η is the local estimator defined

by (1.21).

Proof. We prove (1.22) in evaluating the right-hand side of

||u− uHh|| ≤ C sup
v∈H1

0
(Ω)

||v||=1

∫
Ω

∇(u− uHh) · ∇v dx. (1.23)

Consider the expression I(v) =
∫

Ω
∇(u − uHh) · ∇v dx =

∫
Ω
(fv − ∇uHh · ∇v) dx for

v ∈ H1
0 (Ω), ||v|| = 1. With ϕ = vHh ∈ VHh in (1.20), the decomposition Ω = (Ω \ Λ) ∪ Λ

and uHh = ũH + ũh yield ∀vHh ∈ VHh

I(v) =

∫
Ω\Λ

(f(v − vHh) −∇ũH · ∇(v − vHh)) dx

+

∫
Λ

(f(v − vHh) −∇uHh · ∇(v − vHh)) dx (1.24)

=
∑

K∈T̂H

(∫
K

(f + ΔũH)(v − vHh) dx−
∫

∂K

∂ũH

∂n
(v − vHh) ds

)

+
∑
K∈Th

(∫
K

(f + ΔuHh)(v − vHh) dx−
∫

∂K

∂uHh

∂n
(v − vHh) ds

)
. (1.25)

Hence

I(v) ≤
∑

K∈T̂H

(∣∣∣∣∫
K

(f + ΔũH)(v − vHh) dx

∣∣∣∣ + 1

2

∣∣∣∣∫
∂K

[
∂ũH

∂n

]
(v − vHh) ds

∣∣∣∣)

+
∑

K∈Th

(∣∣∣∣∫
K

(f + ΔuHh)(v − vHh) dx

∣∣∣∣+ 1

2

∣∣∣∣∫
∂K

[
∂uHh

∂n

]
(v − vHh) ds

∣∣∣∣) ,(1.26)
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1.3 The algorithm

and for v ∈ H1
0 (Ω), ||v|| = 1,

I(v) ≤ sup
v∈H1

0
(Ω)

||v||=1

inf
vHh∈VH

⎛⎝∑
K∈T̂H

||ΔũH + f ||L2(K)||(v − vHh)||L2(K)

+
1

2

∣∣∣∣∣∣∣∣[∂ũH

∂n

]∣∣∣∣∣∣∣∣
L2(∂K)

||v − vHh||L2(∂K)

+
∑

K∈Th

||ΔuHh + f ||L2(K)||(v − vHh)||L2(K)

+
1

2

∣∣∣∣∣∣∣∣[∂uHh

∂n

]∣∣∣∣∣∣∣∣
L2(∂K)

||v − vHh||L2(∂K)

)
. (1.27)

At this point, we recall Clément’s results on approximation [30]. Choose vHh to be

Clément’s interpolant of v. For given v ∈ H1
0 (Ω) we have the properties

||v − vHh||L2(K) ≤ ChK ||v||H1(ΛK ), ∀K ∈ T̂H or Th, (1.28)

and

||v − vHh||L2(l) ≤ C
√
hk,l||v||H1(ΛK), ∀K ∈ T̂H or Th, ∀l, edge of K, l ∈ Ω̊ or Λ̊, (1.29)

where ΛK = {T ∈ T : T ∩K 
= ∅} for K ∈ T , T being a triangulation.

The result (1.22) now follows from (1.27) with properties (1.28), (1.29), applying the

Cauchy-Schwarz inequality and introducing the local quantity η defined by (1.21).

1.3 The algorithm

The idea is to solve the problem (1.6) on a domain Ω and consider therein a patch Λ

wherein we would like to obtain more accuracy. Thus we calculate successively correc-

tions to the solution in the patch.

We start from an initial approximation evaluated on a coarse triangulation over all

the domain Ω. One step of our algorithm consist in two parts: first we calculate a cor-

rection on a fine triangulation in the patch Λ which we add to the initial solution to

obtain an intermediate solution. Next, using this last update we evaluate a correction

over the whole domain Ω on the coarse triangulation leading to an overall update. We

also introduce a relaxation parameter ω. Hence we add ω times the correction at each

step to update the solution.

In the following we define the algorithm and introduce its iteration operator (1.37),

the key for the convergence analysis. Then we discuss the algorithm by comparing it to
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existing methods.

Recall the notation from Section 1.1. An approximation of u by the finite element

method of order r consists in using a regular triangulation TH of Ω and the space VH , see

(1.7), and calculating uH ∈ VH satisfying

a(uH , ϕ) = 〈f |ϕ〉, ∀ϕ ∈ VH . (1.30)

We consider a patch Λ ⊂ Ω wherein we would like to obtain a better precision on the

solution u than the one given by uH . We use Th a regular triangulation of Λ and consider

Vh given by (1.8). Setting VHh = VH + Vh we search as approximation for u the function

uHh ∈ VHh satisfying (1.6), i.e.

a(uHh, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ VHh. (1.31)

As we have mentioned at the end of Section 1.1, a priori VH ∩ Vh does not necessarily

reduce to the element zero and it is impossible, practically speaking, to exhibit a finite

element basis of the space VHh and consequently to compute directly uHh. It is the reason

for which we suggest the following algorithm for computing uHh.

Algorithm 1.3.

• Initialization: Set u0 = uH ∈ VH satisfying (1.30) and choose ω ∈ (0; 2).

• For n = 1, 2, 3, . . .

(i) find wh ∈ Vh such that

a(wh, ϕ) = 〈f |ϕ〉 − a(un−1, ϕ), ∀ϕ ∈ Vh; (1.32)

define

un− 1
2 = un−1 + ωwh; (1.33)

(ii) find wH ∈ VH such that

a(wH , ϕ) = 〈f |ϕ〉 − a(un− 1
2 , ϕ), ∀ϕ ∈ VH ; (1.34)

define

un = un− 1
2 + ωwH. (1.35)

When implementing the algorithm, the coarse and the fine parts of un and un− 1
2 are

stored separately. This and issues related to the integration are discussed in Section 2.3.

For analyzing Algorithm 1.3 we need to introduce some notation.
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1.3 The algorithm

If Ph : VHh → Vh and PH : VHh → VH are orthogonal projectors from VHh onto Vh

and VH respectively with regard to the scalar product a(·, ·), we have

uHh − un = B(uHh − un−1), (1.36)

where B is the iteration operator given by

B = (I − ωPH)(I − ωPh), (1.37)

with I denoting the identity operator in VHh. Hence

uHh − un = Bn(uHh − u0). (1.38)

It is readily seen that this algorithm introduced in [36, 37] is a Schwarz type domain

decomposition method [58] without any conformity between the meshes TH and Th (see

for instance the work by Chan et al. [27]). In the multi-scale situation depicted on

Figure 1.1 we have a complete overlapping.

It is similar to the Chimera, or overset grid method, investigated by Steger et al. [60]

and Brezzi et al. [25]. However in its original formulation the latter is an additive method:

in fact, from [25, eqn. 2], we derive that the iteration operator for the Chimera method

is I − Ph − PH . The difference, when ω = 1, stems from (1.34) where we consider in the

residual the intermediate solution un− 1
2 and not un−1. The Chimera method can easily

be rewritten to be multiplicative: it suffices to use in the second line of [25, eqn. 2] the

updated un+1 instead of un. This change makes it a multiplicative method equivalent to

Algorithm 1.3 with ω = 1.

Our multiplicative Schwarz method is also similar to a Gauss-Seidel method and

can be put in the framework of the successive subspace correction method studied by

Xu [64, 65, 66] and Xu and Zikatanov [67].

The spaces VH and Vh defined on the arbitrary triangulations TH and Th are not

necessary orthogonal nor share the only element zero as intersection. Note in particular

that the sum which defines VHh is a priori not a direct sum. This property makes the

above algorithm different from most iterative schemes (see for example the scheme by

Laydi [46]).

For structured grid constellations, the algorithm resembles the Fast Adaptive Com-

posite (FAC) grid method, see for example the works from McCormick et al. [49, 50, 51],

and after Lee et al. [12]. It also resembles possibly a hierarchical method (see for example

the papers from Yserentant [69, 70], Bank et al. [14] and Bank and Smith [15]) with a

mortar method (see [4]).

We underline that the new aspect we introduce is to link the speed of convergence

of Algorithm 1.3 to the parameter γ̃, introduced here below in (1.107), corresponding to

the cosine of an abstract angle between the spaces Vh and VH . Furthermore, an optimal

relaxation through the choice of the parameter ω keeps the method competitive in cases

where the problem is badly conditioned (see Section 2.2 and in particular Table 2.3(c)).
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1.4 Some properties of vector spaces

As discussed earlier in the Introduction, one objective of this work is to analyze the

convergence behavior of the iterative method (Algorithm 1.3) introduced in the previous

section. The algorithm is described by an iteration operator B (1.37) on the discretization

spaces VH (1.7) and Vh (1.8). The objective of this section is to prepare in an abstract

setting the analysis of the spectral properties of the operator B (see Section 1.5).

Generally, let V be a Hilbert space with scalar product (·, ·) and denote by || · || the

induced norm. Consider V1, V2 two closed subspaces of V . This section contains two

main ideas: On one hand, we introduce the quantities which describe most completely

the relation between the spaces V1 and V2. As projection operators appear in the defini-

tion of the iteration operator it is important to find the right quantities to describe the

“angle” between the two spaces. On the other hand, we consider the case where V is of

finite dimension and V1 +V2 = V , i.e. the two subspaces span the whole space. This sum

being not necessarily a direct sum, we decompose V (Proposition 1.7) in terms of sum-

mands, mutually orthogonal subspaces of V and invariant with respect to the orthogonal

projection operators from V onto V1 and V2.

We introduce the number

γ =

{
sup v1∈V1,v1 �=0

v2∈V2,v2 �=0

(v1,v2)
||v1||||v2|| , if V1 
= {0} and V2 
= {0},

0, otherwise,
(1.39)

which is the optimal constant for the corresponding strengthened Cauchy-Buniakowski-

Schwarz (C.B.S.) inequality

(v1, v2) ≤ C||v1||||v2||, ∀v1 ∈ V1, ∀v2 ∈ V2. (1.40)

The constant γ is the cosine of the abstract angle between the two subspaces V1 and V2

if V1 ∩ V2 = {0}. From the definition (1.39), we have the following obvious properties

for γ.

Properties 1.4.

(i) Constant γ is necessarily included in the interval [0; 1].

(ii) If V1 ∩ V2 
= {0}, then we have γ = 1.

(iii) Constant γ = 0 if and only if V1 is orthogonal to V2.

We set V0 = V1 ∩ V2 and V ⊥
0 the orthogonal complement of V0 in V . The above

property (ii) implies that when V0 
= {0}, the parameter γ is not very informative as it

remains equal to one for a large set of spaces V1 and V2.
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V1 V2

V0 = V1 ∩ V2

α

Figure 1.5: Illustration for γ and γ̃ in a case with 2D spaces V1 and V2 and V0 
= {0}: the
parameter γ = 1, while γ̃ corresponds to the cosine of the angle α between V1 and V2.

This suggests to introduce the number

γ̃ =

⎧⎨⎩ sup v1∈V1∩V ⊥
0 ,v1 �=0

v2∈V2∩V ⊥
0

,v2 �=0

(v1,v2)
||v1||||v2|| , if V1 
= V0 and V2 
= V0,

0, otherwise.
(1.41)

Figure 1.5 shows in a particular case that if V0 
= {0}, while γ equals 1, the parame-

ter γ̃ corresponds to the cosine of the abstract angle of the two subspaces V1 and V2.

In the next section we recall (Proposition 1.8) and discuss existing work based on [24]

for the analysis of the iteration operator. To our knowledge all theories assume that the

following hypothesis is satisfied:

Hypothesis 1.5. There exists a constant C0 such that for all v ∈ V there exist v1 ∈ V1,

v2 ∈ V2 satisfying

v = v1 + v2, (1.42)

and

||v1||2 + ||v2||2 ≤ C2
0 ||v||2. (1.43)

Let us observe that:

1. If Hypothesis (1.5) is satisfied, we have necessarily V = V1 + V2.

2. If V1 
= V2, we have necessarily C0 ≥ 1.

3. In the case V1 = V2 = V the optimal constant C0 in (1.43) is equal to 1/
√

2 (it

suffices to take v1 = v2 = 1
2
v, v ∈ V ).

4. If V1 is orthogonal to V2, we can take C0 = 1 from Pythagore’s Theorem.
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As the constant C0 of (1.43) appears in unsharp results of earlier works (see Propo-

sition 1.8) it is useful for comparison to inquire about the optimal constant that can be

chosen. The answer is given by the following Proposition 1.6 which gives a simple condi-

tion for Hypothesis 1.5 to be satisfied and links the constant C0 to the above introduced

number γ̃.

Proposition 1.6 (see [36]). If V = V1 + V2 then Hypothesis 1.5 is satisfied and γ̃ < 1.

If, moreover, V1 
= V2 then

Copt
0 =

√
1

1 − γ̃
, (1.44)

is the optimal constant in (1.43).

For the convenience of the reader we give here the proof.

Proof. Let us denote Ṽj = Vj ∩ V ⊥
0 , j = 1, 2, then V ⊥

0 = Ṽ1 ⊕ Ṽ2 and V = V0 ⊕ Ṽ1 ⊕ Ṽ2.

The Corollary of the Open Mapping Theorem (see Yosida [68, §II.5]) for the one-to-one

mapping (ṽ1, ṽ2) ∈ Ṽ1 × Ṽ2 → ṽ1 + ṽ2 ∈ V ⊥
0 yields the existence of C̃0 < +∞ such that

∀ṽj ∈ Ṽj, j = 1, 2, we have ||ṽ1||2 + ||ṽ2||2 ≤ C̃2
0 ||ṽ1 + ṽ2||2. We can take C̃0 ≥ 1.

For all v ∈ V we have a unique decomposition

v = v0 + ṽ1 + ṽ2 with v0 ∈ V0, ṽj ∈ Ṽj, j = 1, 2. (1.45)

Hence, we can put

v1 = v0 + ṽ1 ∈ V1 and v2 = ṽ2 ∈ V2, (1.46)

so that v = v1 + v2 and

||v1||2 + ||v2||2 = ||v0||2 + ||ṽ1||2 + ||ṽ2||2 (1.47)

≤ C̃2
0 (||v0||2 + ||ṽ1 + ṽ2||2) = C̃2

0 ||v||2, (1.48)

i.e. Hypothesis 1.5 is satisfied with C0 = C̃0.

Let us now consider the case V1 
= V0 and V2 
= V0. Using Definition (1.41), there

exists a sequence vm = ṽm
1 + ṽm

2 with ṽm
1 ∈ Ṽ1, ṽ

m
2 ∈ Ṽ2 and ||ṽm

1 || = ||ṽm
2 || = 1 such that

(ṽm
1 , ṽ

m
2 ) → −γ̃. (1.49)

Suppose ad absurdum that γ̃ = 1. Thus

||ṽm
1 ||2 + ||ṽm

2 ||2
||vm||2 =

1

1 + (ṽm
1 , ṽ

m
2 )

→ +∞, (1.50)

which contradicts Hypothesis 1.5. Hence γ̃ < 1.

Using again the decomposition (1.45) for any v ∈ V and setting v1 ∈ V1, v2 ∈ V2 as

in (1.46), we have ||v1||2 + ||v2||2 ≤ ||v0||2 + ||ṽ1 + ṽ2||2 + 2|(ṽ1, ṽ2)| ≤ ||v||2 + 2γ̃||ṽ1||||ṽ2||.
Since 2||ṽ1||||ṽ2|| ≤ ||ṽ1||2 + ||ṽ2||2 ≤ ||v1||2 + ||v2||2, we get

||v1||2 + ||v2||2 ≤
1

1 − γ̃
||v||2. (1.51)
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Thus we can choose C0 =
√

1
1−γ̃

in (1.43). It suffices to use (1.49) in (1.41) to show that√
1

1−γ̃
is the best constant we can choose.

In the case V1 = V0 or V2 = V0 we have that γ̃ = 0 and if, moreover, V1 
= V2, then

Copt
0 = 1, i.e. (1.44) is also valid.

In order to perform the analysis of the iteration operator in cases where V = V1 + V2

is not a direct sum, we need to decompose V in terms of direct summands. This is the

objective of the following Proposition 1.7. We introduce Pj : V → Vj ⊂ V the orthogo-

nal projectors from V onto Vj, j = 1, 2, and call V ⊥
j the orthogonal complement of Vj in V .

Proposition 1.7 ([36]). Let V be of finite dimension and V = V1 + V2. There exist 2p

(p ≥ 0) vectors v
(m)
1 ∈ V1 and v

(m)
2 ∈ V2, m = 1, . . . , p, such that

||v(m)
1 || = ||v(m)

2 || = 1, (v
(m)
1 , v

(m)
2 ) = γm, m = 1, . . . , p, (1.52)

with

1 > γ1 ≥ γ2 ≥ · · · ≥ γp > 0, (1.53)

and V can be decomposed into the direct sum

V = (V1 ∩ V2) ⊕ (V ⊥
1 ∩ V2) ⊕ (V1 ∩ V ⊥

2 ) ⊕ L1 ⊕ · · · ⊕ Lp, (1.54)

where Lm = span{v(m)
1 , v

(m)
2 }, m = 1, . . . , p, and all the summands in (1.54) are mutually

orthogonal subspaces of V , which are invariant with respect to both operators P1 and P2,

i.e. PjLm ⊂ Lm, j = 1, 2.

For reader convenience we repeat the proof from [36].

Proof. Let us prove that for any integer k, 0 ≤ k ≤ p with p to be identified later in

the proof, the space V can be decomposed into a direct sum with mutually orthogonal

summands

V = V0 ⊕Wk ⊕ L1 ⊕ · · · ⊕ Lk, (1.55)

where V0 = V1 ∩ V2, the spaces Lm are the two-dimensional subspaces of V appearing

in (1.54) and all the subspaces V0 and L1, . . . , Lk,Wk ⊂ V ⊥
0 are invariant with respect

to both operators P1 and P2. The decomposition (1.55) will be constructed by induction

on k.

We start with k = 0 and set W0 = V ⊥
0 . Note that V0 and W0 are invariant subspaces of

operators P1 and P2. On the k-th step of our construction (k ≥ 1) we suppose that (1.55)

is established for k − 1. Let V
(k)
1 = V1 ∩Wk−1, V

(k)
2 = V2 ∩Wk−1 and define

γk =

⎧⎨⎩ max
v1∈V

(k)
1

,v2∈V
(k)
2

||v1||=||v2||=1

(v1, v2), if V
(k)
1 
= {0} and V

(k)
2 
= {0},

0, otherwise.
(1.56)
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If γk = 0 we stop the induction and set p = k − 1. Indeed, it is easy to see that in this

case, any vector from V
(k)
1 is orthogonal to V2 and any vector from V

(k)
2 is orthogonal

to V1, i.e.

Wk−1 ⊆ (V ⊥
1 ∩ V2) ⊕ (V1 ∩ V ⊥

2 ), (1.57)

which gives in combination with (1.55) the desired decomposition (1.54).

Assume now γk 
= 0 and let us construct Lk and Wk. Note that 0 < γk < 1. Indeed,

if γk = 1 there would exist a non-zero vector v ∈ V
(k)
1 ∩V (k)

2 = V1 ∩V2 ∩Wk−1 ⊆ V0 ∩V ⊥
0 ,

which is impossible. Let v
(k)
1 ∈ V

(k)
1 and v

(k)
2 ∈ V

(k)
2 , ||v(k)

1 || = ||v(k)
2 || = 1, be the

vectors that give the maximum in (1.56) and Lk = span{v(k)
1 , v

(k)
2 }. The vector P1v

(k)
2

belongs to V
(k)
1 since v

(k)
2 ∈Wk−1 and Wk−1 is the invariant subspace of P1 by induction

hypothesis. Suppose that P1v
(k)
2 is not parallel to v

(k)
1 . We have then the inequality

(v
(k)
1 , v

(k)
2 ) = (v

(k)
1 , P1v

(k)
2 ) < ||P1v

(k)
2 || =

(
P1v

(k)
2

||P1v
(k)
2 ||

, v
(k)
2

)
, (1.58)

which contradicts the definition of v
(k)
1 and v

(k)
2 . This means that P1v

(k)
2 is parallel to v

(k)
1 ,

hence P1Lk ⊂ Lk. One can prove in the same manner that P2v
(k)
1 is parallel to v

(k)
2 , hence

P2Lk ⊂ Lk. Let Wk = (V0⊕Wk−1⊕L1⊕· · ·⊕Lk)
⊥. The subspace V0⊕Wk−1⊕L1⊕· · ·⊕Lk

is invariant with respect to P1 and P2 and so is the subspace Wk since operators P1 and P2

are symmetric.

Note at last that Wk−1 = Wk ⊕ Lk hence for k > 1, V
(k)
1 ⊂ V

(k−1)
1 and V

(k)
2 ⊂ V

(k−1)
2 ,

i.e. γk ≤ γk−1 according to (1.56). Thus we have result (1.53).

At this point we have introduced the necessary tools to investigate the spectral prop-

erties of the iteration operator. This is the topic of the next section.

1.5 Spectral analysis of the iteration operator

The analysis of an algorithm described by its iteration operator is efficiently done by

studying the spectral radius and norm of the latter. These properties give information

about the characteristics of the method. The spectral radius gives the convergence speed

in some norm, and the spectral norm is an upper bound for the factor of the reduction

of the error in the spectral norm.

In this section we first recall results from earlier works (Proposition 1.8). Then, us-

ing the results from Section 1.4, we establish results (Proposition 1.9) recently published

in [36], which we compare to the existing ones. Finally we consider a relaxation alterna-

tive for Algorithm 1.3 and analyze it through Proposition 1.10.

If L(V ) is the space of linear and continuous operators from V into V , we denote by

||B|| = supv∈V,||v||=1 ||Bv|| the norm of B ∈ L(V ). If I denotes the identity operator in V
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and ω is a real parameter, we define the operator B ∈ L(V ) by

B = (I − ωP2)(I − ωP1). (1.59)

We formulate first Proposition 1.8 for the norm of the operator B in order to get an

estimate as presented in [37]. The idea of Proposition 1.8 and its proof come originally

from Bramble et al. [24]. In their work, an abstract analysis of product iterative methods

is presented and similar convergence estimates are given.

Comparable results proved using the technique from [24] can be found, for example,

in early papers from Xu [64, 65] and Yserentant [71] appended by the work of Griebel

and Oswald [40], in the article of Cai and Widlund [26] or Wang [61], and in an abstract

theory presented by Widlund in [62]. More recent reports include the framework of the

successive subspace correction algorithm by Xu and Zikatanov [67] and Xu [66]. Some

estimates in the framework of an abstract convergence analysis of Schwarz methods are

presented in textbooks, e.g., by Quarteroni and Valli [53, §4.6], Smith et al. [59, §5.2]

and Wohlmuth [63, §2.1].

Proposition 1.8. If Hypothesis 1.5 is satisfied and if 0 < ω < 2, then the norm of the

operator B given by (1.59) verifies

||B|| ≤
(

1 − (2 − ω)ω

C2
0 (1 + ωγ)2

) 1
2

< 1. (1.60)

Proof. The proof is adapted from [24] to the present setting and we establish it for the

convenience of the reader. Introduce R1 = I − ωP1 and R2 = (I − ωP2)(I − ωP1) = B.

We begin by proving

(2 − ω)ω
(
||P1v||2 + ||P2R1v||2

)
= ||v||2 − ||Bv||2, ∀v ∈ V. (1.61)

As v = R1v + ωP1v, ||v||2 = ||R1v||2 + ω2||P1v||2 + 2ω(R1v, P1v), and by definition

(R1v, P1v) = ((I − ωP1)v, P1v) = (1 − ω)||P1v||2. Hence

||v||2 − ||R1v||2 =
[
ω2 + 2ω(1 − ω)

]
||P1v||2 = (2 − ω)ω||P1v||2. (1.62)

Furthermore, R1v = R2v+ωP2R1v implies ||R1v||2 = ||R2v||2+ω2||P2R1v||2+2ω(R2v, P2R1v)

and by definition (R2v, P2R1v) = ((I − ωP2)R1v, P2R1v) = (1 − ω)||P2R1v||2. Hence

||R1v||2 − ||R2v||2 = (2 − ω)ω||P2R1v||2. (1.63)

Summing (1.62) and (1.63), we get (1.61).

We next prove

||P1v||2 + ||P2v||2 ≤ (1 + γω)2
(
||P1v||2 + ||P2R1v||2

)
, ∀v ∈ V. (1.64)
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Starting from I −R1 = ωP1, we get

(P2v, v) − (P2v, R1v) = ω(P2v, P1v), (1.65)

which implies that ||P2v||2 = (P2v, R1v) + ω(P2v, P1v). Hence

||P1v||2 + ||P2v||2 = (P1v, P1v) + (P2v, P2R1v) + ω(P2v, P1v) (1.66)

≤
(
||P1v||2 + ||P2v||2

) 1
2
(
||P1v||2 + ||P2R1v||2

) 1
2 + ω(P1v, P2v). (1.67)

From the definition (1.39) of γ we get

|(P1v, P2v)| ≤ γ||P1v||||P2v|| ≤ γ (||P2v||||P1v|| + ||P1v||||P2R1v||) (1.68)

≤ γ
(
||P1v||2 + ||P2v||2

) 1
2
(
||P1v||2 + ||P2R1v||2

) 1
2 . (1.69)

Thus we have

||P1v||2 + ||P2v||2 ≤ (1 + ωγ)
(
||P1v||2 + ||P2v||2

) 1
2
(
||P1v||2 + ||P2R1v||2

) 1
2 , (1.70)

which leads to (1.64).

Finally, we show that Hypothesis 1.5 implies

||v||2 ≤ C2
0

(
||P1v||2 + ||P2v||2

)
, ∀v ∈ V. (1.71)

When v ∈ V , there exist v1 ∈ V1, v2 ∈ V2 such that v = v1+v2 and ||v1||2+||v2||2 ≤ C2
0 ||v||2

(see Hypothesis 1.5). Hence ||v||2 = (v1, v) + (v2, v) = (v1, P1v) + (v2, P2v). Result (1.71)

thus follows from:

||v||2 ≤ ||v1||||P1v|| + ||v2||||P2v|| (1.72)

≤
(
||v1||2 + ||v2||2

) 1
2
(
||P1v||2 + ||P2v||2

) 1
2 (1.73)

≤ C0||v||
(
||P1v||2 + ||P2v||2

) 1
2 . (1.74)

The proof of Proposition 1.8 is now straightforward. Combining (1.61) and (1.64), we

get for all v ∈ V ,

(2 − ω)ω

(1 + γω)2

(
||P1v||2 + ||P2v||2

)
≤ ||v||2 − ||Bv||2, (1.75)

and finally, (1.71) yields

(2 − ω)ω

C2
0(1 + γω)2

||v||2 ≤ ||v||2 − ||Bv||2. (1.76)

Thus ||Bv||2 ≤
(
1 − (2−ω)ω

C2
0 (1+γω)2

)
||v||2, i.e. ||B|| ≤

(
1 − (2−ω)ω

C2
0 (1+ωγ)2

) 1
2

which is strictly

bounded by one if 0 < ω < 2.
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It is readily seen that the estimate of Proposition 1.8 is not optimal even in the case

where V = V1 ⊕ V2. In particular, if the space V is two-dimensional and V1 and V2 are

one-dimensional subspaces of V , then ||B|| = γ for ω = 1. Indeed, ∀v ∈ V we have in this

case ||Bv||2 = |(Bv, (I−P1)v)| = γ||Bv||||(I−P1)v|| since (I−P1)v ∈ V ⊥
1 , Bv ∈ V ⊥

2 and

the angle between V ⊥
1 and V ⊥

2 is equal to the angle between V1 and V2. However, estimate

(1.60) with the best choice of C0 (1.44) gives only ||B|| ≤
√
γ(γ + 3)/(1 + γ), which is

optimal only if γ = 0. The non-optimality of (1.60) is also discussed, for example, by

Griebel and Oswald in the concluding remarks of [40].

In the case where V1 and V2 are of finite dimension, an analysis of the spectral prop-

erties of B leads to exact formulas for its spectral radius and its norm. Hereafter we

present these results published in [36].

For γ̃ and ω ∈ (0; 2) we define the functions

ρ(γ̃, ω) =

{
1
2
ω2γ̃2 − ω + 1 + 1

2
ωγ̃
√
ω2γ̃2 − 4ω + 4, if ω ≤ ω0(γ̃),

ω − 1, otherwise,
(1.77)

where

ω0(γ̃) =

{
2−2

√
1−γ̃2

γ̃2 , for γ̃ ∈ (0; 1],

1, for γ̃ = 0,
(1.78)

and

N(γ̃, ω) =
1

2
ω (2 − ω) γ̃ +

√
1

4
ω2 (2 − ω)2 γ̃2 + (ω − 1)2. (1.79)

Proposition 1.9 (see [36]). Let V be of finite dimension, V = V1 +V2 and γ̃ be defined

by (1.41). The spectral radius of operator B given by (1.59) is a function of γ̃ and

ω ∈ (0; 2) given by ρ(B) = ρ(γ̃, ω). The norm of B is a function of γ̃ and ω ∈ (0; 2)

given by ‖B‖ = N(γ̃, ω).

We repeat here the proof from [36].

Proof. The idea of the proof is to establish first all the results in the two-dimensional case

and to use then decomposition (1.54) to extend the results to the general case. Therefore,

we assume first that the space V is two-dimensional and V1 and V2 are one-dimensional

subspaces of V spanned by the vectors v1 and v2, respectively. Figure 1.6 illustrates this

situation and the construction of Bv for v ∈ V with ω = 0.25.

Without loss of generality, we can assume that ‖v1‖ = ‖v2‖ = 1 and (v1, v2) = γ̃. We

can verify that the linear operator B is represented in the basis {v1, v2} by the matrix

B =

(
1 − ω −ωγ̃

ω (ω − 1) γ̃ ω2γ̃2 + 1 − ω

)
. (1.80)

The characteristic polynomial of this matrix is

p(λ) = λ2 −
(
ω2γ̃2 − 2ω + 2

)
λ+ (ω − 1)2. (1.81)
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V2

V1

v1

v2 P2(v − ωP1v)

P1v

v

Bv

Figure 1.6: Illustration of the construction of Bv for v ∈ V (dimV = 2, ω = 0.25).

If γ̃ > 0 and ω ∈ (ω0(γ̃); 2), p(λ) has two complex conjugate roots λ± such that |λ±| =

ω − 1. If γ̃ > 0 and ω ∈ (0;ω0(γ̃)), p(λ) has two real roots λ± given by

λ± =
1

2
ω2γ̃2 − ω + 1 ± 1

2
ωγ̃
√
ω2γ̃2 − 4ω + 4. (1.82)

If γ̃ = 0, p(λ) has the only double root λ = 1−ω. Identity ρ(B) = ρ(γ̃, ω) is thus proved

in the two-dimensional case.

Let us consider now the norm of operator B that can be written as

‖B‖2 = max
x∈�2,x �=0

xT BTΓBx

xT Γx
, (1.83)

where Γ is the Gramm matrix of the basis {v1, v2},

Γ =

(
1 γ̃
γ̃ 1

)
. (1.84)

By making the substitution y = Γ1/2x, we can rewrite (1.83) as

‖B‖2 = max
y∈�2,y �=0

yTΓ−1/2BTΓBΓ−1/2y

yTy
. (1.85)

Since the matrix C = Γ−1/2BTΓBΓ−1/2 is symmetric positive definite, (1.85) implies that

‖B‖2 is equal to the spectral radius of C. Let μ2 be an eigenvalue of C, then

det(C − μ2I) = 0. (1.86)

But

det(C − μ2I)

= det(BTΓBΓ−1 − μ2I) (1.87)

= μ4 − μ2tr(BTΓBΓ−1) + det(BTΓBΓ−1) (1.88)

= μ4 − μ2[(2 − ω)2ω2γ̃2 + 2(ω − 1)2] + (ω − 1)4 (1.89)

=
(
μ2 − ω (2 − ω) γ̃μ− (ω − 1)2) (μ2 + ω (2 − ω) γ̃μ− (ω − 1)2) . (1.90)
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The roots of (1.86) are thus given by

μ = ±1

2
ω (2 − ω) γ̃ ±

√
1

4
ω2 (2 − ω)2 γ̃2 + (ω − 1)2, (1.91)

and the largest among them gives ‖B‖, i.e. identity ‖B‖ = N(γ̃, ω) is proved in the

two-dimensional case.

Let us turn now to the general case. According to Proposition 1.7, V can be de-

composed into the direct sum (1.54) where all the summands are invariant subspaces of

projectors P1 and P2, and hence of B. Hence the spectrum of B is given by the set of all

eigenvalues of the operators B0 = B|V0
, B12 = B|V ⊥

1 ∩V2
, B21 = B|V1∩V ⊥

2
and Bm = B|Lm

,

m = 1, 2, . . . , p, where here B|W is the restriction of B to W . We verify easily that

ρ(B0) = (1− ω)2, ρ(B12) = ρ(B21) = |1− ω|, and concerning the two-dimensional spaces

Lm, m = 1, 2, . . . , p, we have proved just above that ρ(Bm) = ρ(γm, ω) where ρ(γ, ω) is

defined by (1.77). Hence

ρ(B) = max
(
(1 − ω)2, |1 − ω|, ρ(γ1, ω), . . . , ρ(γp, ω)

)
. (1.92)

It is easy to verify that ω0(γ) is an increasing function and for fixed ω, ρ(γ, ω) is a non-

decreasing function. It follows that we have ρ(γ1, ω) ≥ · · · ≥ ρ(γp, ω) > ρ(0, ω) = |1−ω|.
Since γ̃ = γ1 if p > 0 and γ̃ = 0 if p = 0, we conclude that ρ(B) = ρ(γ̃, ω). Analogously,

since all the subspaces in (1.54) are mutually orthogonal, Pythagore’s Theorem implies

‖B‖ = max
(
(1 − ω)2, |1 − ω|, N(γ1, ω), . . . , N(γp, ω)

)
, (1.93)

where N(γ, ω) is defined by (1.79). Noting that N(0, ω) = |1 − ω|, we conclude that

‖B‖ = N(γ̃, ω).

Finally, let us observe that:

1. The spectral radius ρ(B) is less than one for ω ∈ (0; 2) and, for γ̃ given by (1.41),

attains the minimum value ρ(B) = ω0(γ̃) − 1 at ω = ω0(γ̃) ∈ [1; 2). We have

ρ(B) = γ̃2 at ω = 1.

2. The norm ||B|| is less than one for ω ∈ (0; 2) and, for γ̃ given by (1.41), attains the

minimum value ||B|| = γ̃ at ω = 1. This last result is given by Blaheta in [17].

3. The functions ρ(γ̃, ω) and N(γ̃, ω) are non-decreasing with respect to γ̃ for any

fixed value of ω ∈ (0; 2).

4. Both formulas (1.77) and (1.79) can be rewritten in the case V1 
= V2 as functions

only of Copt
0 and ω due to the relation (1.44).

These properties are illustrated in the Figures 1.7–1.10. The plots in Figures 1.7

and 1.9 illustrate the functions ρ(γ̃, ω) and N(γ̃, ω) respectively for given γ̃ = 0.3, 0.6,
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γ̃ = 0.9
γ̃ = 0.8
γ̃ = 0.6
γ̃ = 0.3

Parameter ω

ρ
(B

)

21.81.61.41.210.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 1.7: Illustration of ρ(γ̃, ω) for γ̃ = 0.3, 0.6, 0.8 and 0.9.

γ̃

ω
0

10.80.60.40.20

2

1.8

1.6

1.4

1.2

1

Figure 1.8: Illustration of ω0(γ̃).

0.8 and 0.9. Figure 1.8 depicts the relation ω0(γ̃). Note that as γ̃ tends to one, the opti-

mal parameter ω0 yields 2. On Figure 1.10 we compare the non-optimal bound for ||B||
given by (1.60) with its exact value (1.79) for γ = γ̃ = 0.5. Remark in particular that the

bound (1.60) does not provide the optimal value for the parameter ω. The bound (1.60)

suggests to choose ω < 1 while the exact expression of the spectral radius (1.77) yields

the optimal value ω = ω0 ≥ 1 given by (1.78) for the best convergence speed.

At this point it is natural to inquire about an alternative to the proposed relaxation

in Algorithm 1.3.

Let us consider Algorithm 1.3 with two relaxation parameters ωh and ωH . For this,

we replace equations (1.33) and (1.35) as follows: In the fine correction step (1.33) we

write

un− 1
2 = un−1 + ωhwh, (1.94)
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γ̃ = 0.9
γ̃ = 0.8
γ̃ = 0.6
γ̃ = 0.3

Parameter ω

||B
||

21.81.61.41.210.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 1.9: Illustration of N(γ̃, ω) for γ̃ = 0.3, 0.6, 0.8 and 0.9.

||B||Bramble,γ=0.5

N(γ̃ = 0.5, ω)

Parameter ω

21.81.61.41.210.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 1.10: Comparison of the bound (1.60) and the exact value N(γ̃, ω) given by (1.79)
for the norm ||B||.

and the coarse correction (1.35) becomes

un = un− 1
2 + ωHwH . (1.95)

The evaluation of wh and wH through equations (1.32) and (1.34) remains unchanged.

Hence the iteration operator, to be compared with (1.37), becomes

(I − ωHPH)(I − ωhPh). (1.96)

Following the above introduced notation, and comparing with (1.59), we introduce

the operator B2 ∈ L(V ), defined by

B2 = (I − ω2P2)(I − ω1P1), (1.97)

where ω1, ω2 are real parameters.
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W 0
r

W0

W−
r

W−
r

Wc

W+
r

ω1

ω
2

21.510.50

2

1.5

1

0.5

0

(a) γ̃ = 0.3.

W 0
r

W0

W−
r

W−
r

Wc

W+
r

ω1

ω
2

21.510.50

2

1.5

1

0.5

0

(b) γ̃ = 0.6.

W0

Wc

W+
r

ω1

ω
2

21.510.50

2

1.5

1

0.5

0

(c) γ̃ = 0.9.

Figure 1.11: Illustration of domains Wr(γ̃) = W−
r (γ̃)∪W+

r (γ̃) and Wc(γ̃) for different γ̃.

For γ̃ and (ω1, ω2) ∈ (0; 2) × (0; 2) we define the function

ρ2(γ̃, ω1, ω2)

=

⎧⎪⎪⎨⎪⎪⎩
∣∣1
2
ω1ω2γ̃

2 − 1
2
(ω1 + ω2) + 1

∣∣
+1

2

√
(ω1 − ω2)2 + γ̃2ω1ω2 [γ̃2ω1ω2 − 2(ω1 + ω2) + 4],

if (ω1, ω2) ∈Wr(γ̃) ∪W0(γ̃), γ̃ > 0, or if γ̃ = 0,√
(ω1 − 1)(ω2 − 1), if (ω1, ω2) ∈Wc(γ̃), γ̃ > 0,

(1.98)

where W0(γ̃) is the arc defined by

W0(γ̃) =
{
(ω1, ω2) ∈ (0; 2) × (0; 2) : (ω1 − ω2)

2 + γ̃2ω1ω2

[
γ̃2ω1ω2 − 2(ω1 + ω2) + 4

]
= 0
}
,

(1.99)

splitting the domain (0; 2) × (0; 2), when γ̃ > 0, into two disjoint open sub-domains,

Wr(γ̃) the closure of which contains (ω1, ω2) = (0, 0), and Wc(γ̃) the closure of which

contains (2, 2).

Furthermore, in order to write out
∣∣ 1
2
ω1ω2γ̃

2 − 1
2
(ω1 + ω2) + 1

∣∣, it is useful to intro-

duce, for 0 < γ̃ <
√

2/2, the arc

W 0
r (γ̃) =

{
(ω1, ω2) ∈ (0; 2) × (0; 2) :

1

2
ω1ω2γ̃

2 − 1

2
(ω1 + ω2) + 1 = 0

}
, (1.100)

which splits Wr(γ̃) into disjoint open sub-domains, W+
r (γ̃) the closure of which contains

(ω1, ω2) = (0, 0), and W−
r (γ̃) = Wr(γ̃) \W+

r (γ̃). For
√

2/2 < γ̃ ≤ 1, we identify W+
r (γ̃) =

Wr(γ̃). Figure 1.11 illustrates the above introduced domains for different γ̃.

Proposition 1.10. Let V be of finite dimension, V = V1+V2 and γ̃ defined by (1.41). The

spectral radius of operator B2 given by (1.97) is a function of γ̃ and (ω1, ω2) ∈ (0; 2)×(0; 2)

given by ρ(B2) = ρ2(γ̃, ω1, ω2). For given γ̃, the spectral radius of B2 is minimum when

ω1 = ω2 = ω0(γ̃) where the function ω0 is given by (1.78).
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1.5 Spectral analysis of the iteration operator

Proof. Following the proof of Proposition 1.9, we write, when V is a two-dimensional

space and V = V1 ⊕ V2, the operator (1.97) in matrix-form(
1 − ω1 −ω1γ̃

ω2 (ω1 − 1) γ̃ ω1ω2γ̃
2 + 1 − ω2

)
, (1.101)

and study its characteristic polynomial

p(λ) = λ2 − λ
(
ω1ω2γ̃

2 − ω1 − ω2 + 2
)

+ (1 − ω1)(1 − ω2). (1.102)

If γ̃ > 0 and (ω1, ω2) ∈ Wc(γ̃), p(λ) has two complex conjugate roots λ± such that

|λ±| =
√

(ω1 − 1)(ω2 − 1). If γ̃ > 0 and (ω1, ω2) ∈ Wr(γ̃), p(λ) has two real roots λ±
given by

λ±(γ̃, ω1, ω2) =
1

2
ω1ω2γ̃

2 − 1

2
(ω1 + ω2) + 1

±1

2

√
(ω1 − ω2)2 + γ̃2ω1ω2 [γ̃2ω1ω2 − 2(ω1 + ω2) + 4]. (1.103)

If γ̃ = 0, p(λ) has the two real roots λ = 1 − ω1 and λ = 1 − ω2. Identity ρ(B2) =

ρ2(γ̃, ω1, ω2) is thus proved when V is a two-dimensional space.

In the general case, we follow again the proof of Proposition 1.9. With the notation

of the latter, in particular with ρ(B2,0) = ρ(B2|V0
) = |(1 − ω1)(1 − ω2)|, ρ(B2,12) =

ρ(B2|V ⊥
1 ∩V2

) = |1−ω2|, and ρ(B2,21) = ρ(B2|V1∩V ⊥
2

) = |1−ω1|, we conclude that ρ(B2) =

ρ2(γ̃, ω1, ω2). Note that ρ(B2) is less than one for (ω1, ω2) ∈ (0; 2) × (0; 2).

We are now left with proving that, for given γ̃, ρ(B2) is minimum when ω1 = ω2 =

ω0(γ̃) given by (1.78). For this we show that for given γ̃ and for any (ω1, ω2) ∈ (0; 2)×(0; 2)

we have ρ2(γ̃, ω1, ω2) ≥ w0(γ̃) − 1, the last expression being an equality if and only if

ω1 = ω2 = ω0(γ̃).

If ω1 = ω2, the result is proved by Proposition 1.9. If γ̃ = 0, ρ2(γ̃, ω1, ω2) = max(|1−
ω1|, |1 − ω2|), which is minimal, i.e. reduces to zero for ω1 = ω2 = 1 = ω0(γ̃ = 0).

Suppose now γ̃ > 0. For (ω1, ω2) ∈W0(γ̃),

ρ2(γ̃, ω1, ω2) =

∣∣∣∣12ω1ω2γ̃
2 − 1

2
(ω1 + ω2) + 1

∣∣∣∣ =√(ω1 − 1)(ω2 − 1). (1.104)

Without loss of generality due to the symmetry in ω1 and ω2, suppose that w2 ≤ w1. For

(ω1, ω2) ∈ W0(γ̃), w2 ≤ w1, using the definition (1.99), we write ω2 as a function of ω1,

namely

ω2(ω1) =
ω1

(1 − γ̃2ω1)2

(
1 − 2γ̃2 + γ̃2ω1 − 2γ̃

√
1 − γ̃2

√
ω1 − 1

)
. (1.105)

For a given parameter γ̃, we explicit now ρ2(γ̃, ω1, ω2) from (1.104) with ω2 = ω2(ω1)

from (1.105), and obtain ργ̃(ω1)
.
= ρ2(γ̃, ω1, ω2(ω1)). Minimizing ργ̃(ω1) with respect

to ω1, yields that the minimum is reached at ω1 = ω0(γ̃) given by (1.78) and ω2(ω1) = ω1.

Hence the minimum of ρ2(γ̃, ω1, ω2) on W0(γ̃) is given by w0(γ̃) − 1.
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Two-scale algorithm

Let us now consider (ω1, ω2) 
∈ W0(γ̃). For (ω1, ω2) ∈ Wc(γ̃), ρ2(γ̃, ω1, ω2) is an

increasing function in ω1 and ω2 and hence ρ2(γ̃, ω1, ω2) > w0(γ̃) − 1. Furthermore, if

(ω1, ω2) ∈ Wr(γ̃), we introduce the vector n = (−1, 1) in the plane (ω1, ω2). Hence,

evaluating ∇ρ2(γ̃, ω1, ω2)
.
=
(

∂ρ2(γ̃,ω1,ω2)
∂ω1

, ∂ρ2(γ̃,ω1,ω2)
∂ω2

)
yields

∇ρ2(γ̃, ω1, ω2) · n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ω1−ω2)(ρ2(γ̃,ω1,ω2)γ̃2−1)√
(ω1−ω2)2+γ̃2ω1ω2[γ̃2ω1ω2−2(ω1+ω2)+4]

,

if (ω1, ω2) ∈W+
r (γ̃), γ̃ > 0,

(ω1−ω2)(−ρ2(γ̃,ω1,ω2)γ̃2−1)√
(ω1−ω2)2+γ̃2ω1ω2[γ̃2ω1ω2−2(ω1+ω2)+4]

,

if (ω1, ω2) ∈W−
r (γ̃), 0 < γ̃ ≤

√
2/2,

(1.106)

which is strictly negative for ω1 > ω2, and strictly positive for ω2 > ω1. Hence the

minimum of ρ2(γ̃, ω1, ω2) in Wr(γ̃) is to be found for ω2 = ω1, reducing our problem to

the result of Proposition 1.9.

Given the result of Proposition 1.10, we stick to Algorithm 1.3 with one relaxation

parameter ω.

1.6 Convergence of the algorithm

After the foregoing study of some properties of vector spaces (Section 1.4) and the ab-

stract analysis of the iteration operator B (Section 1.5), we are now able to give a new

convergence result for the two-scale algorithm.

We set VHh0 = VH ∩ Vh and V ⊥
Hh0 the orthogonal complement of VHh0 in VHh. Setting

V1 = Vh, V2 = VH and V0 = VHh0, the definition (1.41) of γ̃ rewrites

γ̃ =

⎧⎨⎩ sup vh∈Vh∩V ⊥
Hh0

,vh �=0

vH∈VH∩V ⊥
Hh0

,vH �=0

a(vh,vH)
||vh||||vH || , if Vh 
= VHh0 and VH 
= VHh0,

0, otherwise.
(1.107)

Recalling definitions (1.77–1.79) and Proposition 1.9, we have the following proposition.

Proposition 1.11. If ω ∈ (0; 2), then Algorithm 1.3 converges, i.e. limn→∞ ||un − uHh|| =

0. The spectral radius of the iteration operator defined by (1.37) is given by ρ(B) =

ρ(γ̃, ω). The convergence factor in the norm induced by the scalar product a(·, ·) is bounded

by ||B|| = N(γ̃, ω).

Proof. Proposition 1.11 is readily proved by applying Proposition 1.9 to V = VHh, V1 = Vh

and V2 = VH using the form a(·, ·) as scalar product.

The convergence speed in some norm is given by ρ(B) and the factor of reduction of

the error in the norm a(·, ·) 1
2 is bounded by ||B||. The new aspect we have introduced here
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theor., γ̃ = 0.306
numerical results

Parameter ω

ρ

21.81.61.41.210.80.60.40.20
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0.6

0.4

0.2

0

Figure 1.12: Comparison of numerical estimates and analytical results for ρ for different
parameter ω in the case of the nested grids in Figure 1.3(a) and the norm induced by the
scalar product (1.18).

is to link the speed of convergence of the algorithm to one only parameter corresponding

to an abstract angle between the spaces Vh and VH . This also leads to a method to find

the optimal relaxation parameter ω (see Section 2.2). Hence the parameter for optimal

relaxation is solely linked to the grid constellation.

Since Proposition 1.10 we know that the introduction of one only relaxation parame-

ter is optimal with regard to the alternative of a coarse and a fine relaxation parameter

studied at the end of Section 1.5.

Since Proposition 1.11 we have an exact expression for the spectral radius ρ(B). For

given γ̃, the function ρ(γ̃, ω) is plotted in Figure 1.7. At this point, it is interesting to

compare, for given meshes and a given scalar product, this algebraic result with numerical

estimates of the spectral radius.

In Figure 1.12 we compare the plot of ρ(γ̃, ω) to the results obtained numerically for

the spectral radius in the case of the nested grids depicted in Figure 1.3(a) and the norm

induced by the scalar product (1.18). First we evaluate the spectral radius for ω = 1

which enables us to get an approximation of γ̃ (see Section 2.2, Proposition 2.3 and the

description of the method). We obtain that γ̃ = 0.306. Thus we can plot the function

ρ(γ̃ = 0.306, ω) given by (1.77). On the same plot we superpose the corresponding nu-

merical results for some values of ω ∈ (0; 2).

The following chapter consists in analyzing several aspects of the method and results

presented. We consider estimates of the parameter γ̃ (Section 2.1) and numerical evalua-

tions of ω0 (Section 2.2). After a discussion of the implementation issues (Section 2.3) we

refer the reader to Chapters 3 and 4 for applications of the algorithm in two dimensions.
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Chapter 2

Parameter discussion and
computational considerations

In the previous chapter, we have introduced and proved the convergence of an iterative

correction method (Algorithm 1.3) on two discretization spaces. The results show that

the speed of convergence depends on two parameters: the cosine of the abstract “an-

gle” γ̃ (1.107) between the spaces and the relaxation parameter ω. We have established a

formula (1.78) giving the optimal relaxation parameter for a given γ̃. The first objective

of this chapter is to discuss some estimates for the parameter γ̃. We give a practical

method which allows to evaluate the latter and hence the optimum value ωopt for ω.

Finally, we care about implementation issues and the usage of memory, in particular

concerning integration of the scalar products.

The outline of this chapter is the following:

2.1 Estimates of the C.B.S. constant . . . . . . . . . . . . . . . . 36

2.2 Numerical evaluation of γ̃ and optimal relaxation . . . . . . 42

2.3 Implementation issues and memory and CPU-time usage . 48

In Section 2.1 we discuss estimates of the optimal constant of the Cauchy-Buniakowski-

Schwarz inequality which is related to the parameter γ̃. We illustrate the influence of

nested and non-nested grid constellations to the parameter in one dimension. We give

estimates in some particular two-dimensional cases and briefly consider a particular 2D

or 3D situation (Proposition 2.2) where the patch is entirely included in one element

of the coarse grid. Section 2.2 introduces a general method, based on Algorithm 1.3,

how to approximate γ̃ numerically. We discuss the evaluation of the optimal value for

the relaxation parameter. In Section 2.3 we consider computational issues and assess

the convergence of the method in practice with respect to the usage of memory and

CPU-time.
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2.1 Estimates of the C.B.S. constant

In the previous chapter we have seen that the optimal constant of the Cauchy-Buniakowski-

Schwarz (C.B.S.) inequality (1.40) is closely related to the spectral analysis of the iteration

operator. In particular situations the constant γ̃ equals γ, and hence the optimal C.B.S.

constant. Our objective is now to discuss this constant and give some estimates in simple

cases.

In the following we give a small survey of existing works on the constant and give

some new estimates. We limit ourselves on presenting a couple of particular situations

to get an idea of the involvement of the finite elements and triangulation used. We first

consider some 1D situations where we discuss the constants γ and γ̃. Then we derive

a general upper bound for γ (Proposition 2.2) for polynomial spaces of order 1 and a

particular problem in d dimensions (d = 2, 3) where the patch is entirely included in one

element of the coarse triangulation. We specify our result for the situation where the

coefficients of the differential operator (2.8) are constant over the patch. Next, we come

back to a 2D situation where the patch is included in the union of two coarse elements:

in some particular cases (see Figure 2.4) with first order polynomials, we give an upper

bound for the parameter γ (Table 2.1). Finally, we conclude with a numerical method

using Algorithm 1.3 and the spectral properties of the iteration operator reported in

Proposition 1.11 to evaluate the constant γ̃.

Estimates and upper bounds for the constant from the C.B.S. inequality are abundant

in the literature as it is the main tool in the convergence analysis of many methods. The

C.B.S. inequality has been used in two-level methods by Axelsson [6], Axelsson and Gus-

tavson [9], Braess [20, 21], Mâıtre and Musy [47]. A survey of the role of this constant is

reported by Axelsson and Vassilevski [10, 11] and by Eijkhout and Vassilevski [32]. The

constant is also used in local refinement preconditioning methods, e.g., by McCormick [49]

and Bramble et al. [23]. The latest papers present estimates of γ depending generally on

the scalar product, i.e. the bilinear form a, the problem coefficients, and the type and

shape of the finite element used. In some cases it is possible to have universal bounds [8].

Margenov [48] gives estimates of the 2D elasticity problem on a triangular mesh and

piecewise linear approximation. More recently and for the same problem, Achchab and

Mâıtre [3] and Axelsson [7] proved that the constant γ2 is bounded from above by 3/4.

Numerical experiments by Jung and Mâıtre [45] generalize the latter to more choices of

finite elements. General estimates in 3D have been developed over the last years, see,

e.g., the papers by Achchab et al. [1, 2].
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2.1 Estimates of the C.B.S. constant

The one-dimensional case.

Recall the introductory discussion of Section 1.1 where we first mentioned the problem of

exhibiting a finite element-type basis for the space VHh = VH +Vh (given by equations 1.7

and 1.8). We also accounted that depending on the relative nestedness of the underlying

subspaces the dimension of VHh changes. The relative grid constellation is determinant

for the “angle” between the subspaces. In the following we present some finite element

considerations for the evaluation of the constants γ and γ̃ in 1D. We consider the inter-

val (0; 1), the scalar product a(u, v) =
∫

Ω
u′v′ dx, and the induced norm || · || = a(·, ·)1/2

in H1
0 (0; 1).

We study a first case with a fine 1D mesh Th over Λ = [a; b] ⊂ (0; 1). Let {xj
H}N+1

j=0

and {xj
h}M+1

j=0 denote the set of regularly distributed nodes of a coarse mesh TH over [0; 1]

and the fine mesh Th respectively: set H = 1/(N + 1) and xj
H = jH , j = 0, . . . , N + 1,

and h = |b−a|/(M +1) and xj
h = a+ jh, j = 0, . . . ,M +1. We consider Th such that the

coarse nodes xj
H that are in Λ coincide with fine grid points xj

h. We construct the “hat”

finite element functions ϕj
H , j = 1, . . . , N , and ϕj

h, j = 1, . . . ,M , such that ϕj
H(xi

H) = δij
(j = 1, . . . , N , i = 0, . . . , N + 1) and ϕj

h(x
i
h) = δij (j = 1, . . . ,M , i = 0, . . . ,M + 1). We

call VH = span{ϕj
H}N

j=1 and Vh = span{ϕj
h}M

j=1. Figure 2.1 illustrates the situation for

M = 5. Plain lines represent the graph of the coarse finite element functions, dotted lines

represent the graph of the fine functions.

. . . . . .

. . . ϕk−2
H ϕk−1

H ϕk
H ϕk+1

H ϕk+2
H ϕk−1

H . . .

ϕ1
hϕ

2
hϕ

3
hϕ

4
hϕ

5
h

Figure 2.1: Nested grids in 1D.

We introduce VHh0 = VH ∩ Vh, i.e.

VHh0 = span{ϕj
H with j s.t. ∃i, 1 ≤ i ≤M, s.t. ϕi

h(x
j
H) = 1}. (2.1)

In our example, we have VHh0 = {ϕk
H , ϕ

k+1
H }. We call VHh = VH +Vh and from the above

we deduce that

dimVHh = N +M − dimVHh0. (2.2)

We introduce the orthogonal complement of VHh0 in VH and Vh. We label V ⊥H
Hh0 resp. V ⊥h

Hh0

the spaces VH ∩ V ⊥
Hh0 and Vh ∩ V ⊥

Hh0. They can be written

V ⊥H
Hh0 = span{ϕj

H s.t. ϕj
H ⊥ VHh0} ⊕ span{χl

H}dimVHh0
l=1 ≡ V ⊥H1

Hh0 ⊕ V ⊥H2
Hh0 , (2.3)
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where the χl
H are linear combinations of the ϕj

H 
⊥ VHh0 such that χl
H ⊥ VHh0, and

V ⊥h
Hh0 = span{ϕj

h s.t. �i, 1 ≤ i ≤ N, s.t. ϕi
H(xj

h) = 1}. (2.4)

We have V ⊥
Hh0 = V ⊥H

Hh0 ⊕ V ⊥h
Hh0. We note that

a(vH , vh) = 0, ∀vH ∈ V ⊥H
Hh0, ∀vh ∈ V ⊥h

Hh0. (2.5)

In fact vH = v1
H +v2

H , with v1
H ∈ V ⊥H1

Hh0 and v2
H ∈ V ⊥H2

Hh0 , and we have the result (2.5) from

supp(v1
H) ∩ supp(vh) = ∅ and v2

H
′∣∣

supp(vh)
= constant. Hence with the definition (1.107)

of γ̃, we have

γ̃ = sup
vh∈V ⊥h

Hh0
,vh �=0

vH∈V ⊥H
Hh0

,vH �=0

a(vh, vH)

||vh||||vH||
= 0. (2.6)

Note that in this case γ = 1.

Since γ̃ = 0, Algorithm 1.3 converges in only one iteration. Note that this can be

investigated in the present case in another way. First we recall the following known result

using the above notation:

Lemma 2.1. Consider f ∈ L2(0; 1) and let u ∈ H1
0 (0; 1) be such that

∫ 1

0
u′v′ dx =∫ 1

0
fv dx, ∀v ∈ H1

0 (0; 1). Let uH ∈ VH be such that
∫ 1

0
u′Hv

′
H dx =

∫ 1

0
fvH dx, ∀vH ∈ VH .

Then u(xj
H) = uH(xj

H), ∀j = 0, 1, 2, . . . , N + 1.

Proof. Let G(x, y) = (1− x)y, 0 ≤ y ≤ x ≤ 1, G(x, y) = x(1− y), 0 ≤ x < y ≤ 1, denote

Green’s kernel of the problem. Then we have that G(·, xj
H) ∈ VH , ∀j = 0, . . .N +1. Since

u(x) =
∫ 1

0
f(y)G(x, y) dy, we have u(xj

H) =
∫ 1

0
f(y)G(xj

H , y) dy =
∫ 1

0
f(y)G(y, xj

H) dy, ∀j,
and it suffices to take {G(·, xj

H)}N
j=1 as a basis for VH to conclude the proof.

Lemma 2.1 states that the approximation uH on the coarse grid is exact on the nodes

of TH . Algorithm 1.3 uses this approximation as initial condition. Hence, if the coarse

nodes of TH in Λ coincide with fine grid points of Th (nested grids, see Figure 2.1), at the

first half-step of the algorithm the residual is zero on the coarse nodes in Λ. Applying

now Lemma 2.1 to the computation of the correction on Th, we conclude that adding this

correction (ω = 1) to the initial coarse solution yields the discrete solution in VHh, i.e.

the exact solution on the coarse and fine nodes. Thus we conclude that the algorithm

gives the solution in only one iteration in the case of nested grids in 1D.

Examine now briefly the case where Th and TH are not nested but such that the ex-

tremities of the interval Λ are nodes of TH . This is the situation for example when M +1

is an odd number and all nodes are equidistant, see Figure 2.2 for an illustration with

M = 4. Then VHh0 = {0}, dimVHh = N +M and γ̃ = γ 
= 0.
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Figure 2.2: Boundary conforming non-nested grids in 1D.
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Figure 2.3: Non-nested grids in 1D.

Finally, we analyze the non-nested case obtained by a translation of ε � h of the

patch Λ, starting from the nested situation of the first case. The situation is illustrated

in Figure 2.3.

We compare the present non-nested case where dimVHh = N + M with the nested

case (2.2). The translation to the non-nested case augments the dimension of VHh.

We call H and h the distance between two consecutive nodes of the coarse resp. fine

triangulation. A straightforward calculation gives for any elements 1 ≤ i ≤ N, 1 ≤
j ≤ M , ||ϕj

H|| =
√

2/H, ||ϕi
h|| =

√
2/h and a(ϕj

H , ϕ
i
h) ≥ 2(h − ε)/Hh. Hence γ̃ ≥

(h− ε)/
√
Hh.

Remark that for ε→ 0, we obtain γ̃ ≥
√
h/H 
= 0. This shows that γ̃(ε) is discontin-

uous. This discontinuity stems from the change of dimension of VHh once the spaces VH

and Vh become non-nested.

The two- or three-dimensional case.

Let us now go over to the analysis of some properties in d dimensions (d = 2, 3). We start

with a case where the patch is entirely included in one element of the coarse grid. This

situation is most relevant when analyzing two-scale problems. Here the dimension of the

patch is at the scale of the grid-size of the coarse grid. Furthermore, large variations of

the coefficients aij of an elliptic operator, as defined in equation (2.8), are of importance

and give rise to multi-scale situations. The latter situation will also be discussed as an
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implementation issue in Section 2.3.

Let aij ∈ W 1,∞(Ω), 1 ≤ i, j ≤ d, verifying aij = aji and the hypothesis of strong

ellipticity,
d∑

i,j=1

aij(x)ξiξj ≥ α

d∑
i=1

ξ2
i , ∀(ξ1, ξ2) ∈ Rd, a.e. in Ω, (2.7)

where α is a positive constant. If L is the elliptic operator given by

L(u) = −
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
, (2.8)

the associated bilinear form is given by

a(u, v) =
d∑

i,j=1

∫
Ω

aij
∂u

∂xj

∂v

∂xi

dx. (2.9)

We consider the case when Λ ⊂ K, for K ∈ TH . Let Λ̃ ⊇ Λ be a rectangle or

parallelepiped with dimensions Li, 1 ≤ i ≤ d, and define

λ̃ = min
v∈H1

0 (Λ̃),v �=0
||∇v||2

L2(Λ̃)
/||v||2

L2(Λ̃)
. (2.10)

We have λ̃ = π2
∑d

i=1 1/L2
i and we introduce δ =

√
1/λ̃. We set

β =

⎡⎣ d∑
j=1

(
d∑

i=1

∣∣∣∣∣∣∣∣∂aij

∂xi

∣∣∣∣∣∣∣∣
L∞(Λ)

)2
⎤⎦ 1

2

. (2.11)

Proposition 2.2. If (2.7) is satisfied and if there exists K ∈ TH such that Λ ⊂ K

and if r = 1, then γ ≤ βδ
α

. If furthermore the aij’s are constant over Λ, 1 ≤ i, j ≤ d,

Algorithm 1.3 converges in only one iteration when ω = 1.

Proof. We shall first prove that γ ≤ βδ
α

. For any uH ∈ VH , vh ∈ Vh, we have

|a(uH, vh)| =

∣∣∣∣∣
d∑

i,j=1

∫
Λ

aij
∂uH

∂xj

∂vh

∂xi

dx

∣∣∣∣∣ , (2.12)

as vh = 0 in Ω \ Λ. Since Λ ⊂ K ∈ TH , ∂uH

∂xj
is constant over Λ so that

|a(uH , vh)| =

∣∣∣∣∣
d∑

i,j=1

∂uH

∂xj

∣∣∣∣
K

∫
Λ

∂aij

∂xi
vh dx

∣∣∣∣∣, (2.13)
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where we have applied the divergence theorem taking into account that vh = 0 on ∂Λ.

By the Cauchy-Schwarz inequality we have

|a(uH, vh)| ≤
d∑

i,j=1

∣∣∣∣∣∣∣∣∂aij

∂xi

∣∣∣∣∣∣∣∣
L∞(Λ)

∣∣∣∣∣ ∂uH

∂xj

∣∣∣∣
K

∫
Λ

|vh| dx
∣∣∣∣∣ (2.14)

≤ β

(
d∑

j=1

∣∣∣∣∣∣∣∣∂uH

∂xj

∣∣∣∣∣∣∣∣2
L2(Λ)

||vh||2L2(Λ)

) 1
2

(2.15)

= β||∇uH||L2(Λ)||vh||L2(Λ). (2.16)

At this point we need to bound ||vh||L2(Λ) from above with ||∇vh||L2(Λ). We introduce

λ = minv∈H1
0 (Λ),v �=0 ||∇v||2L2(Λ)/||v||2L2(Λ), the smallest value of the Rayleigh quotient for

the Laplacian operator on Λ. In order to estimate λ, we consider the rectangle or par-

allelepiped Λ̃ and λ̃ as introduced above. As Λ ⊆ Λ̃ we have λ ≥ λ̃ = 1/δ2, i.e. we get

||vh||L2(Λ) ≤ δ||∇vh||L2(Λ). Hence combining the previous results,

|a(uH , vh)| ≤ βδ||∇uH||L2(Λ)||∇vh||L2(Λ). (2.17)

The hypothesis of strong ellipticity (2.7) implies that, ∀u ∈ H1
0 (Ω),

a(u, u) =

∫
Ω

d∑
i,j=1

aij
∂u

∂xj

∂u

∂xi
dx ≥ α||∇u||2L2(Ω), (2.18)

i.e. α||∇u||2L2(Λ) ≤ α||∇u||2L2(Ω) ≤ a(u, u) = ||u||2. Applying this inequality to uH and vh,

we obtain |a(uH , vh)| ≤ βδ
α
||uH ||||vh||, i.e. γ ≤ βδ

α
.

If the aij’s are constant over Λ, 1 ≤ i, j ≤ d, we clearly have β = 0, thus γ = 0. Hence

the constant C0 introduced in Hypothesis 1.5 (equation (1.43)) is C0 = 1. Furthermore, in

this case VH and Vh are orthogonal (Properties 1.4(iii)) and, since the iteration operator

B = (I − ωPH)(I − ωPh) introduced in (1.37) yields B = 0 for ω = 1, the Algorithm 1.3

converges in only one iteration.

In two dimensions, when Λ ⊂ K1 ∪ K2, with K1, K2 ∈ TH , the analysis gets more

involved. In the sequel we present some upper bounds for γ in the case where aij = δij ,

i.e. a(u, v) =
∫
Ω
∇u · ∇v dx, and with Λ the union of two triangles K1 and K2 of TH ,

Th being a refinement of TH and r = s = 1. We consider the situations illustrated in

Figure 2.4 by the triangulations of the patch Λ.

Estimates can be obtained by splitting v ∈ VHh into v = vh + vH , where vH = rHv

is the interpolant of v in VH and vh = v − rHv ∈ Vh. The nodes in Λ corresponding to

the underlying finite element functions on which vh and vH are based on are depicted in

Figure 2.4. Using the fact that vh = 0 in Ω \Λ and the divergence theorem, we have that

a(vH , vh) ≤
∣∣∣∣[∂vH

∂n

]
Γ

∣∣∣∣ ∫
Γ

|vh| ds, (2.19)
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Parameter discussion and computational considerations

Figure 2.4: Illustration of the triangulations of Λ considered in Table 2.1. White dots
refer to the degrees of freedom of rHv, black dots refer to those of v − rHv.

where Γ = ∂K1∩∂K2, [·]Γ denotes the jump on Γ in the direction of a normal unit vector

n on Γ. We have for on Ki, i = 1, 2,

∂vH

∂n
= ∇vH · n ≤ |∇vH | =

∫
Ki

|∇vH | dx
area(Ki)

≤
√

area(Ki)||∇vH ||L2(Ki)

area(Ki)
, (2.20)

and we consider the non-optimal bound∣∣∣∣[∂uH

∂n

]
Γ

∣∣∣∣ ≤ ∣∣∣∣∂uH

∂n1

∣∣∣∣+ ∣∣∣∣∂uH

∂n2

∣∣∣∣ , (2.21)

where ni, i = 1, 2, denotes the normal direction outward of Ki on Λ. Hence the first

factor of the right-hand side of (2.19) can be bounded by∣∣∣∣[∂vH

∂n

]
Γ

∣∣∣∣ ≤ 2∑
i=1

||∇vH ||L2(Ki)√
area(Ki)

≤
√

2

mini=1,2

√
area(Ki)

||∇vH ||L2(Λ), (2.22)

and ||∇vH ||L2(Λ) ≤ ||∇vH||L2(Ω). As the dimension of Vh is small in our cases, we evaluate∫
Γ
|vh| ds explicitly and do the same with ||∇vh||L2(Λ). Hence we can express

∫
Γ
|vh| ds,

i.e. the second factor of the right-hand side of (2.19) in relation to ||∇vh||L2(Λ) which is

equal to ||∇vh||L2(Ω). This way get a non-optimal estimate of the constant γ (refer to

Chapter 1 for its definition in (1.39)) from (2.19): a(vH , vh) ≤ C||∇vh||L2(Ω)||∇vH ||L2(Ω),

where γ ≤ C.

Thus, applying the above procedure to our situations (Figure 2.4), we get a(vH , vh) ≤
C||vH ||||vh|| (see equation 1.40) and hence we have γ ≤ C. The upper bounds found for

γ are reported in Table 2.1. Note that the bound for γ on right isosceles triangles with

H/h = 2 is reported by Axelsson and Gustafsson in [9].

For the cases with right isosceles triangles presented in Figure 2.4 we estimate γ = γ̃

numerically using the method described later in this chapter (see Section 2.2). These

results, reported in Table 2.2, are to be compared with the unsharp estimated upper

bounds presented in Table 2.1.

2.2 Numerical evaluation of γ̃ and optimal relaxation

In this section we firstly present a method to numerically evaluate γ̃ for given discretiza-

tion spaces. This produces then with (1.78) a good approximation for the optimal relax-
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2.2 Numerical evaluation of γ̃ and optimal relaxation

Triangles H/h Upper bound for γ

equilateral 2
√

3/3 ≈ 0.577

right isosceles 2
√

2/2 ≈ 0.707
right isosceles 3 2/3 ≈ 0.667

right isosceles 4
√

2/2 ≈ 0.707

Table 2.1: Upper bounds for γ.

Triangles H/h Numerical estimate for γ

right isosceles 2 0.426
right isosceles 3 0.464
right isosceles 4 0.476

Table 2.2: Numerical estimates for γ.

ation parameter ω in Algorithm 1.3.

A crucial question for running the algorithm is to know how to choose the relaxation

parameter ω. We refer to Figure 2.7 where we compare the algorithm convergence for

ω = 1 and ω = ωopt. In fact, the spectral radius ρ of the iteration operator giving the

speed of convergence strongly depends on the relaxation of the method. Since Proposi-

tion 1.9, the spectral radius is given by the algebraic relationship (1.77): ρ is function of γ̃

and ω. An illustration of the functional relation ρ(ω) for given γ̃ is depicted in Figure 1.7.

Furthermore, equation (1.78) establishes a formula for calculating the optimal relaxation

parameter once γ̃ is known. Hence, a good approximation of the parameter γ̃ is the key

for an estimate of the optimal relaxation parameter ωopt.

The result of Proposition 1.9 with (1.77) gives an algebraic relationship for the spectral

radius ρ of the operator B as a function of γ̃ and ω. This leads to a very convenient

application to determine numerically a good approximation for γ̃. Since (1.77) with

ω = 1 (see also the first observation after Proposition 1.9), we have the relation γ̃2 = ρ.

Running Algorithm 1.3 with zero right-hand side and for given ω = 1 or ω 
= 1, our

objective is to evaluate numerically an estimate of ρ. Hence we find an estimate of the

parameter γ̃, either directly with γ̃2 = ρ or through (1.77).

If the largest eigenvalue of the iteration operator B given by (1.37) is real we can

obtain its spectral radius via the known result ρ(B) = limn→∞ ||Bun||/||un|| for f = 0.

But in general we cannot assume that the largest eigenvalue is real. We do not use the

standard power method as it does not apply most generally, and in particular when ρ(B)
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corresponds, e.g., to complex conjugated eigenvalues.

Hence we need Proposition 2.3. Consider B ∈ L(U) a linear operator over a finite

dimensional complex normed vector space U with a set of N eigenvalues λi ∈ C, i =

1, . . . , N , such that

|λ1| = . . . = |λk| > |λk+1| ≥ . . . ≥ |λN |, 1 ≤ k < N. (2.23)

Let vi, i = 1, . . . , k, resp. wi, i = k + 1, . . . , N , denote the generalized eigenvec-

tors associated to λ1, . . . , λk resp. λk+1, . . . , λN . Call V = span(v1, . . . , vk) and W =

span(wk+1, . . . , wN). We have U = V ⊕W .

Proposition 2.3. Let B ∈ L(U) be such that its eigenvalues verify (2.23). For any

u = v + w ∈ U with v ∈ V , w ∈ W , such that v 
= 0, the spectral radius of B is given by

ρ(B) = |λ1| = limn→∞
n
√
||Bnu||.

Proof. We remark that ρ(B) = |λ1| = . . . = |λk|. If we set ρ∗ = |λk+1| = maxi≥k+1 |λi|,
we have ρ∗ < ρ(B) since (2.23). Let ρ1, ρ2 and ρ3 be constants such that ρ∗ < ρ1 < ρ2 <

ρ(B) < ρ3.

We show that there exist constants C1, C2 and C3, independent of n, such that

|C2ρ
n
2 − C1ρ

n
1 | ≤ ||Bnu|| ≤ C3ρ

n
3 . (2.24)

In fact, since Yoshida [68, §VIII.2], we have ρ(B) = limn→∞
n
√

|||Bn|||, where |||·||| denotes

the operator-norm induced by || · ||. Hence, since ρ(B) < ρ3, there exists a constant C̃3

independent of n such that |||Bn||| ≤ C̃3ρ
n
3 . This implies that ||Bnu|| ≤ |||Bn||| ||u|| ≤

C3ρ
n
3 for any u ∈ U . Similarly, we have ||Bnw|| ≤ C1ρ

n
1 for any w ∈ W . Next we show

that ||Bnv|| ≥ C2ρ
n
2 for v ∈ V , v 
= 0. For this, we introduce BV , the restriction of B on V .

We have limn→∞
n

√
|||(B−1

V )n||| = ρ(B−1
V ) = 1/ρ(B) and thus there exists a constant C̃2

such that |||(B−1
V )n||| ≤ C̃2/ρ

n
2 . Furthermore, for any v ∈ V , v 
= 0,

||v|| = ||(B−1
V )nBn

V v|| ≤ |||(B−1
V )n||| ||Bn

V v|| ≤ C̃2/ρ
n
2 ||Bnv||, (2.25)

i.e. ||Bnv|| ≥ C2ρ
n
2 . Finally, we have

||Bnu|| = ||Bnv + Bnw|| ≥ | ||Bnv|| − ||Bnw|| | ≥ |C2ρ
n
2 − C1ρ

n
1 | , (2.26)

for any u = v + w with v ∈ V , w ∈W and v 
= 0.

With (2.24) we are able to conclude. In fact from (2.24) we have ρ2 |C2 − C1(ρ1/ρ2)
n|1/n

≤ n
√
||Bnu|| ≤ C

1/n
3 ρ3. Hence lim supn→∞

n
√

||Bnu|| ≤ ρ3 and lim infn→∞
n
√

||Bnu|| ≥ ρ2,

for any ρ2 and ρ3 such that ρ2 < ρ(B) < ρ3. Thus we conclude that limn→∞
n
√

||Bnu|| =

ρ(B).
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2.2 Numerical evaluation of γ̃ and optimal relaxation

Proposition 2.3 can be applied straightforwardly on the iteration operator B when

VHh is considered as a complex Hilbert space. In this case we have

ρ(B) = lim
n→∞

n
√
||Bnv||, (2.27)

and consequently, when ω = 1,

γ̃ =

√
lim

n→∞
n
√

||Bnv||. (2.28)

For implementation we set ω = 1 and the right-hand side f ≡ 0, and perform m steps

of the algorithm, starting in practice from any non zero initial condition v0, to obtain

some vm = Bmv0. Following (2.28) we use the approximation

ρ ≈ m
√
||vm||, (2.29)

for m large, and obtain with (1.78) and ρ = γ̃2 that

ωopt = ω0(γ̃ =
√
ρ) =

2 − 2
√

1 − ρ

ρ
. (2.30)

This is the optimal relaxation parameter in the sense that it gives the minimum value

for ρ(B) which is most relevant for the speed of convergence. The speed of convergence

is asymptotically given by the ratio en+1/en for large n, where en is the relative error at

iteration n defined in the paragraph here below. The evolution of this error through the

iterative process gives information about the speed of convergence of the algorithm (see

Figure 2.7).

In general, for running the algorithm, we use the following stopping criteria and errors.

First we define the variation of the discrepancy between two iterations and require that

||un − un−1||/||un|| < ε1 where ε1 is a given tolerance. If this criterion yields true at iter-

ation n = ncvg, we define uHh = uncvg . To verify that the algorithm has well converged,

we check that uHh satisfies a second criterion, namely ||uHh − uHh||/||uHh|| < ε2, where

uHh = uncvg+p, p = 20. We have chosen ε1 = 10−4 and ε2 = 10ε1 for the results reported

in this section. We define the relative error at iteration n by en = ||uHh − un||/||uHh||.

Up to here we have only introduced the tools to assess the convergence of the algo-

rithm, i.e. obtaining the approximation uHh to the exact solution u. To assess the con-

vergence of uHh to u, e.g. in H and h given by the a priori estimate of Proposition 1.1, or

with regard to the memory usage, we introduce the relative error eHh = ||u− uHh||/||u||.
Results of this are reported in Section 1.2 (Figures 1.3 and 1.4) and below at the end of

Section 2.3 (Figures 2.8 and 2.9).

We proceed now to a study of γ̃ for various spaces Vh and VH and introduce for

this the following model problem. Consider again the two-dimensional Poisson-Dirichlet
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(a) Structured coarse TH

and nested fine Th.
(b) Unstructured coarse TH

and structured fine Th.

Figure 2.5: Illustration of the considered grid constellations for N = M = 10 and ratio
H/h = 10.

problem (1.17) in Ω = (−1; 1)2 introduced earlier. Now we take f such that the exact

solution to the problem is given by u = u0 +
∑4

i=1 ui, u0(x, y) = cos(π
2
x) cos(π

2
y) and

ui(x, y) = ηχ(Ri) exp ε−2
f exp(−1/|ε2f −R2

i |), where Ri(x, y) =
√

(x− xi)2 + (y − yi)2 and

χ(Ri) = 1 if Ri ≤ εf , χ(Ri) = 0 if Ri > εf ; η, εf and (xi, yi), i = 1, 2, 3, 4 are parameters.

Hence the right-hand side of (1.17) is given by f = f0 +
∑4

i=1 fi, where f0 = −Δu0

and fi = −Δui, i = 1, 2, 3, 4. We choose η = 10, εf = 0.3 and (x1, y1) = (0.3, 0.3),

(x2, y2) = (0.7, 0.3), (x3, y3) = (0.3, 0.7), (x4, y4) = (0.7, 0.7).

In the following, we refer to Section 1.1 for the definition of the notation used. For

the triangulation of Ω, we use a coarse uniform grid with mesh size H and r = 1. We

consider the patches Λi, i = 1, 2, 3, 4, with a fine uniform triangulation of size h and

s = 1. Choose Λi = (xi − ε; xi + ε) × (yi − ε; yi + ε), with ε = 0.1. We set H = 2/N and

h = 2ε/M , N,M being the number of discretization intervals on one side of the squares

Ω and Λi respectively. Non-nested and nested situations are illustrated in Figure 2.5.

We consider different situations including structured nested and non-nested as well

as unstructured grids on the domain Ω. We always use the same structured grids for the

patches. Our objective is to assess the convergence of our method with regard to the

influence of the grids used. Our goal is to show that the algorithm performs well when

h → 0 for fixed H , and when each patch covers only a small number of coarse elements.

It is particularly competitive when used with the optimal relaxation parameter ωopt given

by (2.30) in initially ill-conditioned situations like those presented in Table 2.3(c): small

displacement of the coarse nodes of TH with regard to a nested Th.
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unstructured coarse triangulation
nested triangulations
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Figure 2.6: Convergence to ρ over iterations m.

We first illustrate that obtaining an estimate of the optimal relaxation parameter is

fast. Only a small number m of iterations are necessary to get the approximation of ρ

through equation (2.29). In Figure 2.6 we plot the estimate of ρ obtained for increasing m

when N = M = 20. We conclude that a couple of iterations are sufficient to get a good

estimate and hence the optimal relaxation parameter ωopt.

Recall that first estimates for the spectral radius have already been reported through

the situation considered in Section 1.6 in Figure 1.12 to illustrate equation (1.77) and

verify the algebraic fitting to the numerical results. Further numerical estimates for the

parameter γ corresponding to the situations depicted in Figure 2.4 with right isosceles

triangles are reported in the Table 2.2.

Let us study now the algorithm on the above introduced situation.

Main results are reported in the following table (Table 2.3). In each part we depict

the considered situation by small graphics showing first the whole triangulation TH with

the patches, then a zoom to emphasize the region around one corner of a patch to show

how Th and TH are related. First we set ω = 1 and run our method to obtain an estimate

of γ̃ through (2.28) and hence of the spectral radius ρ = γ̃2 of the iteration operator.

Then we run the algorithm on the problem till convergence (see the text above for the

stopping criteria used) and report the number of iterations ncvg. These values are re-

spectively reported in the first rows of Tables 2.3(a)–2.3(c). Given the approximation for

γ̃ we determine the optimal relaxation parameter ωopt with (1.78) and give the spectral

radius. The last line in the tables reports the required iterations needed by the method

to converge under optimal relaxation.

In a first test, we choose N and M such that the ratio H/h is of magnitude 10. In
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these first cases, the patches cover a small number of triangles of TH leading to small

coefficients γ̃ and ρ. Hence convergence is reached after a small number of iterations.

When doubling the number of fine triangles, see Table 2.3(b), the situation remains

similar. A slight over-relaxation realizes a gain of a couple of iterations. This suggests

that the method is efficient in multi-scale situations where the size of the applied patch

is of the order of a coarse element.

In the examples of Table 2.3(c) we increase the precision of the coarse triangulation.

These cases show that the algorithm is best-suited to situations with patches covering

a small number of coarse triangles. Here again, this shows that the method is efficient

when the size (i.e., the diameter or the length of a side) of the patch is of the order of

the coarse grid size H . In fact, increasing the number of coarse triangles covered by the

patches, i.e. increasing the size of the patches, leads to bad condition numbers (ρ close

to 1). Nevertheless optimal relaxation allows to divide by a factor two the number of

iterations necessary to obtain convergence. This shows that optimal relaxation is a key

ingredient in our method.

These basic results show that the method is very well adapted for multi-scale situa-

tions when applying small patches |Λ| � |Ω| in the regions with sharp data.

In Table 2.3 we have seen that optimizing the relaxation optimizes the convergence of

the algorithm, i.e. the rate of the error reduction through the iterations. In Figure 2.7 we

plot the evolution of the a-norm error of un to uHh for the nested and the unstructured

cases of Table 2.3(c). Note that the values of ρ give an upper bound for the slope of the

error reduction (see Figure 2.7).

We refer the reader to [36] for more examples of TH and Th. In [36, Section 6], we

study γ̃ and the convergence to uHh through the algorithm iterations in various situations

(see Table 3 and Figure 5 therein).

2.3 Implementation issues and memory and CPU-

time usage

In this section we describe how we have implemented the method and what critical points

need special care with regard to the usage of memory, to integration and the grids used.

Finally we illustrate the efficiency of the method in particular versus memory and CPU-

time usage.

We start with discussing practical aspects to construct an efficient computer program
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H/h = 10 nested non-nested unstructured
N = M = 10 N = 11, M = 10 N = M = 10

ρ(γ̃, 1) = γ̃2 0.28 0.30 0.34
ncvg 6 8 9
ωopt 1.08 1.09 1.10

ρ(γ̃, ωopt) 0.08 0.09 0.10
ncvg 5 6 9

(a) Algorithm properties for H/h = 10, N = 10.

H/h = 20 nested non-nested unstructured
N = 10, M = 20 N = 11, M = 20 N = 10, M = 20

ρ(γ̃, 1) = γ̃2 0.28 0.31 0.38
ncvg 6 8 9
ωopt 1.08 1.09 1.12

ρ(γ̃, ωopt) 0.08 0.09 0.12
ncvg 5 6 6

(b) Algorithm properties for H/h = 20, N = 10.

H/h = 10 nested non-nested unstructured
N = M = 20 N = 21, M = 20 N = M = 20

ρ(γ̃, 1) = γ̃2 0.24 0.89 0.91
ncvg 6 24 27
ωopt 1.07 1.50 1.54

ρ(γ̃, ωopt) 0.07 0.50 0.54
ncvg 5 13 15

(c) Algorithm properties for H/h = 20, N = 20.

Table 2.3: Comparison of the algorithm properties.
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Figure 2.7: Convergence of un to uHh with respect to the iteration number for cases
of Table 2.3(c). Comparison of the convergence for the non-relaxed (ω = 1) and the
optimally relaxed (ω = ω0 = ωopt) method.

for implementing Algorithm 1.3. All results reported have been obtained using a basic

implementation with the software Freefem++ [43].

Handling two domains with a priori non-conforming triangulations raises a couple of

practical issues. At any stage the coarse and the fine parts of the solution un are stored

separately, that is to say un−1 = un−1
H + un−1

h with un−1
H ∈ VH , un−1

h ∈ Vh. We write the

first step of the n-th iteration of the algorithm as follows:

Find vh ∈ Vh s.t. a(vh, ϕ) = 〈f |ϕ〉 − a(un−1
H , ϕ), ∀ϕ ∈ Vh .

Set un
h = (1 − ω)un−1

h + ωvh.

The same holds for the second step which writes out explicitly:

Find vH ∈ VH s.t. a(vH , ϕ) = 〈f |ϕ〉 − a(un
h, ϕ), ∀ϕ ∈ VH .

Set un
H = (1 − ω)un−1

H + ωvH .

Comparing this formulation with the initial writing of Algorithm 1.3 we have vh =

wh + un−1
h and vH = wH + un−1

H . Hence the respective right-hand sides are shorter

by one term.

Note here that the above formulation makes immediate the comparison with the

Chimera method [25] made already in Section 1.3. When ω = 1, we are left with the

following two steps:

(i) Find un
h ∈ Vh s.t. a(un

h, ϕ) = 〈f |ϕ〉 − a(un−1
H , ϕ), ∀ϕ ∈ Vh ;

(ii) find un
H ∈ VH s.t. a(un

H , ϕ) = 〈f |ϕ〉 − a(un
h, ϕ), ∀ϕ ∈ VH .
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Recall that the multiplicative character of our method versus the Chimera method is

immediately seen in the second step when using the updated fine grid solution un
h in the

right-hand side.

At this point we need to discuss the numerical integration and restrict ourselves to

linear finite elements (r = s = 1).

Two difficulties are to be taken into account whether sharp data, i.e. data needing

fine integration, of the problem comes from the right-hand side f or originates from the

form a. In the first case the evaluation of 〈f |ϕ〉 needs particular attention. In the second

case scalar products evaluated on the coarse grid must be considered with care. Another

issue is the treatment of mixed term scalar products wherein finite element functions of

both VH and Vh appear.

In the sequel, we consider these problems and illustrate our proposals with the scalar

product given by (1.5). The evaluation of the different terms appearing in the algorithm

is conforming to the following guidelines:

• If the coefficients aij defining the scalar product a are “smooth” in Λ and in Ω,

the homogeneous terms a(ϕH , ψH) with ϕH , ψH ∈ VH , and a(ϕh, ψh) with ϕh, ψh ∈
Vh, of support in Ω resp. Λ are integrated using the grid TH on Ω resp. Th in Λ.

Numerical integration in 2D is done with the standard three-point formula (in 3D

we use a four-point formula). In the case of (1.5) this writes out, ∀ϕH , ψH ∈ VH ,

a(ϕH , ψH) ≈
∑

K∈TH

|K|
d+ 1

d+1∑
α=1

d∑
i,j=1

aij(x
α
K)

∂ϕH

∂xj

∣∣∣∣
K

∂ψH

∂xi

∣∣∣∣
K

, (2.31)

where |K| denotes the area or volume, and xα
K , α = 1, . . . , d+ 1, the vertices of the

element K. We use the same formula for a(ϕh, ψh) where ϕh, ψh ∈ Vh with K ∈ Th

in (2.31).

The mixed term a(ϕh, ψH), ϕh ∈ Vh,ψH ∈ VH , of support in Λ, is approximated by

a(ϕh, rhψH), i.e.

a(ϕh, ψH) ≈
∑

K∈Th

|K|
d+ 1

d+1∑
α=1

d∑
i,j=1

aij(x
α
K)

∂ϕh

∂xj

∣∣∣∣
K

∂(rhψH)

∂xi

∣∣∣∣
K

, (2.32)

where rh is the standard interpolant to the space Vh. When implementing, our

technique consists in introducing, besides TH and Th, a transmission grid, i.e. a fine

structured grid considered over the patch Λ. This enables handling of the elements

of VH and Vh in the mixed scalar products. The transmission grid helps associating

fine and coarse triangles and vertices of the grids TH and Th and gives information

on, e.g., which nodes of Th are in a given triangle of TH .

• If the coefficients aij are sharp in Λ, the above approximations are sufficient. In fact

all a-products appearing in a right-hand side of the algorithm are integrated on the
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fine grid Th (see (2.32)). Furthermore, as our algorithm is a correction algorithm

with corrections tending to zero, the left-hand side a(vH , ϕ), ϕ ∈ VH , in the second

step, is not to be rewritten.

• The term 〈f |ϕ〉, ϕ ∈ Vh or VH , is approximated with

〈f |ϕH〉 ≈
∑

K∈TH

|K|
d+ 1

d+1∑
α=1

f 1(xα
K)ϕH(xα

K)

+
∑

K∈Th

|K|
d+ 1

d+1∑
α=1

f 2(xα
K)(rhϕH)(xα

K), ∀ϕH ∈ VH , (2.33)

and

〈f |ϕh〉 ≈
∑

K∈Th

|K|
d+ 1

d+1∑
α=1

f 2(xα
K)ϕh(x

α
K), ∀ϕh ∈ Vh, (2.34)

where f = f 1 + f 2 with f 1 =

{
f in Ω \ Λ
0 in Λ

, and f 2 =

{
0 in Ω \ Λ
f in Λ

.

Finally, let us assess the efficiency of our method with respect to memory and CPU-

time usage. Using a well-situated patch reduces the number of nodes necessary to obtain

a given accuracy on the solution. Recalling problem (1.17) defined in Section 1.2 and the

nested grid constellation introduced in Figure 1.3(a), we illustrate our point in Figures 2.8

and 2.9.

Using the convergence results reported in Figure 1.3(b), it is readily done to convert

them to data with respect to the number of nodes used. This is illustrated in Fig-

ures 2.8(a) and 2.8(b).

In Figure 2.8(a) we keep the ratio H/h constant. In Figure 2.8(b) we report results

keeping the number of nodes of the coarse mesh fixed (i.e. H = 1/4) and divide h by two,

keeping the size of the patch constant. Of course, after some refinements, the error in the

domain Ω \Λ with coarse discretization dominates and hence the global error stagnates,

meaning that further refinement of the patch by reducing the mesh size h is not useful.

We note that the error reduction with respect to the number of degrees of freedom

is concluding when refining the grid over the patch. This holds as long as the solution

is well approached outside the patch by the coarse grid, i.e. as the error in the patch

dominates.

In parallel to the analysis with respect to memory usage we report results of the use

of CPU-time. These are shown in Figures 2.9(a) and 2.9(b). The CPU-time is reported

in seconds as used by the basic implementation with Freefem++. When considering the

experience as reported in Figure 2.8(a), i.e. increasing precision while decreasing H and
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(a) Reduction of H and h with H/h = 4 fixed.
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(b) Reduction of h with H = 1/4 fixed.

Figure 2.8: Convergence of uHh to u with respect to the number of nodes on structured
and nested grids.
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h with constant ratio H/h, we have a slight advantage in CPU-time with the correction

method, this advantage growing when requiring more precision. In Figure 2.9(b) we plot

the CPU-time needed for the results reported in Figure 2.8(b) (keeping H and the patch

fixed and dividing h by two to increase precision). We conclude, as here above, that the

refinement of the patch needs to be chosen in accordance with the underlying coarse grid

in order to minimize the global error optimally.

Hence, we conclude that the key for an efficient use of the algorithm lies in adapted

choice of the patch and its grid. In the CPU usage illustration from Figure 2.9(a) we

note that the correction method becomes more efficient in terms of CPU-time as more

precision is required, iterating getting less time consuming then solving larger systems.
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with patch, H/h = 4
without patch
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(b) Reduction of h with H = 1/4 fixed.

Figure 2.9: Convergence of uHh to u with respect to the CPU-time usage on structured
and nested grids.
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Chapter 3

Analysis of the algorithm on two
Poisson problems

In this chapter we take inspiration from the correction method (Algorithm 1.3) and con-

sider regularity and convergence results for problems with singularities due to changing

Dirichlet-Neumann boundary conditions and domains with entrant corners. Such prob-

lems have been studied for example by Grisvard [41, 42]. We discuss how patches can

improve the quality of the solution and the convergence order in the grid size of the

method on a model problem. In particular, we assess the efficiency of the application of

patches with regard to the usage of memory.

The outline of this chapter is the following:

3.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Problem with change in boundary conditions . . . . . . . . 60

3.3 Problem in a domain with entrant corner . . . . . . . . . . . 71

In Section 3.1 we introduce some preliminary results used for the a priori error analysis to

follow. In Section 3.2, we consider a Laplace problem with changing Dirichlet-Neumann

boundary conditions. First we study the regularity of solutions to this type of problems.

Once the regularity result established (with inspiration taken from [41, 42]), we present

a priori error estimates. The objective is to improve the latter through the use of the

correction algorithm with chosen patches. Concluding results are presented, as well for

the improvement of the convergence order in the mesh size and the precision of the

approximation with regard to economic usage of memory. In Section 3.3, following the

same structure then above, we assess our method on a Poisson-Dirichlet problem on a

polygonal domain with entrant corner.
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Analysis of the algorithm on two Poisson problems

3.1 Preliminary results

In this section we introduce results leading to an a priori error estimate (Proposition 3.5)

for the finite element approximation in a two-dimensional polygonal domain Ω of func-

tions u ∈W 2,p(Ω), p ∈ (1; 2). Here W 2,p(Ω) denotes the usual Sobolev space of functions

f ∈ Lp(Ω) with first and second derivatives in Lp(Ω).

We introduce TH a regular family of triangulations (see Ciarlet [29, Sect. 17]) with

triangles K over Ω and call H = maxK∈TH
diam(K).

Lemma 3.1. Let q ∈ (1; +∞) and p ∈ (1; q). Then there exists C = C(p, q) such that

||v||pLp(K) ≤ meas(K)(q−p)/q||v||pLq(K), ∀v ∈ Lq(K), ∀K ∈ TH . (3.1)

Proof. If v ∈ Lq(K), we have

||v||pLp(K) =

∫
K

|v|p dx =

∫
K

1 · (|v|q)p/q dx =

∫
K

1 · wp/q dx, (3.2)

where w = |v|q. Using Hölder’s inequality with s = q/p and s∗ = q/(q − p) (verifying

1/s+ 1/s∗ = 1), we obtain

||v||pLp(K) ≤ ||1||Ls∗(K)||wp/q||Ls(K) (3.3)

= meas(K)1/s∗
(∫

K

w dx

)p/q

(3.4)

= meas(K)(q−p)/q||v||pLq(K), (3.5)

what concludes the proof.

Lemma 3.2. Let v ∈ Lq(Ω) with q ∈ (1; +∞). Then, for any p ∈ (1; q), there exists

H0 = H0(p, q, v) such that, ∀H ≤ H0,

||v||Lp(K) ≤ 1, ∀K ∈ TH . (3.6)

Proof. With v ∈ Lq(Ω), we have

||v||qLq(Ω) =
∑

K∈TH

||v||qLq(K) =
∑

K∈TH

(
||v||pLq(K)

)q/p

, (3.7)

and with Lemma 3.1:

||v||qLq(Ω) ≥
∑

K∈TH

(
meas(K)(p−q)/q||v||pLp(K)

)q/p

(3.8)

=
∑

K∈TH

meas(K)(p−q)/p||v||qLp(K) (3.9)

≥ C/H2(q−p)/p
∑

K∈TH

||v||qLp(K), (3.10)
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where C does not depend on K. Finally, we obtain∑
K∈TH

||v||qLp(K) ≤ C−1H2(q−p)/p||v||qLq(Ω), (3.11)

which proves that

lim
H→0

∑
K∈TH

||v||qLp(K) = 0. (3.12)

Thus we have necessarily ||v||Lp(K) ≤ 1 for H ≤ H0 sufficiently small.

Lemma 3.3. Let v ∈ Lq(Ω) for all q ∈ (1; 2). Then, for any p ∈ (1; 2), there exists

H0 = H0(p, v) such that ∑
K∈TH

||v||2Lp(K) ≤ ||v||pLp(Ω), if H ≤ H0. (3.13)

Proof. Let p ∈ (1; 2) and consider q ∈ (p; 2). By Lemma 3.2, there exists H0 such that

||v||Lp(K) ≤ 1, ∀K ∈ TH , ∀H ≤ H0. Hence∑
K∈TH

||v||2Lp(K) ≤
∑

K∈TH

||v||pLp(K) = ||v||pLp(Ω), (3.14)

which completes the proof.

Let now u ∈ W 2,p(Ω), p ∈ (1; 2), and consider the approximation of u by its inter-

polant rHu using a finite element method of order 1 on TH . Interpolation results by

Ciarlet [29, Section 16], give the following a priori error estimate.

Proposition 3.4. Let u ∈ W 2,p(Ω) with p ∈ (1; 2). Then the interpolant rHu to u

satisfies the a priori error estimate

||u− rHu||H1(K) ≤ CH2−2/p|u|W 2,p(K), ∀K ∈ TH , (3.15)

where C is a constant independent of H and u but depending on p, and | · |W 2,p(K) is the

semi-norm in W 2,p(K).

Proof. The proof is straightforward by applying the result of equation (16.4) from Ciar-

let [29, Section 16] to the present situation.

The idea of Proposition 3.5 is to give an estimate of ||u− rHu||H1(Ω).

Proposition 3.5. Let u ∈W 2,p(Ω) with p ∈ (1; 2). Then there exists H0 = H0(p, u) such

that the interpolant rHu to u satisfies the a priori error estimate

||u− rHu||H1(Ω) ≤ CH2−2/p|u|p/2

W 2,p(Ω), ∀H ≤ H0, (3.16)

where C is a constant independent of H and u but depending on p.
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Analysis of the algorithm on two Poisson problems

Proof. We have ||u− rHu||2H1(Ω) =
∑

K∈TH
||u− rHu||2H1(K). Since Ciarlet’s result recalled

in Proposition 3.4, we obtain

||u− rHu||2H1(Ω) ≤ CH2(2−2/p)
∑

K∈TH

|u|2W 2,p(K), (3.17)

where C denotes a constant independent of H and u. With the result from Lemma 3.3

we can write ∑
K∈TH

|u|2W 2,p(K) ≤ |u|pW 2,p(Ω), ∀H ≤ H0 = H0(p, u). (3.18)

Thus combining (3.17) and (3.18), we obtain

||u− rHu||2H1(Ω) ≤ CH2(2−2/p)|u|pW 2,p(Ω), ∀H ≤ H0, (3.19)

which leads to the result.

3.2 Problem with change in boundary conditions

The objective of this discussion is to assess the correction algorithm (Algorithm 1.3) on a

Laplace problem with changing Dirichlet-Neumann boundary conditions. We first study

the regularity of the solution to such a problem and give the a priori convergence results.

Next we implement the problem numerically, and after comparing the theoretical orders

with the ones we obtain numerically, we use different types of patches in order to improve

the convergence order and the precision on the solution, economically with respect to the

usage of memory.

Regularity result.

Before introducing a model problem (see problem (3.31)), we consider the situation here

below to analyze the singular behavior of solutions in a domain with changing boundary

conditions. Such an analysis is not new, a short development can be found in the books

by Grisvard, see [41, Section 4.4] and [42, Pages 49–51 and Section 2.4]. Nevertheless it

is useful to explicit the reasoning here.

Consider the domain Ω∞ = (−∞; +∞) × (0; +∞) and the problem of finding the

functions v ∈ H1
loc(Ω∞) verifying Δv = 0 in L2

loc(Ω∞) and obeying the following set of

boundary conditions:
∂v
∂n

= 0 on (−∞; 0) × {0}, and
v = 0 on (0; +∞) × {0}. (3.20)

Note that H1
loc(Ω∞) can be extended to H1

loc(O) where O is an open domain such that

O ⊃ Ω∞.
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3.2 Problem with change in boundary conditions

We denote x and y the two space variables and (r, θ) are the polar coordinates. The

situation as well as the notation used are illustrated in Figure 3.1.

O
x

y

r

∂v
∂n

= 0 v = 0

er
eθ

θ

Ω∞

Figure 3.1: Illustration of the situation and notation.

To analyze these solutions, we consider the function v = v(r, θ) in polar coordinates.

Taking into account the boundary conditions, we write

v(r, θ) =
∑
m≥0

ρm(r) sin

(
2m+ 1

2
θ

)
, (3.21)

and calculate its gradient and Laplacian. By denoting er, eθ the vectors of the tangential

reference frame, the gradient in polar coordinates is given by ∇v = ∂rver + 1
r
∂θveθ, i.e.,

∇v =
∑
m≥0

ρ′m(r) sin

(
2m+ 1

2
θ

)
er +

∑
m≥0

1

r

2m+ 1

2
ρm(r) cos

(
2m+ 1

2
θ

)
eθ. (3.22)

The Laplacian, Δv = 1
r

[
∂r(r∂rv) + 1

r
∂2

θθv
]
, yields

Δv =
1

r

[∑
m≥0

(
∂r(rρ

′
m(r)) −

(
2m+ 1

2

)2
1

r
ρm(r)

)
sin

(
2m+ 1

2
θ

)]
. (3.23)

Hence, requiring Δv = 0 implies

rρ′′m(r) + ρ′m(r) −
(

2m+ 1

2

)2
1

r
ρm(r) = 0, m = 0, 1, 2, . . . . (3.24)

If we assume ρm(r) = rγ, we obtain

γ(γ − 1) + γ −
(

2m+ 1

2

)2

= 0, (3.25)

i.e.

γ = ±2m+ 1

2
, m = 0, 1, 2, . . . . (3.26)
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Hence the harmonic functions in Ω∞ with boundary conditions (3.20) are expressed in

polar coordinates by

v(r, θ) =
∑
m≥0

(
cmr

(2m+1)/2 + c−mr
−(2m+1)/2

)
sin

(
2m+ 1

2
θ

)
, (3.27)

where cm, c−m are real coefficients. Note that c0 and c−0 are different a priori.

In the sequel, using the general expression (3.27) in polar coordinates, we analyze

the regularity of these solutions. We study first local integrability of |∇v|2 in Ω∞. We

calculate

|∇v|2 =

[∑
m≥0

(
2m+ 1

2
cmr

(2m−1)/2 − 2m+ 1

2
c−mr

−(2m+3)/2

)
sin

(
2m+ 1

2
θ

)]2

+

[∑
m≥0

1

r

2m+ 1

2

(
cmr

(2m+1)/2 + c−mr
−(2m+1)/2

)
cos

(
2m+ 1

2
θ

)]2

. (3.28)

For |∇v|2 to be locally integrable in Ω∞ a priori, we need to impose that, if cm 
= 0,
2m−1

2
2 + 1 > −1, and if c−m 
= 0, −2m+3

2
2 + 1 > −1. The first condition is always verified

for m ≥ 0. The second implies m < 0, and hence c−0 = c−1 = c−2 = . . . = 0. Thus, the

functions of the form (3.27) that are H1
loc(Ω∞) are expressed by

v(r, θ) =
∑
m≥0

cmr
(2m+1)/2 sin

(
2m+ 1

2
θ

)
. (3.29)

Furthermore, considering the second derivatives of v, we note that, if c0 
= 0, then v

does not belong to H2
loc(Ω∞).

Thus we are interested in calculating p such that v of the form (3.29) with c0 
= 0 is

in W 2,p
loc (Ω∞). For finding such p, we evaluate the second derivative of r1/2 (c0 
= 0) and

require it to be p-integrable. We obtain the relation −3
2
p+ 1 > −1, and hence p < 4

3
.

In conclusion, if v ∈ H1
loc(Ω∞) is an harmonic function in Ω∞ verifying the boundary

conditions (3.20), then v ∈W 2,p
loc (Ω∞) with p ∈ [1; 4

3
). We denote by ϕ(r, θ) the component

m = 0 of v,

ϕ(r, θ) = c0
√
r sin(θ/2). (3.30)

Model problem and a priori error estimate.

Let now Ω = (−L;L)× (0; l) ⊂ R2 be a rectangular domain (see Figure 3.2). We consider

the following Poisson problem with homogeneous Dirichlet-Neumann boundary condi-

tions:
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0−L L
0

l

Γ2 Γ1

Γ3Ω

Figure 3.2: Illustration of the domain Ω and its boundaries Γi, i = 1, 2, 3.

For given f ∈ L2(Ω), find u ∈ H1(Ω) such that⎧⎪⎪⎨⎪⎪⎩
−Δu = f in Ω,
u = 0 on Γ1 = {(x, 0) : 0 < x < L},
∂u
∂n

= 0 on Γ2 = {(x, 0) : −L < x < 0},
u = 0 on Γ3 = ∂Ω \ (Γ1 ∪ Γ2).

(3.31)

Let us remark that this problem means that, if H̃1(Ω) = {v ∈ H1(Ω) : v = 0 on Γ1 ∪
Γ3}, then u ∈ H̃1(Ω) satisfies∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx, ∀v ∈ H̃1(Ω). (3.32)

Since Grisvard [42, Section 2.4] complemented by the above paragraph, and since the

four corners of Ω are right angles, we know that the unique solution u of (3.32) (Lax-

Milgram Theorem) can be written as u = w + ϕ where w ∈ H2(Ω) and ϕ ∈ W 2,p(Ω),

p ∈ [1; 4
3
), given by (3.30).

Recall that TH denotes a regular triangulation over Ω with triangles K. We call

H = maxK∈TH
diam(K). We will assume that O is a node of the triangulation.

Let uH ∈ VH = {ψ ∈ C0(Ω) : ψ|K ∈ P1(K), ∀K ∈ TH and ψ = 0 on Γ1 ∪ Γ3} be the

approximation of u such that∫
Ω

∇uH · ∇vH dx =

∫
Ω

fvH dx, ∀vH ∈ VH . (3.33)

Using Céa’s Lemma we have∫
Ω

|∇(u− uH)|2 dx =

∫
Ω

∇(u− uH) · ∇(u− vH) dx, (3.34)

and consequently

|u− uH |H1(Ω) ≤ |u− vH |H1(Ω), (3.35)

where | · |H1(Ω) is the semi-norm in H1(Ω). Since the Poincaré inequality it satisfies in

H̃1(Ω), we have by taking vH = rHu (possible with u ∈ C0(Ω)),

|u− uH |H1(Ω) ≤ C|u− rHu|H1(Ω). (3.36)
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With u ∈ W 2,p(Ω), p ∈ [1; 4
3
), and by Proposition 3.5 we have the following a priori

error estimate: For p ∈ (1; 4/3), there exists H0 = H0(p, u) such that the approximation

uH given by (3.33) to u satisfies

||u− uH ||H1(Ω) ≤ CH2−2/p|u|p/2
W 2,p(Ω), ∀H ≤ H0, (3.37)

where C is a constant independent of H and u but depending on p.

Hence, the a priori convergence order in H in the H1-norm is smaller than 2− 2
4/3

=

1/2.

The objective of the next part will be to apply the correction method introduced in

Chapter 1 to the present situation. We use a patch Λ with a finer triangulation to augment

the precision around the origin where the first derivative of the solution u explodes in O.

By strategically choosing the patch we try to optimize the convergence order.

Improving the a priori convergence order through using patches.

In this paragraph we keep considering the model problem (3.31) introduced above with

its approximation (3.33). The aim is to use the correction algorithm to obtain a better a

priori convergence order.

As described in Chapter 1 (Section 1.1), we consider two families of regular triangula-

tions TH over Ω and Th over a patch Λε, the size of which depends on ε > 0. Then the idea

is to use linear elements and approximate the solution u of (3.31) with uHh = uH + uh,

uH and uh defined on TH and Th by Algorithm 1.3. In order to develop a priori error

estimates, we need to introduce a particular setting where it is valid. At the end of this

paragraph we conjecture a generalization of the latter.

Consider the domain Ω = (−L;L) × (0; l). To simplify the discussion and to fix the

ideas we take L = l = 1. We introduce a regular triangulation TH over Ω with triangles K

such that, if NH denotes the set of nodes of the triangulation TH and Cε is the half-circle

in Ω centered at the origin and of radius ε ∈ (0; 1/2), we have O ∈ NH , {(±ε, 0)} ⊂ NH ,

and ∀K ∈ TH , ∂K ∩ Cε ⊂ NH . We call H = maxK∈TH
diam(K) and suppose furthermore

that ε is such that H/ε→ 0.

If Dε denotes the half-disk in Ω centered at the origin and of radius ε, we introduce

the patch Λε = ∪K∈TH ,K⊂Dε
K. Over Λε we consider a regular triangulation Th. We call

Nh the set of nodes of the triangulation Th and h = maxK∈Th
diam(K). We suppose that

the triangulations TH and Th are nested, i.e. ∀K ∈ Th, ∃K̃ ∈ TH s.t. K ⊂ K̃.
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TH

Th

0−1 1

0

1

−ε ε

Ω

Cε

Λε

D1 D2

Figure 3.3: Illustration of the setting and notation.

Since our idea is to use linear finite elements to approximate u on TH and Th, we

need to introduce the ad hoc spaces. Let VH = {ψ ∈ H1(Ω) : ψ|K ∈ P1(K), ∀K ∈
TH and ψ = 0 on (0;L) × {0}} and Vh = {ψ ∈ H1(Ω) : ψ|K ∈ P1(K), ∀K ∈ Th and ψ =

0 in Ω \ Λε and ψ = 0 on ∂Λε \ ([−ε; 0] × {0})}. We denote by rH and rh the standard

interpolants to the space VH and Vh respectively.

We call Ñh = Nh ∩ (∂Λε \ (−ε; ε) × {0}). We consider Ṽh = {ψ ∈ H1(Λε) : ψ|K ∈
P1(K), ∀K ∈ Th and ψ(P ) = 0, ∀P ∈ Nh \ Ñh}, and call r̃h the standard interpolant to

the space Ṽh. Call V h = Vh + Ṽh and rh the interpolant to V h.

An illustration of the introduced setting is given in Figure 3.3.

Lemma 3.6. Consider the setting and the notation introduced above. For ϕ given

by (3.30) we have

|ϕ|H2(Ω\Λε)
≤ C/

√
ε, (3.38)

where C is a constant independent of ε.

Proof. Since (3.30) we have

|ϕ|2
H2(Ω\Λε)

≤ C

∫
Ω\Λε

|x|−3 dx. (3.39)

Consider the half-disk D1 ⊂ Λε of radius ε/2 centered at the origin, and the smallest half-

disk D2 ⊃ Ω centered at the origin (see Figure 3.3). The radius of D1 being of order ε
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O

θ0

δθ/2

Cε

r = ε

A

B

D

d

Figure 3.4: Illustration of the notation for Lemma 3.7.

and the radius of D2 of order 1, we can write∫
Ω\Λε

|x|−3 dx ≤
∫
D2\D1

|x|−3 dx ≤ C

∫ 1

ε/2

r−2dr ≤ C/ε, (3.40)

and hence conclude.

Lemma 3.7. Consider the setting and the notation introduced above and recall in par-

ticular the hypothesis H/ε→ 0. If χh = r̃h(ϕ− rHϕ)|Λε
∈ Ṽh, then we have

|χh|H1(Λε) ≤ C
H2

εh1/2
, (3.41)

where C is a constant independent of H, h and ε.

Proof. Let A,B ∈ NH ∩ Cε be two vertices of a triangle K ∈ TH , K ⊂ Λε, and D ∈
Nh ∩ [A;B]. The polar coordinates of A and B are respectively (rA = ε, θA = θ0 − δθ/2)

and (rB = ε, θB = θ0 + δθ/2) where θ0 is the angle bisecting the arc AB
�

in two equal

parts and δθ = H/ε+O ((H/ε)2) is the measure of the angle ÂOB. See Figure 3.4 for an

illustration of the situation.

The parameter t ∈ [−1/2; 1/2] defines the position of D(t) given by
−−→
OD(t) =

−→
OA +

(t+ 1/2)
−→
AB. We write D(t = −1/2) = A and D(t = 1/2) = B.

Taking c0 = 1 in (3.30), we have ϕ(A) =
√
ε sin(θ0 − δθ/2) and ϕ(B) =

√
ε sin(θ0 +

δθ/2). Thus (rHϕ)(D(t)) = (1/2 − t)ϕ(A) + (1/2 + t)ϕ(B) and with the development

sin(θ0 + δθ) = sin θ0 + cos θ0δθ +O(δθ2), δθ � 1 since H/ε→ 0, we get

(rHϕ)(D(t)) =
√
ε
(
sin θ0 + t cos θ0δθ +O(δθ2)

)
. (3.42)
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3.2 Problem with change in boundary conditions

Furthermore, as the arc AB
�

is described by the points (r = ε, θ = θ0 + tδθ) with

t ∈ [−1/2; 1/2], we can explicitly write ϕ(D(t)) =
√
ε− d(t) sin(θ0 + tδθ) where

d(t) = ε−
√
ε2 − |AB|2(1/4 − t2) ≤ d(t = 0) ≤ CH2/ε, (3.43)

with |AB| ≤ H denoting the length of the segment [A;B] and C a generic constant. Note

that ε− d(t) = |OD|. We develop ϕ(D(t)) as follows:

ϕ(D(t)) =
√
ε− d(t)

(
sin(θ0) + t cos θ0δθ +O(δθ2)

)
. (3.44)

Finally, combining (3.42) and (3.44) with the inequality (3.43), we can write

|χh|H1(Λε) ≤ C

⎡⎣(√
ε−
√
ε− d(0)

h

)2

εh

⎤⎦1/2

(3.45)

≤ C

(√
ε
d(0)

ε

)
ε1/2h−1/2 (3.46)

≤ CH2ε−1h−1/2, (3.47)

concluding the proof.

Proposition 3.8. Suppose that u is the solution of (3.31). Let p ∈ (1; 4/3) and consider

the setting introduced above. Then there exist C and h0 such that the approximation uHh

to u satisfies the a priori error estimate

||u− uHh||H1(Ω) ≤ C

(
H√
ε

+ h2−2/p +
H2

εh1/2

)
, ∀h ≤ h0, H/ε→ 0, (3.48)

where C and h0 are constants independent of H, h and ε but depending on p and u.

Proof. Since u is the solution of (3.31) we have that u = w + ϕ, where w ∈ H2(Ω) and

ϕ is given by (3.30), ϕ = c0
√
r sin(θ/2). Hence

|u− uHh|2H1(Ω) ≤ |u− vHh|2H1(Ω) (3.49)

≤ C
(
|w − v1

Hh|2H1(Ω) + |ϕ− v2
Hh|2H1(Ω)

)
, ∀v1

Hh, v
2
Hh ∈ VHh,(3.50)

where vHh = v1
Hh + v2

Hh and C denotes a generic constant independent of H and h.

We choose v1
Hh = rHw. Standard interpolation results yield

|w − v1
Hh|H1(Ω) = |w − rHw|H1(Ω) ≤ CH|w|H2(Ω). (3.51)

In the second term of (3.50) we write v2
Hh = vH + vh with vH ∈ VH and vh ∈ Vh. We

have

|ϕ− v2
Hh|2H1(Ω) = |ϕ− vH − vh|2H1(Ω\Λε)

+ |ϕ− vH − vh|2H1(Λε)
. (3.52)
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Analysis of the algorithm on two Poisson problems

Since ϕ ∈ C0(Ω), we can choose vH = rHϕ and vh = rh(ϕ − rHϕ) in Λε, vh = 0 in

Ω \ Λε and on all nodes in Ñh. We have

|ϕ− vH − vh|H1(Ω\Λε)
= |ϕ− rHϕ|H1(Ω\Λε)

, (3.53)

and hence, since ϕ ∈ H2(Ω\Λε), by standard interpolation results, and furthermore with

Lemma 3.6, equation (3.38), we get

|ϕ− vH − vh|H1(Ω\Λε)
≤ CH|ϕ|H2(Ω\Λε)

≤ CH/
√
ε. (3.54)

Let us now turn to the second term in the right-hand side of (3.52). We have

|ϕ− vH − vh|2H1(Λε)
= |ϕ− rHϕ− rh(ϕ− rHϕ)|2H1(Λε)

(3.55)

= |ϕ− rHϕ− rh(ϕ− rHϕ) − χh|2H1(Λε) + |χh|2H1(Λε) (3.56)

where χh = r̃h(ϕ− rHϕ)|Λε
. Hence rh(ϕ − rHϕ) + χh is equal to rh(ϕ− rHϕ)|Λε

, and

with Propositions 3.4 and 3.3, there exists h0 such that

|ϕ− rHϕ− rh(ϕ− rHϕ) − χh|2H1(Λε) =
∑

K∈Th

|ϕ− rHϕ− rh(ϕ− rHϕ)|2H1(K) (3.57)

≤ Ch2(2−2/p)
∑

K∈Th

|ϕ|2W 2,p(K) (3.58)

≤ Ch2(2−2/p)
∑

K∈Th

|ϕ|pW 2,p(K), ∀h ≤ h0.(3.59)

Finally,

|ϕ− rHϕ− rh(ϕ− rHϕ) − χh|H1(Λε) ≤ Ch2−2/p|ϕ|p/2

W 2,p(Λε)
, ∀h ≤ h0. (3.60)

Furthermore, with Lemma 3.7, we conclude that

|ϕ− vH − vh|H1(Λε) ≤ C

(
h2−2/p|ϕ|p/2

W 2,p(Λε)
+

H2

εh1/2

)
, ∀h ≤ h0. (3.61)

Finally, combining (3.54) and (3.61) in (3.52), introduced with (3.51) in (3.50), we

obtain:

|u− uHh|2H1(Ω) ≤ C

(
H2|w|2H2(Ω) +H2/ε+ h2(2−2/p)|ϕ|pW 2,p(Λε)

+
H4

ε2h

)
, ∀h ≤ h0,

(3.62)

i.e., with the Poincaré inequality,

||u− uHh||H1(Ω) ≤ C

(
H/

√
ε+ h2−2/p +

H2

εh1/2

)
, ∀h ≤ h0. (3.63)

Note that C and h0 depend on u and p.
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3.2 Problem with change in boundary conditions

It is of interest to write out in Proposition 3.8 the case where p→ 4/3 and ε = αHβ,

where α and β denote constants, β < 1. Then the relation (3.48) yields the following (for

h small enough):

||u− uHh||H1(Ω) ≤ C
(
H1−β/2 + h1/2 +H2−β/h1/2

)
. (3.64)

Hence when ε is proportional to Hβ, we choose h proportional to H2−β to optimize the

estimate and obtain a convergence of order 1 − β/2 in H .

In the case where β = 0, i.e. the patch is fixed (ε = α), we note that convergence

of order one in H can be obtained (in the limit p → 4/3) when choosing h proportional

to H2. It is adequate to note here that Grisvard proves, under certain conditions [41,

Theorem 8.4.1.6] on the local refinement of a family of triangulations, that optimal con-

vergence order, i.e. order one in H1(Ω)-norm, can be reached despite the singularity [41,

Corollary 8.4.1.7]. In the present situation of a solution in W 2,p(Ω) with p ∈ [1; 4
3
), the

conditions of Grisvard’s Theorem 8.4.1.6 [41] aim that, as H → 0, there exists a constant

σ such that

(i) maxK∈TH
HK/ρK ≤ σ where HK is the diameter and ρK the interior diameter of K,

i.e., the family of triangulations is regular;

(ii) HK ≤ σH2, for any triangle K with one corner at the origin;

(iii) HK ≤ σH infK r1/2, for any triangle K without corner at the origin.

Condition (ii) of the above result on the refined families requires that the diameter of

triangles around the origin is of order H2. The above discussion of Proposition 3.8 also

implies this crucial condition which can also be found in the work [55] by Raugel.

As we see in the sequel, it is of practical interest to choose patches of variable size

when refining, in particular with respect to memory usage and computation time. In

Table 3.1 we give an overview of different situations to be studied and the extremal con-

vergence order that we can expect to obtain.

Furthermore, using the convincing numerical results that we present in the next para-

graph, we conjecture that Proposition 3.8 is true in a more general framework of unstruc-

tured triangulations and other forms of patches.

Numerical results.

In order to assess the given error estimate, we consider the problem of approximating

u = w + ϕ with w = 0 and ϕ given by (3.30). We consider the geometry illustrated
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IsoValue
0
0.05
0.1
0.15
0.2
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0.3
0.35
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0.5
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0.6
0.65
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0.9
0.95
1

Figure 3.5: Isolines of the solution u = ϕ of problem (3.65).

Figure 3.6: Grid constellation showing a patch with ε = 0.25 and N = M = 8.

in Figure 3.2. Numerical tests when solving the problem of finding u ∈ H1(Ω) such that⎧⎪⎪⎨⎪⎪⎩
−Δu = 0 in Ω,
u = 0 on Γ1,
∂u
∂n

= 0 on Γ2,
u = ϕ|Γ3

on Γ3,

(3.65)

yielding obviously u = ϕ, are reported in the following. An illustration of the isolines of

the solution u = ϕ is given in Figure 3.5.

Over Ω = [−L;L] × [0; l] we consider an unstructured regular triangulation TH using

a discretization of (−L;L) with N intervals and (0; l) with N/2 intervals. We choose

L = l = 1. We choose Λε = (−ε; ε) × (0; ε) and consider Th regular and unstructured

based on a discretization of (−ε; ε) with M intervals. In Figure 3.6 we illustrate the grid

constellation with ε = 0.25 and N = M = 8.

Since the discussion at the end of the last paragraph, we choose ε = αHβ, β < 1,

and accordingly h = H2−β. With the above notation this is obtained when choosing

M = α222β−1N2−2β . (If this formula yields a non integer number, we take its integer

part.) Conjecturing the validity of Proposition 3.8 in the present setting, we expect that

the extremal (p → 4/3) a priori order of convergence in H for the H1(Ω)-norm error is

given by 1−β/2. An overview of different cases applied on the solution of problem (3.65)

is reported in Table 3.1. In the last column of the latter we report the numerically ob-

tained order in H . This value corresponds to the slope at the last level of refinement of
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3.3 Problem in a domain with entrant corner

ε h M CO1 CO2

0.25 H2 N2/32 1 1.06

H1/4 H7/4 N3/2/
√

2 7/8 = 0.875 0.85√
H H3/2 N 3/4 = 0.750 0.72

H3/4 H5/4 N1/2
√

2 5/8 = 0.625 0.61

no patch 0.5 0.50

Table 3.1: Synoptic table of chosen patches and H1(Ω)-norm convergence orders (CO1
= extremal a priori order in H , CO2 = order obtained by numerical experience).

the decreasing relative H1(Ω)-norm error in the mesh size H . This is readily seen from

Figure 3.7(a) where we illustrate the concluding convergence behavior in the mesh-size

graphically.

Note that the option with ε = 0.25 makes the number of nodes of the problem of the

correction level grow like M2 proportional to N4 as H decreases. In Figure 3.7(b) we

assess the error reduction with respect to the number of discretization points used. With

comparison to solving the problem without patch, the method using a fixed patch with

number of discretization points increasing as N4 for decreasing H is memory consuming

and not satisfactory. A fixed patch is uninteresting in terms of memory usage. However

the correction method using a variable patch is economic with respect to memory usage.

Well applied patches decrease the error efficiently. In particular when high precision is

needed the variable patch is most interesting.

The results of this model problem with a singularity due to the change in the boundary

conditions are transferable to singularities whose origin lies in a computational domain

with entrant corner. This study is presented in the next section.

3.3 Problem in a domain with entrant corner

In the previous section we have discussed the Poisson problem in a rectangular domain

with changing Dirichlet-Neumann boundary conditions. Through numerical results we

have successfully shown that applying a patch in the region where the solution is less

regular, we can improve the convergence order and the accuracy of the solution with only

slight increase of memory usage. In the sequel, the objective is to examine a Poisson-

Dirichlet problem in domains with entrant corners. This will be done similarly to the

foregoing analysis. At first we proceed with a regularity analysis for a domain with

an entrant corner on its boundary. We particularize the result to a situation with an

L-shaped domain and give numerical results.
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(a) Convergence order in the mesh size.
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(b) Error reduction vs. number of nodes.

Figure 3.7: Convergence of uH resp. uHh to u with respect to the mesh size H and the
number of nodes.
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3.3 Problem in a domain with entrant corner

Regularity result.

A brief analysis of this situation can be found in Grisvard [41, Sections 4.4 and 8.4]

and [42, Pages 49–51 and Section 2.4]. It is useful to explicit the details of the analysis

here.

Consider the domain Ω∞ ⊂ R2 as depicted in Figure 3.8. We consider for Ω∞ the

part of R2 where the internal angle β at the origin on the boundary Γ∞ is such that

π < β < 2π. We consider the problem of finding the functions v ∈ H1
loc(Ω∞) verifying

Δv = 0 in L2
loc(Ω∞) with homogeneous Dirichlet boundary conditions on Γ∞. We con-

sider polar coordinates centered at the corner O of Γ∞. The situation and the notation

are illustrated in Figure 3.8.

O

r

Γ∞
v = 0

v = 0

er

eθ θ

Ω∞ β

Figure 3.8: Illustration of the situation and notation.

We follow the same analysis of the solution as in the previous section. Taking into

account the shape of the domain and the boundary conditions, we consider the function

v = v(r, θ) of the form

v(r, θ) =
∑
m≥1

ρm(r) sin

(
m
π

β
θ

)
. (3.66)

Its gradient and Laplacian are given by the following expressions:

∇v =
∑
m≥1

ρ′m(r) sin

(
m
π

β
θ

)
er +

∑
m≥1

1

r
m
π

β
ρm(r) cos

(
m
π

β
θ

)
eθ, (3.67)

and

Δv =
1

r

[∑
m≥1

(
∂r(rρ

′
m(r)) −

(
m
π

β

)2
1

r
ρm(r)

)
sin

(
m
π

β
θ

)]
. (3.68)

The condition Δv = 0 implies

rρ′′m(r) + ρ′m(r) −
(
m
π

β

)2
1

r
ρm(r) = 0, m = 1, 2, 3, . . . . (3.69)
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If ρm(r) = rγ, solving (3.69) for γ yields

γ = ±mπ

β
, m = 1, 2, 3, . . . . (3.70)

The harmonic functions in Ω∞ with homogeneous Dirichlet boundary condition on Γ∞
are expressed in polar coordinates by

v(r, θ) =
∑
m≥1

(
cmr

mπ/β + c−mr
−mπ/β

)
sin

(
m
π

β
θ

)
, (3.71)

where cm, c−m are real coefficients.

We consider now the gradient of v. We calculate

|∇v|2 =

[∑
m≥1

(
m
π

β
cmr

mπ/β−1 −m
π

β
c−mr

−mπ/β−1

)
sin

(
m
π

β
θ

)]2

+

[∑
m≥1

1

r
m
π

β

(
cmr

mπ/β + c−mr
−mπ/β

)
cos

(
m
π

β
θ

)]2

. (3.72)

For |∇v|2 to be locally integrable in Ω∞ a priori, we need to impose that, if cm 
= 0,(
mπ

β
− 1
)

2 + 1 > −1, and if c−m 
= 0,
(
−mπ

β
− 1
)

2 + 1 > −1. The first condition is

always verified for m ≥ 1. The second implies m < 0, and hence c−1 = c−2 = c−3 = . . . =

0. Thus, the functions of the form (3.71) that are H1
loc(Ω∞) are expressed by

v(r, θ) =
∑
m≥1

cmr
mπ/β sin

(
m
π

β
θ

)
. (3.73)

Considering the second derivatives of v, we note that, if c1 
= 0, then v does not belong

to H2
loc(Ω∞). Thus we are interested in calculating p such that v of the form (3.73) with

c1 
= 0 is in W 2,p
loc (Ω∞). For finding such p, we evaluate the second derivative of rπ/β

(c1 
= 0) and require it to be p-integrable. We obtain the relation
(

π
β
− 2
)
p + 1 > −1,

and hence p < 2
2−π/β

.

In conclusion, if v ∈ H1
loc(Ω∞) is an harmonic function in Ω∞ verifying the homoge-

neous Dirichlet boundary condition on Γ∞, then v ∈W 2,p
loc (Ω∞) with p ∈ [1; 2

2−π/β
). Note

that in the extremal case where β → 2π we are left with W 2,p
loc -regularity, p ∈ [1; 4

3
). Thus

the regularity of this extreme situation in the current problem of a domain with entrant

corner corresponds to the regularity of the problem with changing Dirichlet-Neumann

boundary conditions on a straight boundary as studied in Section 3.2.
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(0, 0)

(−L,−L) (L,−L)

(−L,L)

Ω

Γ

Figure 3.9: Illustration of the domain Ω.

Model problem and a priori error estimate.

Let the domain Ω ⊂ (−L;L)2 ⊂ R2 be the L-shaped domain as depicted in Figure 3.9. We

consider the following Poisson problem with homogeneous Dirichlet boundary conditions:

For given f ∈ L2(Ω), find u ∈ H1(Ω) such that{
−Δu = f in Ω,
u = 0 on ∂Ω.

(3.74)

Since Grisvard and the above analysis, particularized with β = 3π/2, we know that

the unique solution u of (3.74) can be written as u = w + ϕ where w ∈ H2(Ω) and

ϕ(r, θ) = c1r
2/3 sin(2θ/3), (3.75)

where ϕ ∈W 2,p(Ω) with p ∈ [1; 3
2
).

Recall that TH denotes a regular triangulation over Ω with triangles K. We call

H = maxK∈TH
diam(K).

Since u ∈W 2,p(Ω), p ∈ [1; 3
2
), and since Proposition 3.5 we have the following a priori

error estimate: For p ∈ (1; 3/2), there exists H0 = H0(p, u) such that the approximation

uH to u satisfies

||u− uH ||H1(Ω) ≤ CH2−2/p|u|p/2

W 2,p(Ω), ∀H ≤ H0, (3.76)

where C is a constant independent of H and u but depending on p.

Hence, the a priori convergence order in H in the H1-norm is smaller than 2− 2
3/2

=

2/3.
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Improving the a priori convergence order through using patches.

In this section we keep considering the model problem (3.74) introduced above. The aim

is to use the correction algorithm to obtain a better a priori convergence order.

Complete analysis alike in Section 3.2 can be performed and lead to a particular result

similar to Proposition 3.8 adapted to the current problem. We will not reiterate such a

reasoning here but develop a conjecture based on the results of Section 3.2.

Consider two families of regular triangulations TH over Ω (as above) and Th over

Λε, Λε = (−ε; ε)2 ∩ Ω, with H/ε → 0. Recall that H = maxK∈TH
diam(K) and call

h = maxK∈Th
diam(K) the diameter of the triangles K. We use linear elements and

approximate the solution u of (3.74) with uHh = uH + uh, uH and uh defined on TH and

Th by Algorithm 1.3.

We conjecture the following: If u is the solution of (3.74) and p ∈ (1; 3/2), then there

exists C and h0 such that the approximation uHh to u satisfies the a priori error estimate

||u− uHh||H1(Ω) ≤ C

(
H

ε1/3
+ h2−2/p +

H2

ε5/6h1/2

)
, ∀h ≤ h0, H/ε→ 0, (3.77)

where C and h0 are constants independent of H , h and ε but depending on p and u.

It is of interest to write out (3.77) when p→ 3/2 and ε = αHβ, where α and β denote

constants, β < 1. When h is small enough, we have:

||u− uHh||H1(Ω) ≤ C
(
H1−β/3 + h2/3 +H2−5β/6/h1/2

)
. (3.78)

Hence when ε is proportional to Hβ, we choose h proportional to H3/2−β/2 to optimize

the estimate and obtain a convergence of order 1 − β/3 in H .

Numerical results.

In order to assess the given error estimates, we consider the problem of approximating

u = w + ϕ with w = 0 and ϕ given by 3.75. Numerical tests when solving the problem

of finding u ∈ H1(Ω) such that {
−Δu = 0 in Ω,
u = ϕ|∂Ω on ∂Ω,

(3.79)

yielding obviously u = ϕ, are reported in the following. An illustration of the isolines of

the solution u = ϕ is given in Figure 3.10.
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3.3 Problem in a domain with entrant corner

IsoValue
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1
1.05
1.1
1.15
1.2

Figure 3.10: Isolines of the solution u = ϕ of problem (3.79).

Figure 3.11: Illustration of the used grid constellation with ε = 0.25 and N = 8, M = 4.

We recall the triangulations TH over Ω and Th over Λε. We consider a discretization

of (−L;L) with N intervals and set L = 1. For (−ε; ε) we use M intervals. In Figure 3.11

we illustrate the situation by the triangulations used for ε = 0.25 and N = 8, M = 4.

Since the above discussion, we choose ε = αHβ, β < 1, and accordingly h = H3/2−β/2.

With the above notation this is obtained when choosing M = α3/223β/2−1/2N3/2−3β/2.

Since the conjecture we expect that the extremal (p→ 3/2) a priori order of convergence

in H for the H1(Ω)-norm error is given by 1−β/3. An overview of different cases applied

on the solution of problem (3.79) is reported in Table 3.2. In the last column of the

latter we report the numerically obtained order in H . In Figure 3.7(a) we illustrate the

concluding convergence behavior in the mesh-size graphically.

In Figure 3.7(b) we assess the error reduction with respect to the total number of

nodes used.
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Analysis of the algorithm on two Poisson problems

ε h M CO1 CO2

0.25 H3/2 N3/2/27/2 1 0.93
H1/3 H4/3 N 8/9 ≈ 0.89 0.79

H2/3 H7/6 N1/2
√

2 7/9 ≈ 0.78 0.74

no patch 2/3 ≈ 0.67 0.63

Table 3.2: Synoptic table of chosen patches and H1(Ω)-norm convergence orders (CO1
= extremal a priori order in H , CO2 = order obtained by numerical experience).

slope 1
slope 8/9
slope 7/9
slope 2/3
no patch
ε = H2/3
ε = H1/3
ε = 0.25
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(a) Convergence order in the mesh size.
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(b) Error reduction vs. number of nodes.

Figure 3.12: Convergence of uH resp. uHh to u with respect to the mesh size H and the
number of nodes.
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Chapter 4

Application to glacier modeling

The objective of this chapter is to apply the presented method to the modeling of glaciers.

Considering a 2D vertical cut in the direction of the motion of the glacier and horizontal

invariance, as studied by Reist [56], we present a model to simulate the velocity field

of the ice mass and the effective stress. The complexity of the governing equations is

reduced through approximations, and the changing boundary conditions are analyzed.

With regard to the results of Section 3.2, we apply patches in certain regions on the

glacier domain and show an improvement in the precision of the stress field.

The outline of this chapter is the following:

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Governing field equations and numerical model . . . . . . . 82

4.3 Patches and precision of the glacier stress field . . . . . . . 94

In Section 4.1 we give a short introduction and survey of works and models used in the

study of glaciers. Basal boundary conditions are a crucial issue for accurate simulations.

Section 3.2 where we studied the application of patches and the convergence order on

a model problem with changing Dirichlet-Neumann boundary conditions will be used.

In Section 4.2, we establish the equations that define the velocity and stress field of

the glacier ice mass and present a sensible approximation (Blatter [18]). This yields a

mathematical model of the glacier. Numerical issues are addressed and results on the

Gries glacier (Swiss Alps) are presented. In Section 4.3 we apply patches on the problem

and prove the efficiency of our method on the stress field of the Gries glacier.
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Application to glacier modeling

4.1 Introduction

Over the last 150 years, the Swiss Alps have lost about 40% in surface and 50% in volume

of their glacier ice. Today, most of alpine glaciers are retreating, leaving visible marks

on the landscape. The future evolution of glaciers is not only of concern for the tourist

industry, but also for agriculture and hydro-power production for which glacier ice serves

as a water reservoir. Moreover, the retreat and advance of glaciers can cause natural

hazards endangering humans.

The main interest for the study of glaciers, however, lies in their important active and

passive role in the climate system. On one hand, the variation of the area of the global

snow and ice cover changes the radiation budget and hydrological cycle of the earth.

On the other hand, polar ice sheets and cold alpine glaciers represent unique archives of

climatic change.

Numerical glacier modeling has become an important tool for glaciologists, which can

aid in the reconstruction of the shape of past ice sheets and the mass balance of glaciers,

in the simulation of the interaction between glacier and climate, in the interpretation

of ice cores or to advance the understanding of the mechanical behavior of glaciers (for

instance in the study of special phenomena such as calving or surging).

Glaciers are extended ice masses resting on solid land, formed through accumulation

of snow over the course of millenia. Glaciers are not static object. There are two main

processes determining the size and shape of the glacier over the course of time. First,

climatic influences causing loss or gain of ice mass; second, the gravitational force that

causes the glacier to deform under the pressure of its own weight causing it to flow

down-valley.

Accumulation is called the total of all processes in which a glacier gains in mass. This

usually occurs in the form of snowfall, but also by wind drifted snow and avalanches.

Snow accumulated on top of the glacier is compacted to firn as new layers of snow build

up on its top. Then, under increasing pressure from the above layers and by chemical

process, the firn is fused into solid glacier ice. The total of all processes in which the

glacier loses mass is called ablation. Ablation usually occurs in lower (warmer) elevations

in the form of melting and evaporation, but can also occur in the form of calving or

removal of snow by wind drift (high elevations).

Would accumulation and ablation be the only processes in glacier dynamics, the ice

mass would steadily grow in the accumulation zone and shrink, and finally disappear

completely, in the ablation zone. The gravitation counterbalances this effect. Ice, accu-

mulated to sufficient depth, exert a downward force on the lower glacier layers. Under

this pressure the glacier deforms viscously, allowing the glacier to flow over the glacier

bed.

The glacier advances when more ice is being transported downstream than is being

ablated at its terminus and retreats in the reverse case.
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4.1 Introduction

Ice is usually treated as incompressible viscous (in the case of cold ice) heat conducting

fluid, with a Glen-type rheology [34]. The basic continuum mechanics equation for mass

conservation, momentum conservation and constitutive relation for such an ice flow have

been studied by Fowler and Larson [33], Hutter [44] and Morland [52].

The first numerical models have been developed for the modeling of ice sheets (glaciers

covering whole land masses, e.g. Greenland or Antarctica), using simplifications that take

advantage of the “shallowness” (small aspect ratio) of this ice masses. The complexity

of many models require that the basic flow models be simplified for efficient numerical

computations. Most ice sheet models are therefore based on the so called “shallow ice

approximation” rigorously established in [33, 44, 52]. It is asymptotically valid for large

parts of ice sheets, but not so in places such as ice divide, near the ice margin or close to

the ice surface (see Baral et al. [16]), where the results differ largely from results obtained

from higher order (in the aspect ratio of the ice mass) models. This is even more true for

glaciers (e.g. small alpine glaciers) that have a relatively large aspect ratio. Therefore

a number of higher order models have been proposed for inclusion of deviatoric stress

gradients. They capture better some important characteristics of ice flow. Many models

exist and they differ mainly on the deviatoric stress gradients that are included. We are

going to use in this work a model by Blatter [18], which, as shown by Baral et al. [16]

corresponds to an incomplete second order model.

Changes in the basal surface, the interface between the ice mass and the rock bed,

imply different conditions for the flow. Furthermore, it is well established (refer to the

discussion by Blatter [19, §3.8] for references) that the glacier base can move. Whether

it is a true sliding of the glacier sole over the glacier bed or a movement of the sole on a

deforming sub-glacial layer of some other material, or a combination of both, depends on

local conditions at the glacier bed. Variations in basal motion are reflected in variation of

the ice velocity at the glacier surface. We suppose that boundary conditions can change

from free sliding to prescribed velocity, and reverse, along the basis. This directly relates

to the solution for the velocity and thus for the stress field which is more or less regular.

A good precision is necessary as the change from Neumann to Dirichlet conditions reflects

non-locally in variations all over Ω. This is why, in Section 3.2, we have studied on a

Poisson model problem our correction method and the application of patches to obtain

a better precision in certain regions.

This chapter is organized as follows: The objective of Section 4.2 is to introduce the

equations governing glaciers and to develop a mathematical model for calculating the

velocity and stress fields. We start with a brief introduction to the model quoting the

usual conservation equations for mass, momentum and a specific rheology law for ice.

We describe the numerical method used and give a short review of theoretical analysis

of the model. The problem consists in solving numerically a non-linear elliptic equation
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Application to glacier modeling

with mixed Dirichlet-Neumann boundary conditions (4.33). We discretize the equation,

applying a Galerkin method, using continuous, piecewise linear finite elements. We give

a simple algorithm to linearize the discrete equations, using a frozen coefficient method.

We recall results that establish the existence and uniqueness of the weak solution of the

system and that prove the solution of the discrete linearized problem to be convergent to

the exact solution. We give numerical convergence order estimates (Table 4.1). Finally,

in Section 4.3, we apply our correction method to improve the precision of the effective

stress field of the Gries glacier.

4.2 Governing field equations and numerical model

Ice is treated as an incompressible fluid. Its mechanical properties depend on physical

quantities such as temperature and stress. At a given moment, the geometry of the ice

mass is defined by the upper free surface S given by z = S(x, y) which is supposed reg-

ular (i.e. no overhanging), and the basal surface B given by z = B(x, y) in cartesian

coordinates (x, y, z) with the z-axis pointing opposite to the direction of gravity.

In the sequel we suppose that the glacier is very large and consider a 2D vertical

cut in the direction of the motion of the glacier (x-direction). We assume that none of

the physical variables depend on the y-direction. In this case we say that we treat a

“two”-dimensional glacier. In the sequel we restrict ourselves to the analysis of a two-

dimensional glacier.

Let [xL; xR] be the projection of the mountain base onto the x-axis. We call ΓS the

upper surface of the glacier given by the points (x, z) such that z = S(x), x ∈ [xL; xR],

and ΓB the mountain base, the points (x, z) such that z = B(x), x ∈ [xL; xR]. We sup-

pose that B(x) < S(x), ∀x ∈ (xL; xR). The glacier domain occupied by ice is denoted

by Ω and is the set of points Ω = {(x, z) such that B(x) ≤ z ≤ S(x), x ∈ [xL; xR]}. An

illustration of the introduced notation is given in Figure 4.1.

All considerations in this section, if not otherwise stated, are based on the paper from

Blatter [18], the book by Hutter [44, Chapter 2] and the work [56] by Reist.

Mass conservation.

We assume that the ice is incompressible. Thus we have the usual continuity mechanics

equation for mass conservation within the ice mass. If we write u = (u, w) for the velocity

of an ice particle where u and w are the velocity components in the x and z directions

respectively, the mass continuity equation ∇ · u = 0 becomes

∂u

∂x
+
∂w

∂z
= 0. (4.1)
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4.2 Governing field equations and numerical model

Ω

x

z

ΓB,D ΓB,N ΓB,D

ΓS

O
xL xR

Figure 4.1: Illustration of the notation for the “two”-dimensional glacier.

Momentum conservation.

If τ is the Cauchy stress tensor, the equation for momentum conservation is ∇·τ+ρg = 0,

where ρ is the density of ice and g = (0,−g) is the acceleration of gravity. Since angular

momentum conservation, we know that τ is symmetric. Thus we have the equations for

linear momentum

∂τxx

∂x
+
∂τxz

∂z
= 0, (4.2)

∂τxz

∂x
+
∂τzz

∂z
= ρg, (4.3)

where τij are the components of the stress tensor τ .

Stress–strain relation.

The constitutive response of glacier ice to external forces depends on the physical nature

of the applied force and characteristic times of the process. Under a slowly-varying state

of stress applied over a very long period of time, as it is typical for glaciers, ice can be

considered an incompressible viscous fluid. Glacier ice is treated as a non-Newtonian

fluid. The stress–strain-rate is expressed with the stress tensor τ split into an isotropic

and a deviatoric part, τ = −pI + σ, where p = −1
2
(τxx + τzz) is the pressure and σ the

deviatoric stress tensor σ = μ(∇uT +∇u), where μ is the viscosity. The deviatoric stress
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Application to glacier modeling

tensor is related to the velocity field through the following forms:

∂u

∂x
= AF (σ)σxx, (4.4)

1

2

(
∂u

∂z
+
∂w

∂x

)
= AF (σ)τxz. (4.5)

The term AF (σ), with A a rate factor and F = F (σ) a creep response function, represents

a flow law.

Flow law.

Referring to Blatter [19, eqn. 156], previous work [18] and references contained therein,

we use a flow law of the form

AF (σ) = A
(
σn−1

0 + σn−1
(II)

)
, (4.6)

where σ(II) is the effective stress, i.e. the second invariant of the deviatoric tensor,

σ2
(II) =

1

2
tr(σTσ) = σ2

xx + τ 2
xz, (4.7)

where we used σxx = −σzz, since (4.1), (4.4) and ∂w
∂z

= AF (σ)σzz. Here σ0 is a constant

and n an exponent: Measurements for the exponent n vary between 2 and 4. For very

low stresses, lower than 1 or 2 bars, the observed stress–strain-rate relation is linear,

which corresponds to an exponent n = 1. The rate factor A is assumed to depend on

temperature only for cold ice, i.e. below freezing point, and on the fraction of water

(moisture content) in the water–ice mix for temperate ice at local pressure melting point.

The variation of A in a typical temperate glacier, however, is small and will therefore be

considered a constant.

Since σ = μ(∇uT + ∇u), with (4.4) and (4.5), we have

AF (σ) =
1

2μ
. (4.8)

It is the flow law (4.6) that determines F , and hence the viscosity μ.

Viscosity and stress field.

Setting ε̇ = 1
2
(∇uT + ∇u), the constitutive relation σ = μ(∇uT + ∇u) writes

σ = 2με̇. (4.9)

In order to eliminate the stress field in the flow law, we use (4.9) in (4.7) and obtain

σ(II) = 2μ
(

1
2
tr(ε̇T ε̇)

)1/2
. Next we set s =

(
1
2
tr(ε̇T ε̇)

)1/2
and consequently σ(II) = 2μs.

Hence we obtain from (4.6) and (4.8) the following implicit equation for μ = μ(s),

A
(
(2μs)n−1 + σn−1

0

)
=

1

2μ
. (4.10)

Since Glowinski and Rappaz [38, Lemma 1], for all s ∈ R+ and n ≥ 1, there exists a

unique μ ∈ R+ satisfying (4.10).
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4.2 Governing field equations and numerical model

Boundary conditions.

The boundary conditions for stress at the upper free surface ΓS of the glacier are given

by

τ · n = P, (4.11)

where P = −pn with p denoting the atmospheric pressure and n = (nx, nz) = (−∂S/∂x, 1)

a normal vector pointing outward from the ice domain Ω. This yields

nxτxx + nzτxz = −nxp, (4.12)

nxτxz + nzτzz = −nzp. (4.13)

Using σxx = τxx + p, (4.12) and (4.13) write out

−∂S
∂x

σxx + τxz = 0, (4.14)

−∂S
∂x

τxz + σzz = 0. (4.15)

It will appear in the sequel that (4.14) corresponds to a Neumann boundary condition.

At the glacier bed ΓB we impose the homogeneous boundary condition

τ · n = 0, (4.16)

where here n = (∂B/∂x,−1) is a normal outward vector. Explicitly, since p = 0 this

yields

∂B

∂x
σxx − τxz = 0, (4.17)

∂B

∂x
τxz − σzz = 0. (4.18)

Alternatively we can use Dirichlet boundary conditions, prescribing a velocity u on

the mountain base. Imposing u = 0 means that the glacier is fixed on the mountain.

In the sequel, we adopt the following view: we denote by ΓB,N the part of the glacier

bed with Neumann boundary conditions, i.e. of the first type presented (the fact that it is

“Neumann”-type will be seen below), and by ΓB,D = ΓB\ΓB,N the part of the mountain

base where we assume Dirichlet boundary conditions (see Figure 4.1).

First order approximation.

We aim to simplify the system of equations introduced above. To arrive at a consistent

simplified set of equations, we need to estimate the order of magnitude of the various

terms in the equations. Then we eliminate those that are small compared to others.

Let {L} and {H} denote the magnitude of the characteristic horizontal and vertical

extents of the glacier. We use the fact that the aspect ratio ε = {H}/{L} of glaciers is
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small. For glaciers ε is of order 10−2 and for ice sheets 10−3. We introduce a scaling for

the spatial variables as in Blatter [18] and rewrite our equations (see, e.g., [56]).

However there exist several approximations. The shallow-ice approximation consists

in eliminating all terms from the equations that are of order O(ε) or smaller in the scaled

equations. This means that the ice deforms only by shearing in horizontal planes and

that longitudinal stress deviators are neglected in the force balance. In order to retain

some of the deviatoric stress gradient terms, eliminated by the shallow-ice approximation,

Blatter [18] proposes a slightly different approach for scaling the equations of the glacier

problem. For the first order approximation we eliminate terms of order O(ε2) and smaller.

It is this approximation that we retain in our work. We will not present here the detailed

list of the order in ε of all variables occurring. The latter are developed in the mentioned

reference. For the understanding of the reader we point out the simplifications that are

implied at each step.

Applying the first order approximation yields the following set of equations. The

equation of mass conservation is unchanged from (4.1),

∂u

∂x
+
∂w

∂z
= 0, (4.19)

and momentum conservation yields

2
∂σxx

∂x
+
∂τxz

∂z
= ρg

∂S

∂x
, (4.20)

which we obtain from (4.2) and (4.3) in the following way: We solve (4.3) for τzz by

integration on z using the bounds S(x) and z. Then we introduce this expression for τzz

in (4.2), neglecting ∂2τxz/∂x
2 which is O(ε2).

The constitutive relations (4.4) and (4.5) become

∂u

∂x
= AF (σ2

(II))σxx, (4.21)

∂u

∂z
= 2AF (σ2

(II))τxz, (4.22)

with σ2
(II) = σ2

xx + τ 2
xz, where we have neglected the term ∂w/∂x of order ε2.

The boundary condition for stress (4.14) on the upper surface ΓS is

−2
∂S

∂x

∂u

∂x
+
∂u

∂z
= 0, (4.23)

where we have neglected ∂w/∂x and used the relations (4.21) and (4.22). The boundary

condition (4.17) on ΓB,N is

2
∂B

∂x

∂u

∂x
− ∂u

∂z
= 0. (4.24)
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4.2 Governing field equations and numerical model

A mathematical model of a glacier.

Following the framework of [56], using the resulting equations from the above report of

the first order approximation in two dimensions we solve the equation for momentum

conservation (4.20) in the given domain Ω,

2
∂σxx

∂x
+
∂τxz

∂z
= ρg

∂S

∂x
, (4.25)

with the constitutive relations, from (4.21) and (4.22) with (4.8),

σxx = 2μ
∂u

∂x
, (4.26)

τxz = μ
∂u

∂z
. (4.27)

We point our interest only to the horizontal component of the velocity field. In fact it is

the only component of use to solve, e.g., the glacier transport problem (see [56]). Hence

we omit here the additional equation for the vertical component of the velocity field.

Once the stress tensor known, this component can be evaluated straightforwardly.

In view to eliminate the stress field, we substitute (4.26) and (4.27) into σ2
(II) =

σ2
xx + τ 2

xz to obtain

σ(II) = 2μ

[(
∂u

∂x

)2

+
1

4

(
∂u

∂z

)2
]1/2

. (4.28)

Setting

s =

[(
∂u

∂x

)2

+
1

4

(
∂u

∂z

)2
]1/2

, (4.29)

we remark that σ(II) = 2μs, and using (4.10) yields the equation for μ,

A
(
(2μs)n−1 + σn−1

0

)
=

1

2μ
, (4.30)

which defines μ implicitly as a function of s, which in turn is a function of the velocity

gradient. To close the system we introduce (4.26) and (4.27) into (4.25) to obtain

4
∂

∂x

(
μ
∂u

∂x

)
+

∂

∂z

(
μ
∂u

∂z

)
= ρg

∂S

∂x
. (4.31)

The boundary conditions on ΓS and ΓB,N are given by (4.23) and (4.24) respectively. On

ΓB,D we impose homogeneous Dirichlet boundary conditions u = 0.

We thus obtain the first order approximation of the velocity field u for a glacier Ω by

solving the problem

87



Application to glacier modeling

⎧⎪⎪⎨⎪⎪⎩
4 ∂

∂x

(
μ∂u

∂x

)
+ ∂

∂z

(
μ∂u

∂z

)
= ρg ∂S

∂x
in Ω,

−2∂S
∂x

∂u
∂x

+ ∂u
∂z

= 0 on ΓS,
2∂B

∂x
∂u
∂x

− ∂u
∂z

= 0 on ΓB,N ,
u = 0 on ΓB,D,

(4.32)

where μ = μ(s(u)), with s given by (4.29) and μ verifying (4.30).

Finally, a rescaling of the spatial variable z̃ = 2z enables us to simplify the for-

mulation of the problem. Furthermore, recalling the expression of the normal vector

n = (−∂S/∂x, 1) on ΓS, we have −∂S
∂x

∂u
∂x

+ ∂u
∂z̃

= ∇u · n. With the normal vector

n = (∂B/∂x,−1) on ΓB, we also get ∂B
∂x

∂u
∂x

− ∂u
∂z̃

= ∇u · n. Hence the problem writes out

as follows:

Find u defined in Ω such that⎧⎪⎪⎨⎪⎪⎩
−div(μ(|∇u|)∇u) = f in Ω,
∂u
∂n

= 0 on ΓS,
∂u
∂n

= 0 on ΓB,N ,
u = 0 on ΓB,D,

(4.33)

where

f = −1

4
ρg
∂S

∂x
, (4.34)

and μ = μ(|∇u|) is given by

A
(
[μ(|∇u|)]n−1|∇u|n−1 + σn−1

0

)
=

1

2μ(|∇u|), (4.35)

with A and σ0 constants, and n ≥ 1 an exponent. Recall that with Glowinski and Rap-

paz [38, Lemma 1] μ is unique. We observe that for n = 1, μ(|∇u|) = 1/4A, and for

n = 2, μ is readily explicited, μ(|∇u|) =
(
−Aσ0 +

√
A2σ2

0 + 2A|∇u|
)
/2A|∇u|.

The horizontal velocity field u is given by the above problem (4.33). Furthermore the

effective stress field σ(II) is expressed through

σ(II) = μ(|∇u|)|∇u|. (4.36)

We compute the velocity field of the glacier by solving numerically problem (4.33).

We use a finite element method, using a computational mesh adapted to the geometry of

the problem. Colinge and Rappaz prove in [31, Theorem 1] the uniqueness of the solution

in the case of Dirichlet boundary conditions on all ∂Ω. This result can be extended to

our case of problem (4.33) with mixed Dirichlet-Neumann conditions.
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4.2 Governing field equations and numerical model

Weak formulation.

We establish a weak formulation of problem (4.33). By multiplying the first equation of

the latter system by ϕ vanishing on ΓB,D, by integrating by part on Ω and taking into

account the natural boundary conditions (second and third equation of (4.33)) on ΓS and

ΓB,N , we obtain: ∫
Ω

μ(|∇u|)∇u · ∇ϕ dΩ =

∫
Ω

fϕ dΩ. (4.37)

By setting

aμ(u, ϕ) =

∫
Ω

μ(|∇u|)∇u · ∇ϕ dΩ, (4.38)

and

〈f |ϕ〉 =

∫
Ω

fϕ dΩ, (4.39)

we see that (4.37) is equivalent to

aμ(u, ϕ) = 〈f |ϕ〉. (4.40)

Remark that aμ(u, ϕ) is linear with respect to ϕ, but nonlinear with respect to u

because μ depends on u. Let now V be the Banach space,

V = {ϕ ∈W 1,p(Ω) : ϕ = 0 on ΓB,D}, (4.41)

where p is defined by

p =
n+ 1

n
, (4.42)

with n the exponent appearing in the flow law (4.35), and W 1,p(Ω) denotes the usual

Sobolev space of functions with first derivatives in Lp(Ω). Since property [38], there exist

c1, c2 > 0 such that

c1(1 + |∇u|) 1
n
−1 ≤ μ(|∇u|) ≤ c2(1 + |∇u|) 1

n
−1, ∀|∇u| ∈ (0; +∞), (4.43)

and hence μ(|∇u|)∇u ∈ Lq(Ω) with 1
p
+ 1

q
= 1 (⇒ q = n+1), when u ∈ V . Consequently,

the form (4.38) makes sense when u, ϕ ∈ V .

It follows that the weak formulation of problem (4.33) with natural boundary con-

ditions on the upper surface ΓS and the part ΓB,N of the basal surface, and Dirichlet

conditions on the part ΓB,D of the basal surface, is:

Find u ∈ V such that

aμ(u, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ V. (4.44)
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Discretization.

We discretize problem (4.44) by using linear finite elements. First we choose the mesh

size H and consider an approximation of Ω by a polygonal domain ΩH with sides of

length H . We denote by TH a regular triangulation of ΩH with triangles K ∈ TH such

that ∀K ∈ TH , diam(K) ≤ H . We assume that for each triangle K ∈ TH , K ∩ ΓB,N,H is

either void or a side of K or a vertex of K, where ΓB,N,H denotes the polygonal line of

∂ΩH joining the fixed points A and B (see Figure 4.2). We introduce

VH = {ψ ∈ C0(ΩH) : ψ|K ∈ P1(K), ∀K ∈ TH and ψ = 0 on ΓB,D,H}, (4.45)

where ΓB,D,H denotes the part of ∂ΩH corresponding to the part of the basal surface

with Dirichlet boundary conditions, and call μH = μ(|∇uH|). We consider the following

discrete problem:

Find uH ∈ VH such that

aμH
(uH, ϕH) = 〈f |ϕH〉, ∀ϕH ∈ VH . (4.46)

Linearization.

In order to solve numerically the discrete variational problem (4.46) we use Picard’s

iterative method. We apply the following steps:

• Initialization: Set uH,0 the solution of (4.46) with n = 1, i.e. μ = μH = 1/4A.

• For k = 1, 2, 3, . . . solve the following linear problem: Find uH,k ∈ VH satisfying

aμH,k−1
(uH,k, ϕH) = 〈f |ϕH〉, ∀ϕH ∈ VH , (4.47)

where μH,k−1 = μ(|∇uH,k−1|).

A proof of convergence of this algorithm is given by Reist in [56, §2.1.1]. Hence uH,k → uH

for k → ∞ [56, Theorem 2.1.3].

Numerical illustration.

We illustrate our numerical model for a two-dimensional glacier on a vertical section

along a flow line passing through the center of Gries glacier (Wallis, Swiss Alps). As the

Gries glacier is large in the transverse direction our two-dimensional computations are

relevant. The shape of the glacier [56] and the basic meshing with N = 50 intervals in

the x-direction (and accordingly discretized in the z-direction to obtain a regular trian-

gulation) is illustrated in Figure 4.2.

We study the linear case (n = 1) and the nonlinear case with n = 2. For defining

the right-hand side f , defined in (4.34), we set ρg = 900 · 9.81 · 10−5 and in the flow law
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A

B

u = 0

u = 0

du / dn = 0

du / dn = 0

Figure 4.2: Geometry, boundary conditions and triangulation (N = 50) of the Gries
glacier.

(4.35) we take A = 0.08 and σ0 = 0.1, as suggested by [56] and converted from the S.I.

unit values from Greve [39, p. 936].

We use the relative L2-discrepancy of the stress field as stopping criteria for the iter-

ations due to linearization. When running the algorithm with a tolerance 10−3, we note

that about 10 iterations are required to obtain convergence. We have implemented the

model with the software Freefem++ [43].

The isolines of the velocity field obtained in the nonlinear case (n = 2) are illustrated

in Figure 4.3(a). Remark that the velocity field varies rapidly around the points where

the boundary conditions change. Its gradient, directly related to the effective stress field

σ(II), with (4.36), is large in the mentioned neighborhood. The latter is illustrated in

Figure 4.3(b). This will give rise to a study in Section 4.3.

Convergence order in the mesh size.

Glowinski and Rappaz [38] supplement the analysis of the model with a priori error es-

timates. The nonlinearity of the problem introduced by μ leads us to search for a weak

solution in the space V ⊂ W 1,p(Ω) where p is given by (4.42), p = (n+1)/n. For example

in the linear case, when n = 1, we have V ⊂ W 1,2(Ω) = H1(Ω). However, when n = 2

we require merely W 1,3/2(Ω)-regularity on u.

It is of interest to analyze the convergence order in the mesh size of the grid used.

91



Application to glacier modeling

IsoValue
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000

(a) Velocity field uH .

IsoValue
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(b) Stress field σ(II)(uH).

Figure 4.3: Velocity and stress field of the Gries glacier in the nonlinear case (N = 50,
n = 2). Numerical values are not scaled to physical units. The Figures merely illustrate
the relative variations in the ice mass.
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N Linear problem (n = 1) Nonlinear problem (n = 2)

50 0.261 0.235
100 0.204 0.154
200 0.172 0.0996
400 0.111 0.0535
800 0.0605 0.0223

1600 0.0463 0.0104

obtained order O(H0.50) O(H0.90)

Table 4.1: Evolution of H1- resp. W 1,3/2-norm relative error on the velocity field and
convergence orders.

We consider regular triangulations adapted to the glacier geometry with N = 50 to 3200.

For evaluating the convergence behavior, we consider the approximation uH on the grid

with N = 3200 as “almost exact” solution u to the problem (4.44).

In Table 4.1 we report the relative errors with respect to the “almost exact” solution

in the W 1,p-norm for uH computed on increasingly finer meshes in both linear (n = 1,

p = 2) and nonlinear (n = 2, p = 3/2) cases. In the linear case we obtain as expected

(since Section 3.2) a convergence of order 0.5 in H . However in the nonlinear case with

n = 2 the convergence in H is beyond any available a priori results. In fact, since the

Dirichlet-Neumann change in the boundary conditions we can expect u ∈ W 2,r(Ω) for

any r ∈ [1; 4/3) (case of the linear problem studied in Section 3.2). Since the Sobolev

injections, we have that if u ∈ W 2,r(Ω) for any r ∈ [1; 4/3), then u ∈ W 1,σ(Ω), for

any σ ∈ [1; 4). Hence we should have u ∈ W 1,2(Ω) = H1(Ω) which implies (see [38]

and Proposition 3.5), ||u − uH ||1,p,Ω ≤ CminϕH∈VH
||u − ϕH ||1,2,Ω ≤ C

√
H , for H small

enough, where C denotes a generic constant independent of H and noting that the last

inequality is not rigorous as obtained when r → 4/3. Since we use the norm || · ||1,p,Ω

the order in H can be expected to be larger than 0.5. However the smoothing role of μ

around A and B should allow u to be less regular. In conclusion, we cannot present any

theoretical answer regarding the a priori convergence order.

Stress field on the mountain base.

Let us now turn to the stress field of the glacier (Figure 4.3(b)) and consider the nonlinear

case. Before studying how to increase the precision on the approximation of the latter,

we briefly outline its behavior along the mountain base, i.e. the boundary ΓB. Our

knowledge of the behavior of the velocity field in the case of the (linear) Poisson problem

with changing Dirichlet-Neumann boundary conditions (Section 3.2), and the result (4.43)

meaning that μ behaves like |∇u| 1
n
−1 when |∇u| → ∞, leads us to conjecture that the
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Figure 4.4: Convergence orders for the velocity field on the models with n = 1, 2 of the
Gries glacier.
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Figure 4.5: Behavior of the stress field σ(II)(uH) on ΓB in the nonlinear case n = 2.
Numerical values are not scaled to physical units. The Figure merely illustrates the
relative behavior for different N .

effective stress field σ(II) blows up at the points A and B. This is confirmed by the

illustration in Figure 4.5 where the values of σ(II) are plotted along ΓB in the case n = 2.

A good precision is needed around A and B where the stress field blows up. In the next

section, we consider applying patches in these small regions.

4.3 Patches and precision of the glacier stress field

We consider in this section the stress field of the glacier (Figure 4.3(b)) and reconsider

the application of patches. We show on the example of the Gries glacier and the nonlinear

model with n = 2 that the application of patches is efficient for reducing the error around

the points of changing boundary conditions on the basal surface.
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The mathematical model and the numerical approach are discussed in the previous

section. The end of the last section concluded with the computation of the velocity and

stress fields of the Gries glacier. The stress field is directly related to the velocity. The

isolines of the effective stress field σ(II) obtained in the nonlinear case (n = 2), given by

(4.36), are illustrated in Figure 4.3(b). Since the previous study of the effective stress field

(Figure 4.5), we know that the stress field blows up around the points of the boundary

where the boundary conditions change.

With (4.36), σ(II) = μ(|∇u|)|∇u|, and (4.43), the minimal regularity requirement

on the velocity field u ∈ V a subset of W 1,p(Ω) with p = (n + 1)/n, suffices to have

σ(II) ∈ L1+n(Ω), i.e. at least L2(Ω), since n ≥ 1. Hence the stress field is L2-integrable,

and the L2-norm is adapted to measure it.

In our model, the boundary of the glacier domain Ω has two points on the basal

surface where it presents a Dirichlet-Neumann change in the boundary conditions (see

Figure 4.1). We call A and B these points. Furthermore, we apply different patches with

(M + 1)(M/2 + 1) discretization points in the regions around A and B in order to see

how to sharpen the results.

We consider two types of patches as in Section 3.2. A first type, called fixed patch

ΛA, ΛB, which in the original mesh with N = 50 points covers exactly one triangle in

all directions around A and B, and a second type which covers, at any refinement level,

one triangle in all directions: it is what we call a variable patch. An illustration of fixed

patches and their size for the refined mesh with N = 50 and M = 4, i.e. H/h = 4, is

depicted in Figure 4.6. For the triangulations of ΛA and ΛB, we consider refinements

such that the diameter h of the fine triangulation is h = H/2, H/4 or H/8.

As mentioned previously, about 10 iterations are necessary to cope with the iterative

method for the linearized problem. Currently, we have an inside loop corresponding to

the iterations of the correction algorithm. Requiring the relative discrepancy of the ve-

locity field in the L2-norm to be below 10−2 (see Section 2.3), the inner-loop convergence

needs 2 to 3 full iterations.

We measure the W 1,3/2- and L2-norm relative error (n = 2) respectively of the velocity

uHh and the stress field σHh = σ(II)(uHh) with respect to the “almost exact” solution u

given by uH with N = 3200 and σ = σ(II)(u). We evaluate the norms in domains ΛA

and ΛB for N = 50 and 100, and for situations without patch and with patch. For the

situation where we apply a patch we consider either two fixed patches or two variable

patches (smaller for N = 100) around A and B. In each case, the error is evaluated in

the region covered by the patch. The respective values are reported in Table 4.2.
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A

B

u = 0

u = 0

du / dn = 0

du / dn = 0

Figure 4.6: Grid constellation for the Gries glacier (N = 50) and illustration of two
patches (M = 4, H/h = 4) around the points A and B.

N M
||u−uHh||W1,3/2(ΛA)

||u||
W1,3/2(ΛA)

||σ−σHh||L2(ΛA)

||σ||L2(ΛA)

||u−uHh||W1,3/2(ΛB )

||u||
W1,3/2(ΛB)

||σ−σHh||L2(ΛB)

||σ||L2(ΛB)

50 – no patch 0.734 0.264 0.415 0.310
2 H/h = 2 0.681 0.194 0.341 0.237
4 H/h = 4 0.662 0.168 0.220 0.170
8 H/h = 8 0.648 0.184 0.256 0.155

Fixed patch, large region
100 – no patch 0.643 0.201 0.272 0.215

4 H/h = 2 0.620 0.171 0.200 0.134
8 H/h = 4 0.613 0.181 0.265 0.120
16 H/h = 8 0.636 0.164 0.365 0.111

Variable patch, small region
100 – no patch 0.818 0.265 0.413 0.290

2 H/h = 2 0.780 0.225 0.404 0.220
4 H/h = 4 0.773 0.239 0.405 0.155
8 H/h = 8 0.791 0.232 0.592 0.193

Table 4.2: W 1,3/2- and L2-norm relative error of the velocity and the stress fields in the
patches (with n = 2).
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Considering the data reported in Table 4.2, we note that the reduction of the error,

particularly for the stress field, is efficient. If we evaluate the errors in variable regions,

though refining the grids by a factor 2, from N = 50 to 100 with no patch for example,

we note no considerable change in the value of the error as the domain for evaluation has

in the same time tightened around the point of singular behavior.

We conclude with a precision gain for the stress field due to the application of patches.

Taking for example the case N = 50 with no patch and a patch with M = 8 around B,

we report that the error on the stress field is divided by two! Furthermore, we can also

compare the convincing pair of situations of N = 50 with a patch (M = 4 or 8) and of

N = 100 with no patch. While using much less discretization points, applying a small,

well chosen patch yields better results than a global refinement.

In Figure 4.7 we illustrate graphically the improvement of the solution in the patches

applied as in Figure 4.6. Considering the region around the point A, we show in Fig-

ure 4.7(a) the actual meshing of the global mesh with N = 50. In (b) we show the patch

that we apply over the whole region (M = 4). For both situations (a) without patch,

and (b) with the patch and underlying triangulation as in (a), we illustrate the obtained

results for the velocity and effective stress field in the region. In Figures (c) and (d)

the improvement of the first derivative of the velocity field around the point of changing

boundary conditions can be observed qualitatively. A relative comparison of the results

(e) and (f) shows how the patch improves the quality of the solution around the change of

boundary conditions where the stress field explodes. The improvement goes continuously

beyond the region of the patch as it can be seen from the values of the stress field at the

boundary of the region.

Finally, the question of the optimal size of the patch arises. To give an answer to

this point, we consider the coarse discretization with N = 50 and consider the relative

L2(Ω)-norm error of the effective stress field with respect to the above introduced “almost

exact” solution.

Without any patch, this error yields 0.153. Applying patches around A and B with

the size as shown in Figure 4.6 (i.e. covering one coarse triangle in each direction around

the point A or B, the patch is large by 2H) and a ratio H/h = 2, we reduce the error

and get 0.121.

If we want to further improve the solution, we can either enlarge the regions over

which we consider the patches, or refine the chosen patches. Refining the patches such

that H/h = 8, reduces the error to the value 0.110. However applying patches around A

and B that are 8H large (four times larger, four times higher), keeping the ratio H/h = 2

constant, the relative error does not improve: 0.126. This means that in this particular

situation, the size of the patch is accurately chosen small, covering the region where the

solution varies most.
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(a) Coarse mesh around A (N =
50).

(b) Patch with H/h = 4 (M = 4).

(c) Velocity field uH .

IsoValue
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(d) Velocity field uHh.

(e) Stress field σH .
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(f) Stress field σHh.

Figure 4.7: Mesh (a,b), velocity field (c,d) and stress field (e,f) in the patched region
around A without and with patch H/h = 4.
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As a conclusion of this chapter, we retain that the application of patches improves the

local precision. Choosing the patch and its refinement is finally dictated by adequation

depending on what we are seeking and the allowed size for problems.
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100



Conclusion

Multi-scale problems have been investigated from a theoretical and numerical point of

view.

On one hand, we have introduced a new method for numerically solving multi-scale

problems. The introduced algorithm uses multiple levels of not necessary conforming

grids. We calculate successive corrections to the solution in sub-domains where more

precision is provided when applying patches of finite elements. We have compared the

method to existing iterative methods and have concluded that our relaxed method is more

flexible. We have mathematically analyzed its convergence through a spectral analysis

of the iteration operator. We have carefully analyzed the parameters to optimize the

convergence of the method. We have discussed implementation issues and illustrated the

convergence behavior on a model situation. We have provided concluding results with

regard to the usage of memory and computation time.

On the other hand, we have applied the correction method to various problems. We

have studied the efficiency with respect to the improvement of the the precision and of the

convergence order in the mesh size. Results are supplied for Laplace model problems: we

have detailed a problem with changing Dirichlet-Neumann and a problem in a polygonal

domain with entrant corner. We have also considered the modeling of glaciers. On a

model simulating the stress field in the ice mass we have improved the numerical results

by applying patches in the regions where changes in the basal boundary conditions are

involved.

We conclude that the method presented in this work is particularly efficient when

applying adequately sized and refined patches. An a posteriori error estimator can au-

tomatize this choice. Note that we have developed a general method in d dimensions,

d = 2, 3. Although all examples and applications in this thesis are in two dimensions,

applications in three dimensions of our algorithm can be developed straightforwardly. For

this we refer to ongoing work by Rezzonico [57]. The correction method is efficient and

due to its flexibility it is, particularly in three dimensions, a clear response to the issue

of re-meshing.
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Appendix

On a class of solutions of the
continuity and Euler’s equations for
inviscid and compressible fluids

I devote this appendix to a small review of research done in Theoretical Physics, trying

to expand and apply the results of my master thesis [A]. In collaboration with Hon. Prof.

Philippe Choquard, I continued during the last years very promising research based on my

multidisciplinary master thesis in the domains of Numerical Analysis, Hydrodynamics

and Theoretical Physics. The general objective of this research can be formulated as a

description of the dynamics of conservative, very large and dense systems experiencing

strongly correlated motion of their constituents which interact via long range potentials,

and this, by means of canonically conjugated collective variables. This work yielded very

interesting results and lead to several publications. The objective of the following is to

give an introduction to the work done and published in [B,C,D].

Preamble.

The papers [B], [C] and [D] report results of computer simulations and of exact theoretical

analysis concerning certain classes of implicit solutions of Bernoulli’s equation for the

velocity potential S(x, t) and of the continuity equation for the mass density ρ(x, t),

two canonically conjugated collective variables, of Hamiltonian fluids in one dimension,

perfect and with Newtonian and Coulombian self-interactions.

These classes are associated to a particular choice of correlated initial conditions be-

tween the velocity potentials and the mass densities which are that ρ(y, 0) ∝ Syy(y, 0)

and which have a quantum theoretical origin. The latter lies in a similitude between, on

the one hand, the Bernoulli equation for the velocity potential S(x, t) and the continuity

equation for the mass density ρ(x, t) of an inviscid and compressible perfect liquid in 1D,

and, on the other hand, the Hamilton–Jacobi equation for the action function J(x, t) and

the continuity equation for the particle density n(x, t) associated to the semi-classical ap-

proximation ψsc(x, t) of a Schrödinger wave function ψ(x, t) = (n(x, t))1/2 exp(iJ(x, t)/�)
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of a free particle of mass m in R1. The key observation is that n(x, t) ∝ Jxx(x, t) is

a solution of nt + 1
m

(nJx)x = 0 if J is a solution of Jt + 1
2m
J2

x = 0. This implies that

ρ(x, t) ∝ Sxx(x, t) is also an admissible solution in the classical case, as emphasized in [B]

and [C], where this relation has been called the Morette–Van Hove relation, by analogy

with a particular form taken by the determinant that these authors have discovered in the

framework of Pauli’s semi-classical approximation to Feynman’s propagator (W. Pauli,

Pauli Lectures on Physics, Vol. 6, Chap. 7, MIT Press (1972); Ph. Choquard and F.

Steiner, Helv. Phys. Acta, 69:636–654 (1996)).

Review.

In the master thesis [A], we consider a mono-atomic conservative liquid occupying a do-

main in R1 and characterized by its mass density ρ(x, t) and velocity potential S(x, t),

two canonically conjugated variables, and its Hamiltonian H(S, ρ) = 1
2

∫
dx ρ(x)S2

x(x) +
1
2

∫
dx dy ρ(x)ϕ(|x−y|)ρ(y), where ϕ(|x|) is the interaction potential for pairs of atoms and

per square of the mass unit (Ph. Choquard, Physica A, 279:45–59 (2000)). The dynamics

are governed by Hamilton’s equations, being here the continuity equation ρt +(ρSx)x = 0

and the non-local Bernoulli equation St+
1
2
S2

x+φ(x) = 0, where φ(x) =
∫

dy ϕ(|x−y|)ρ(y),
isomorphic to a non-local Hamilton–Jacobi equation, the non-locality resulting from the

presence of pair interactions between the particles of the liquid. Writing the latter as a

function of the velocity field u(x, t) = Sx(x, t) yields the corresponding non-local Euler

equation. In this work we make an inventory of, simulate numerically and analyze the

effect on the shocks, if present, of well-defined repulsive or attractive, of short or long

range potentials ϕ(|x|) on the behavior of the mass density ρ(x, t) and the velocity poten-

tial S(x, t) around the origin of the x-axis, in particular, and as function of the time, for

initial conditions of the density ρ(x, 0) and potential S(x, 0) even in x and respectively

concave and convex. We consider a local δ-potential, a long range potential of type |x|,
combinations of both locally repulsive and long range attractive potentials, and the Kac

and Morse potentials. We simulate the evolution of ρ and u for positive times in regions

without shocks.

In paper [B], it is shown that a class of admissible solutions of the continuity and

Bernoulli or Burgers’ equations of a perfect one-dimensional liquid is given by the Morette–

Van Hove relation which stipulates that the mass density is proportional to the second

derivative of the velocity potential as shown in the preamble of this appendix. Posi-

tivity of the density implies convexity of the potential, i.e. smooth solutions, no shock

for positive times. Non-elementary and symmetric solutions of the above equations are

given in analytical and numerical form. Analytically, these solutions are derived from

the original Ansatz proposed by Choquard (Foundations of Physics, 31:623–640 (2001))

and from the ensuing operations which show that they represent a particular case of the

general implicit solutions of Burgers’ equation. Numerically and with the help of an ad
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hoc computer program, these solutions are simulated for a variety of initial conditions

called “compatible” if they satisfy the Morette–Van Hove formula and “anti-compatible”

if the sign of the initial velocity field is reversed. In the latter case, singular behavior is

observed. Part of the theoretical development presented here is rephrased in the context

of the Hopf–Lax formula (i.e. positive times) whose domain of applicability for the solu-

tion of the Cauchy problem of the homogeneous Hamilton–Jacobi equation has recently

been enlarged.

In paper [C] we develop fruitful analogies for one-dimensional systems, partially first

established by C.M. Newman, between the variables, functions and equations which de-

scribe the equilibrium properties of classical ferro- and antiferromagnets in the Mean

Field Approximation (MFA) and those which describe the space-time evolution of com-

pressible Burgers’ liquids. It is shown that the natural analogies are: magnetic field and

position coordinate; ferro-/antiferromagnetic coupling constants and negative/positive

times; free energy per spin and velocity potential; magnetization and velocity field; mag-

netic susceptibility and mass density. An unexpected consequence of these analogies is

a derivation of the Morette–Van Hove relation. Another novelty is that they necessitate

the investigation of weak solutions of Burgers’ equation for negative times, corresponding

to the Curie–Weiss transition in ferromagnets. This is achieved by solving the “final-

value” problem of the homogeneous Hamilton–Jacobi equation. Unification of the final-

and initial-value problems results in an extended Hopf–Lax variational principle. It is

shown that its applicability implies that the velocity potentials at time zero be Lipschitz

continuous, a rather mild condition for the class of physically interesting and functionally

compatible velocity potentials, compatible in the sense of satisfying the Morette–Van

Hove relation.

Finally, in paper [D], we report results of computer simulations and of theoretical

analysis done to investigate and interpret the space-time evolution of the mass density

and the velocity field of the inviscid self-gravitating (attractive) and (repulsive) Coulomb

liquids in 1D with correlated initial conditions, namely proportionality between the mass

density and the divergence of the velocity field. Numerical data gathered for both models

in a collisionless regime reveal an evolution with a time-dependent proportionality factor.

Feeding this result in the continuity and div-Euler equations leads to the introduction of

another field which is shown to satisfy a Burgers type of implicit equation. A thorough

description of regular implosion followed by singular collapses in the attractive case,

and of regular explosion in the repulsive case is obtained. Time-inversion symmetry

is investigated, energy conservation and stability properties are shown to apply in the

regular regions of smooth solutions. The velocity potential satisfies a new local and

inhomogeneous PDE.
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